
Homework 6
Due 19 November

Handout 18
CS242: Autumn 2003

12 November

(Print your name)

Prob # 1 # 2 # 3 # 4 # 5 # 6 # 7 Total
C+
C
C-

Reading

1. Read Chapters 10 and 11.

Problems

1. Simula Inheritance and Access Links
In Simula, a class is a procedure that returns a pointer to its activation record. Simula prefixed
classes are a precursor to C++ derived classes, providing a form of inheritance. This question asks
about how inheritance might work in an early version Simula, assuming that the standard static
scoping mechanism associated with activation records is used to link the derived class part of an
object with the base class part of the object.
Sample Point and ColorPt classes are given in the text. For the purpose of this problem,
assume that if cp is a ColorPt object, consisting of a Point activation record followed by a
ColorPt activation record, the access link of the parent class (Point) activation record points to
the activation record of the scope in which the class declaration occurs, and the access link of the
child class (ColorPt) activation record points to activation record of the parent class.

(a) Fill in the missing information in the following activation records, created by executing the
following code:

ref(Point) p;
ref(ColorPt) cp;
r :- new Point(2.7, 4.2);
cp :- new ColorPt(3.6, 4.9, red);
cp.distance(r);

Remember that function values are represented by closures, and that a closure is a pair
consisting of an environment (pointer to an activation record) and compiled code.
In this drawing, a bullet (•) indicates that a pointer should be drawn from this slot to the
appropriate closure or compiled code. Since the pointers to activation records cross and could
become difficult to read, each activation record is numbered at the far left. In each activation
record, place the number of the activation record of the statically enclosing scope in the slot
labeled “access link.” The first two are done for you. Also use activation record numbers for
the environment pointer part of each closure pair. Write the values of local variables and
function parameters directly in the activation records.

1

Activation Records Closures Compiled Code

(0) x
y

(1) r→ access link (0)
x code for
y 〈 () , • 〉 equals
equals •
distance • 〈 () , • 〉

(2) Point part of cp access link (0)
x code for
y 〈 () , • 〉 distance
equals •
distance • 〈 () , • 〉

(3) cp→ access link ()
c 〈 () , • 〉 code for
equals • cpt equals

(4) cp.distance(r) access link ()
q (r)

(b) The body of distance contains the expression

sqrt((x− q.x) ∗ ∗2+ (y− q.y) ∗ ∗2)

which compares the coordinates of the point containing this distance procedure to the
coordinate of the point q passed as an argument. Explain how the value of x is found when
cp.distance(r) is executed. Mention specific pointers in your diagram. What value of x
is used?

(c) This illustration shows that a reference cp to a colored point object points to the ColorPt
part of the object. Assuming this implementation, explain how the expression cp.x can be
evaluated. Explain the steps used to find the right x value on the stack, starting by following
the pointer cp to activation record (3).

2

(d) Explain why the call cp.distance(r) only needs access to the Point part of cp and not
the ColorPt part of cp.

(e) If you were implementing Simula, would you place the activation records representing ob-
jects r and cp on the stack, as shown here? Explain briefly why you might consider allocating
memory for them elsewhere.

2. Subtyping of Refs in Simula
In Simula, the procedure call assignA(b) in the following context is considered statically type
correct:

class A ... ; /* A is a class */
A class B ... ; /* B is a subclass of A */

ref (A) a; /* a is a variable pointing to an A object */
ref (B) b; /* b is a variable pointing to a B object */

proc assignA (ref (A) x)
begin

x := a
end;

assignA(b);

(a) Assume that if B <: A then ref(B) <: ref(A). Using this principle, explain why both the
procedure assignA and the call assignA(b) can be considered statically type correct.

3

(b) Explain why actually executing the call assignA(b), and performing the assignment given
in the procedure, may lead to a type error at run time.

(c) The problem is that the “principle”, if B <: A then ref(B) <: ref(A), is not semantically
sound. However, type checking using this principle can be made sound by inserting run-time
tests. Explain the run-time test you think a Simula compiler should insert in the compiled
code for procedure assignA. Can you think of reason why the designers of Simula might
have decided to use run-time tests instead of disallowing ref subtyping in this situation?
(You don’t have to agree with them; just try to imagine what rationale might have been used
at the time.)

