
1

Programming Languages

John Mitchell

CS 242

Course web site: http://www.stanford.edu/class/cs242/

All about me …

John C. Mitchell
Professor of Computer Science

Research Interests: Computer security: access
control, cryptographic protocols and mobile code
security. Programming languages, type systems,
object systems, and formal methods. Applications of
logic to CS.

B.S. Stanford University; M.S., Ph.D. MIT.

uHow I spend my time
• Working with graduate students
• Writing papers, going to conferences, giving talks
• Departmental committees (hiring, curriculum, …)
• Teaching classes
• Conferences, journals, consulting, companies, …

Goals

uProgramming Language Culture
• A language is a “conceptual universe” (Perlis)

– Learn what is important about various languages
– Understand the ideas and programming methods

• Understand the languages you use (C, C++, Java) by
comparison with other languages

• Appreciate history, diversity of ideas in programming
• Be prepared for new problem-solving paradigms

uCritical thought
• Properties of language, not documentation

u Language and implementation
• Every convenience has its cost

– Recognize the cost of presenting an abstract view of machine
– Understand trade-offs in programming language design

Transference of Lang. Concepts

uParable
• I started programming in 1970’s

– Dominant language was Fortran; no recursive functions

• My algorithms and data structure instructor said:
– Recursion is a good idea even though inefficient
– You can use idea in Fortran by storing stack in array

• Today: recursive functions everywhere

uMoral
• World changes; useful to understand many ideas

uMore current example: function passing
• Pass functions in C by building your own closures, as in STL

“function objects”

Alternate Course Organizations

uLanguage-based organization
• Algol 60, Algol 68, Pascal
• Modula, Clu, Ada
• Additional languages grouped by paradigm

– Lisp/Scheme/ML for functional languages
– Prolog and Logic Programming
– C++, Smalltalk and OOP
– Concurrency via Ada rendez-vous

My opinion:
Algol/Pascal/Modula superseded by ML
Lisp/Scheme ideas also in ML
OOP deserves greater emphasis

For comparison, see Sethi’s book ...

Alternate Course II

uConcept-based organization
• Use single language like Lisp/Scheme
• Present PL concepts by showing how to define them

uAdvantages:
• uniform syntax, easy to compare features

uDisadvantages
• Miss a lot of the culture associated with languages
• Some features hard to add

– Type systems
– Program-structuring mechanisms
– Works best for “local” features, not global structure

Examples: Abelson/Sussman, Friedman et al.

2

Organization of this course

uProgramming in the small
• Cover traditional Algol, Pascal constructs in ML

– Block structure, activation records
– Types and type systems, ...

• Lisp/Scheme concepts in ML too
– higher-order functions and closures, tail recursion
– exceptions, continuations

uProgramming in the large
• Modularity and program structure
• Specific emphasis on OOP

– Smalltalk vs C++ vs Java
– Language design and implementation

Course Organization (cont’d)

uConcurrent and distributed programming
• General issues in concurrent programming
• Actor languages: an attempt at idealization
• Java threads

But what about C?
• Important, practical language
• But, most of you think C all the time
• We discuss other languages, you compare them to C

in your head as we go (and in homework)

C

Programming language toolsets

Other languages

If all you have is
a hammer,
then everything
looks like a nail.

Digression

uCurrent view from carpentry

“A hammer is more than just a hammer.
It's a personal tool that you get used to
and you form a loyalty with. It becomes
an extension of yourself."

http://www.hammernet.com/romance.htm

First half of course

u Lisp (2 lectures)
uFoundations (2 lectures)

• Lambda Calculus
• Denotational Semantics
• Functional vs Imperative Programming

uConventional prog. language concepts (6 lectures)
• ML/Algol language summary (1 lecture)
• Types and type inference (1 lecture)
• Block structure and memory management (2 lectures)
• Control constructs (2 lectures)

--------------------- Midterm Exam ------------------------

Second half of course

uModularity and data abstraction (1 lecture)
uObject-oriented languages (6 lectures)

• Introduction to objects (1 lecture)
• Simula and Smalltalk (2 lectures)
• C++ (1.5 lectures)
• Java (1.5 lectures)

uConcurrent and distributed programming (1 lecture)
uConclusions and review (1 lecture)

--------------------- Final Exam ------------------------

3

General suggestions

uRead ahead
• Some details are only in HW and reading

uThere is something difficult about this course
• May be hard to understand homework questions

Thought questions: cannot run and debug
May sound like there is no right answer, but some answers are

better than others

• Many of you may be used to overlooking language
problems, so it takes a few weeks to see the issues

Mitchell, Autumn 1998-99

• This is a fun course and its not too hard. Some of the
homework questions take a lot of thought. Beware.

