
Homework 8
Due 03 December

Handout 22
CS242: Autumn 2003

26 November

(Print your name)

Prob #1 # 2 # 3 # 4 # 5 # 6 Total
X+
X

X-
0

Note: Please either write your answers legibly in the space provided or attach a typewritten solution.
Make sure that your answers are stapled together.

Reading

1. Read chapter 14 on concurrency.

Problems

1. Fairness
The guarded-command looping construct

do
Condition ⇒ Command
. . .
Condition ⇒ Command

od

involves nondeterministic choice, as explained in the text. An important theoretical concept
related to potentially nonterminating nondeterministic computation is fairness. If a loop repeats
indefinitely, then fair nondeterministic choice must eventually select each command whose
guard is true. For example, in the loop

do
true ⇒ x := x+1
true ⇒ x := x-1

od

both commands have guards that are always true. It would be unfair to execute x := x+1
repeatedly without ever executing x := x-1. Most language implementations are designed to
provide fairness, usually by providing a bounded form. For example, if there are n guarded
commands, then the implementation may guarantee that each enabled command will be
executed at least once in every 2n or 3n times through the loop. Since the number 2n or 3n is
implementation dependent, though, programmers should only assume that each command with
a true guard will eventually be executed.

1

(a) Suppose that an integer variable x can only contain an integer value with absolute value
less than INTMAX. Will the do ... od loop above cause overflow or underflow under a
fair implementation? What about an implementation that is not fair?

(b) What property of the following loop is true under a fair implementation but false under an
unfair implementation?

go := true;
n := 0;
do

go => n := n+1
go => g := false

od

(c) Is fairness easier to provide on a single-processor language implementation or a
multiprocessor? Discuss briefly.

2. Actor computing
The Actor mail system provides asynchronous buffered communication and does not guarantee
that messages (tasks in Actor terminology) are delivered in the order they are sent. Suppose
actor A sends tasks t1, t2, t3, . . . to actor B and we want actor B to process tasks in the order A

sends them.

(a) What extra information could be added to each task so that B can tell whether it receives a
task out of order? What should B do with a task when it first receives it, before actually
performing the computation associated with the task?

(b) Since the Actor model does not impose any constraints on how soon a task must be
delivered, a task could be delayed an arbitrary amount of time. For example, suppose actor
A sends tasks t1, t2, t3, . . . , t100 and actor B receives the tasks t1, t3, . . . , t50 without receiving
task t2. Since B would like to proceed with some of these tasks, it makes sense for B to ask

2

A to resend task t2. Describe a protocol for A and B that will add resend requests to the
approach you described in part (a) of this problem.

(c) Suppose B wants to do a final action when A has finished sending tasks to B. How can A

notify B when A is done? Be sure to consider the fact that if A sends I’m done to B after
sending task t100, the I’m done message may arrive before t100.

3. Message Passing
There are eight message-passing combinations involving synchronization, buffering, and
message order, as shown in the following table.

Synchronous Asynchronous
Ordered Unordered Ordered Unordered

Buffered
Unbuffered

For each combination, give a programming language that uses this combination and explain
why the combination makes some sense, or explain why you think the combination is either
meaningless or too weak for useful concurrent programming.

4. CML Thread Implementation
The single-processor implementation of Concurrent ML uses coroutines that are implemented
using continuations. You may recall from earlier homework (Problem 8 in Homework 4) that a
coroutine is a function that can return (“yield”) a value and still retain its execution state so that
it can later pick up where it left off later.
The code below, written by Andrew Appel, is also available in the homework directory of the
CS242 web site.

structure Q = Queue (* Use standard Queue package *)
open SMLofNJ.Cont (* Use module providing continuations *)

(* The "ready queue" is the queue of threads ready to run *)
val rdyQ : unit cont Q.queue = Q.mkQueue()

fun exit () = throw (Q.dequeue rdyQ) ()

3

fun fork f =
callcc (fn parent =>
(Q.enqueue (rdyQ, parent) ;
(f ()) handle _ => () ;
exit ()))

fun yield () =
callcc (fn k =>
(Q.enqueue (rdyQ, k) ; exit ()))

The thread package provides three functions: fork, yield, and exit. The fork function forks
off a new thread and suspends the current thread. In doing so, the function puts the current
thread in the ready queue and transfers control to the new thread. The yield function suspends
the current thread and yields control to the next thread in the ready queue. The exit function
exits the current thread. As you’ll notice in the code, we use callcc to save the state of the
current thread and use throw to transfer control.
The SML code file in the handouts directory also contains a test program. The go function forks
two processes, each defined using the skipby function.

fun rand i = (i * 109) mod 7 > 3
fun spaces 0 = () | spaces i = (print " "; spaces(i-1))

fun skipby(n,k) =
let fun loop i = if i>100 then ()

else
(spaces(10*n);
print (Int.toString i ˆ "\n");

if rand i then yield() else ();
loop(i+k))

in loop n
end

fun wait 0 = ()
| wait n = (yield(); wait(n-1))

fun go() = (fork (fn () => skipby(0,2));
fork (fn () => skipby(1,2));
wait 200)

Your tasks are the following:

(a) Run go() and look at the output. Explain the output and explain how the program
produces it.

(b) Modify go by adding a third thread that prints out multiples of three (3, 6, 9...) in a third
column. Print your program and the output and submit it with your homework.

4

(c) Is the output of your program deterministic? Why?

(d) “Preemptive scheduling” refers to a situation when a thread can be stopped before it calls
yield; preemption does not occur with the thread implementation used in this problem.
Why does nonpreemptive scheduling produce fewer race conditions? Explain.

5. Separate read and write synchronization
For many data structures, it is possible to allow multiple reads to occur in parallel, but reads
cannot be safely performed while a write in progress and it is not safe to allow multiple writes
simultaneously. Rewrite the Java LinkedCell class given in this chapter to allow multiple
simultaneous reads, but prevent reads and writes while a write is in progress. You may want to
use more than one lock. For example, you could assume objects called ReadLock and
WriteLock and use synchronized statements involving these two objects. Explain your
approach and why it works.
Attach a typewritten solution.

6. Java memory model
This program with two threads is discussed in the text.

x = 0; y = 0;
Thread 1: a = x; y = 1;
Thread 2: b = y; x = 1;

Draw a box-and-arrow illustration showing the order constraints on the memory actions (read,
load, use, assign, store, write) associated with the four assignments that appear in the two
threads. (You do not need to show these actions for the two assginments setting x and y to 0.)

5

(a) Without prescient stores.

(b) With prescient stores.

6