3. Smalltalk Run-time Structures
Here is a Smalltalk Point class whose instances represents points in the two-dimensional Carte-

4

sian plane. In addition to accessing instance variables, an instance method allows point objects
to be added together.

class name Point
superclass Object
class variables comment: none
instance variables x y
class messages and methods comment: instance creation

newX: xValue Y: yValue | |
↑ self new x: xValue y: yValue

instance messages and methods comment: accessing instance vars
x: xCoordinate y: yCoordinate | |

x ← xCoordinate
y ← yCoordinate

x | | ↑ x
y | | ↑ y
comment: arithmetic
+ aPoint | |

↑ Point newX: (x + aPoint x) Y: (y + aPoint y)

(a) Complete the top half of the drawing of the Smalltalk run-time structure shown in Figure 1
for a point object with coordinates (3, 4) and its class. Label each of the parts of the top half
of the figure, adding to the drawing as needed.

(b) A Smalltalk programmer has access to a library containing the Point class, but she cannot
modify the Point class code. In her program, she wants to be able to create points using
either cartesian or polar coordinates, and she wants to calculate both the polar coordinates
(radius and angle) and the Cartesian coordinates of points. Given a point (x, y) in cartesian
coordinates, the radius is ((x * x) + (y * y)) squareRoot, and the angle is (x/y)
arctan. Given a point (r, θ) in polar coordinates, the x coordinate is r * (θ cos) and the
y coordinate is r * (θ sin)

i. Write out a subclass, PolarPoint, of Point and explain how this solves the programming
problem.

5

6

-

-

-

-�

-�

6

-

-

-

-�

Figure 1: Smalltalk Run-Time Structures for Point and PolarPoint

6

ii. Which parts of Point could you reuse and which would you have to define differently for
PolarPoint?

(c) Complete the drawing of the Smalltalk run-time structure by adding a PolarPoint object
and its class to the bottom half of the figure you already filled in with Point structures.
Label each of the parts and add to the drawing as needed.

4. Removing a Method
Smalltalk has a mechanism for “undefining” a method. Specifically, if a class A has method m
then a programmer may cancel m in subclass B by writing

m:
self shouldNotImplement

With this declaration of m in subclass B, any invocation of m on a B object will result in a special
error indicating that the method should not be used.

(a) What effect does this feature of Smalltalk have on the relationship between inheritance and
subtyping?

(b) Suppose class A has methods m and n, and method m is canceled in subclass B. Method n is

7

inherited and not changed, but method n sends the message m to self. What do you think
happens if a B object b is sent a message n? There are two possible outcomes. See if you
can identify both, and explain which one you think the designers of Smalltalk would have
chosen and why.

5. Objective CAML
Objective CAML (OCAML) is an object-oriented extension of the CAML dialect of ML, designed
and implemented by researchers at INRIA, the French national computer science research insti-
tute.
The 2002 ICFP programming contest challenged each team to implement a program that acts as
a player in a multi-player robot game. Each entry played against the others in a tournament,
with the winning program declared the winner of the programming contest. The winner was a
1500-line Objective CAML program, beating a 3000-line C program and many others.
Objective CAML has classes, objects, self, initializers (analogous to constructors), virtual meth-
ods, and private methods. Here is a simple form of “point” class:

class point =
object

val mutable x = 0
method get_x = x
method move d = x <- x + d

end;;

When this declaration is given to the OCAML compiler, the code is compiled and the output is

class point :
object val mutable x : int method get_x : int method move : int -> unit end

This means that class point creates objects that have a mutable (assignable) x field, and methods
get_x and move with the given types given above.
A point p is created using new, as in let p = new point. Type of p is point, which is an
abbreviation for the object interface type <get_x : int; move : int -> unit> that lists
the methods of class point along with their types. The object type does not include the field
x. Note that although each class name can be used as a type name, each class type is treated
as an abbreviation for an interface type. We could eliminate the syntactic convenience of writ-
ing class names as type names and write all OCAML programs using interface types such as
<get_x : int; move : int -> unit>.