• Fundamentals and theory bog down the class a bit,
but overall an interesting class and Mitchell an
interesting and funny teacher.

• Not too tough, can be tricky. … the material is
interesting and makes you think about things in a
different way...

• Take it it's very useful. Now it's much easier for me
to figure out what is going in my program or trace
the errors of a program and choose the right
language for certain tasks.

Course Logistics

uHomework and Exams
• HW on Tuesdays
• Midterm and Final: dates are set
• Honor Code, Collaboration Policy

uTA’s, Office hours, Email policy, …
uSection

• Thursday 7-8 PM
• Optional discussion and review; no new material

– Not broadcast but notes may be available electronically (?)

uReading material
• Book on order. Let’s hope it arrives.

Look at web site…

Foundations: Partial,Total Functions

uValue of an expression may be undefined
• Undefined operation, e.g., division by zero

– 3/0 has no value
– implementation may halt with error condition

• Nontermination
– f(x) = if x=0 then 1 else f(x-2)
– this is a partial function: not defined on all arguments
– cannot be detected at compile-time; this is halting problem

• These two cases are
– “Mathematically” equivalent
– Operationally different

Partial and Total Functions

• Total function: f(x) has a value for every x
• Partial function: g(x) does not have a value for every x

x

g(x)

f(x)

Functions and Graphs

• Graph of f = { 〈x,y〉 | y = f(x) }
• Graph of g = { 〈x,y〉 | y = g(x) }

Mathematics: a function is a set of ordered pairs (graph of function)

x

g(x)

f(x)

4

Partial and Total Functions

uTotal function f:A→B is a subset f ⊆ A×B with
• For every x∈A, there is some y∈B with 〈x,y〉 ∈ f (total)
• If 〈x,y〉 ∈ f and 〈x,z〉 ∈ f then y=z (single-valued)

uPartial function f:A→B is a subset f ⊆ A×B with
• If 〈x,y〉 ∈ f and 〈x,z〉 ∈ f then y=z (single-valued)

uPrograms define partial functions for two reasons
• partial operations (like division)
• nontermination

f(x) = if x=0 then 1 else f(x-2)

Halting Problem

Entore Buggati: "I build
cars to go, not to stop."

Self-Portrait in the Green Buggati (1925)
Tamara DeLempicka

Computability

uDefinition
A function f is computable if there is a program P that
computes f, i.e., for any input x, the computation
P(x) halts with output f(x)

uTerminology
Partial recursive functions
= partial functions (integers to integers)

that are computable

Halting function

uDecide whether program halts on input
• Given program P and input x to P,

Halt (P,x) =

Fact: There is no program for Halt

yes if P(x) halts
no otherwise

Clarifications
Assume program P requires one string input x
Write P(x) for output of P when run in input x
Program P is string input to Halt

Unsolvability of the halting problem

uSuppose P solves variant of halting problem
• On input Q, assume

P(Q) =

uBuild program D

• D(Q) =

uDoes this make sense? What can D(D) do?
• If D(D) halts, then D(D) runs forever.
• If D(D) runs forever, then D(D) halts.
• CONTRADICTION: program P must not exist.

yes if Q(Q) halts
no otherwise

run forever if Q(Q) halts
halt if Q(Q) runs forever

Main points about computability

uSome functions are computable, some are not
• Halting problem

uProgramming language implementation
• Can report error if program result is undefined due to

division by zero, other undefined basic operation
• Cannot report error if program will not terminate

5

Announcements

uHomework grader?
• Send email to cs242 email list

uSomething for fun
• Nominate theme song for

programming language or course topic

uQuestions???