8

Inheritance makes it possible to use one class in the definition of another. For example,

class colored_point (c:string) =
object

inherit point
val c = c
method color = c

end;;

defines a class with all the fields and methods of point, plus those defined in the derived class.
The effect is the same as copying the field and method definitions from point into the definition
of colored point.
Questions

(a) Which of the four basic concepts (dynamic lookup, encapsulation, inheritance, and subtyp-
ing) are implied by the short description of OCAML given so far (above)? For each concept,
say “yes” or “no” and write a short phrase to explain why you think it must be or might not
be part of OCAML.

(b) Assume subtyping between OCAML object types is defined along the same lines as subtyping
between object interfaces in our discussion of Smalltalk. What is the relationship between
subtyping and inheritance?

(c) Given what you know from the presentation of OCAML so far, what kind of method lookup
algorithm would you expect? Explain by drawing a parallel between OCAML and at least
one of the object-oriented languages we covered in CS242 this quarter. Include a sentence or
phrase about the efficiency of this implementation, in comparison with other object-oriented
languages.

(d) Since OCAML is based on ML, the types of methods are inferred using type inference and
may be polymorphic. However, subtyping is never implicit. If an object x has type t and
t <: s then x is coerced to type s by writing t_to_s(x). As in Standard ML, there is
no user-defined overloading. Why do you think subtyping requires explicit type coercions
in the source code, even if the coercion does not produce any run-time conversion of object
represenations?

9

6. Function Subtyping
Assume that A <: B and B <: C. Which of the following subtype relationships involving the
function type B→ B hold in principle?

i) (B→ B) <: (B→ B)
ii) (B→ A) <: (B→ B)
iii) (B→ C) <: (B→ B)
iv) (C→ B) <: (B→ B)
v) (A→ B) <: (B→ B)
vi) (C→ A) <: (B→ B)
vii) (A→ A) <: (B→ B)
viii) (C→ C) <: (B→ B)

7. “Like Current” in Eiffel
Eiffel is a statically-typed object-oriented programming language designed by Bertrand Meyer
and his collaborators. The language designers did not intend the language to have any type
loopholes. However, there are some problems surrounding an Eiffel type expression called like
current. When the words like current appear as a type in a method of some class, they mean,
“the class that contains this method” To give an example, the following classes were considered
statically type correct in the language Eiffel.

Class Point
x : int
method equals (pt : like current) : bool

return self.x == pt.x

class ColPoint inherits Point
color : string
method equals (cpt : like current) : bool

return self.x == cpt.x and self.color == cpt.color

In Point, the expression like current means the type Point, while in ColPoint, like
current means the type ColPoint. However, the type checker accepts the redefinition of
method equals because the declared parameter type is like current in both cases. In other
words, the declaration of equals in Point says that the argument of p.equals should be of the
same type as p, and the declaration of equals in ColPoint says the same thing. Therefore, the
types of equals are considered to match.

(a) Using the basic rules for subtyping objects and functions, explain why ColPoint should not
be considered a subtype of Point “in principle.”

10

(b) Give a short fragment of code that shows how a type error can occur if we consider ColPoint
to be a subtype of Point.

(c) Why do you think the designers of Eiffel decided to allow subtyping in this case? In other
words, why do you think they wanted like current in the language?

(d) When this error was pointed out (by W. Cook after the language had been in use for several
years), the Eiffel designers decided not to remove like current, since this would “break”
lots of existing code. Instead, they decided to modify the type checker to perform whole-
program analysis. More specifically, the modified Eiffel type checker examined the whole
Eiffel program to see if there was any statement that was likely to cause a type error.

i. What are some of the disadvantages of whole-program analysis? Don’t just say, “it has
to look at the whole program.” Instead, think about trying to debug a program in a
language where the type checker uses whole-program analysis. Are there any situations
where the error messages would not be as useful as in traditional type checking where
the type of an expression depends only on the types of its parts?

ii. Suppose you were trying to design a type checker that allows safe uses of like current.
What kind of statements or expressions would your type checker look for? How would
you distinguish a type error from a safe use of like current?

11

