
Homework 5
Due 12 November

Handout 13
CS242: Autumn 2003

5 November

Reading

1. Read Chapter 9, Data Abstraction and Modularity, skipping section 9.2.5 on datatype induction.

2. Read Chapter 10, Concepts in Object-Oriented Languages.

Problems

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function Templates and Overloading
As we discussed in connection with polymorphism, function templates are a way to add type

variables to the C++ type system. In the example below, the type T allows the function f to take

different types of arguments without changing the function body. The declarations on lines (a)–(c)

are referred to as function base templates:

template<class T> void f( T ); // (a)
template<class T> void f( int, T, double ); // (b)
template<class T> void f( T* ); // (c)
void f( double ); // (d)

int main() {
long l;
int i;
double d;

f( l ); // calls (a) with T = long
f( i, 42, d ); // calls (b) with T = int
f( &i ); // calls (c) with T = int
f( i ); // calls (a) with T = int
f( d ); // calls (d)
}

The complication with function templates and overloading arises when we have multiple versions

of a function that can match a single call. In the absence of templates, the C++ compiler prevents

this sort of clash. With templates, though, we can see that the declarations (a) and (d) clash, but

the C++ compiler does not complain about this code. For example, the call f( d ) on the last

line of main could resolve to either declaration (a) or declaration (d).

Here are some rules for resolving overloaded function templates:

(a) Nontemplate functions are preferred. If a nontemplate function matches the parameter

types as well as any function template, the nontemplate function is used.

(b) If there are no nontemplate functions that are at least as good, then a function base template

will be used. Which function base template gets selected depends on which matches best and

is the “most specialized,” according to a set of fairly arcane rules:

i. If there is one “most specialized” function base template, that one gets used.

ii. If there is a tie for the “most specialized” function base template, the call is ambiguous

because the compiler cannot decide which is a better match. The programmer will have

to do something to qualify the call and say which one is wanted.
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iii. If there is no function base template that can be made to match, the call is bad and the

programmer will have to fix the code.

We can provide an intuitive definition of “specialization” by saying that one template is more

specialized than another if it can match fewer types. For example, the function base template on

line (c) is more specialized than the function base template on line (a).

(a) (5 points) For each of the calls in the example above, write down which of the rules above is

used to resolve clashes in overload resolution. If there is no clash (i.e. only one choice among

(a)-(d) is possible), write “no clash.” Otherwise write the specific rule that is used (e.g., (b)-iii,

would refer to the very last rule).

(b) Given that the call to f(d) could be handled by the declaration on line (a), why might a

programmer choose to overload f with the declaration on line (d)? More specifically, write a

body for the declaration on line (a) that contains no more than one line and will cause the

C++ type checker to report an error if you eliminated the declaration on line (d). In writing

your definition, remember that C and C++ will often implicitly cast the parameters to an

operator.

template<class T> void f(T x) { ; }

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function objects in STL
In STL terminology, a function object is any object that can be called as if it is a function. Any

object of a class that defines operator() is a function object. In addition, an ordinary function

may be used as a function object, since f() is meaningful is f is a function, and similarly if f is

a function pointer.

Here is a C++ template for combining an argument type, return type, and operator() together

into a function object. Every object from every subclass of FuncObj<A,B>, for any types A and B
is a function object, but not all function objects come from such classes.

template <typename Arg, typename Ret>
class FuncObj {
public:
typedef Arg argType;
typedef Ret retType;
virtual Ret operator()(Arg) = 0;

};

Here are two example classes of function objects. In the first case, the constructor stores a value

in a protected data field so that different function objects from this class will divide by different

integers. In a sense to be explored later in this problem, instances of DivideBy are similar to

closures since they may contain hidden data.

class DivideBy : public FuncObj<int, double> {
protected:
int divisor;

public:
DivideBy(int d) {

this->divisor = d;
}
double operator()(int x) {

return x/((double)divisor);
}

};
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class Truncate : public FuncObj<double, int> {
public:
int operator()(double x) {

return (int) x;
}

};

Since DivideBy uses the FuncObj template as a public base class, DivideBy is a subtype of

FuncObj<int, double>, and similarly for Truncate.

(a) Fill in the blanks to complete the Compose template below. The Compose constructor takes

two function objects f and g and creates a function object that computes their composition

λx. f(g(x)).

You will need to fill in type declarations on lines 9 and 13 and code on lines 10, 11, and 14. If

you do not know the correct C++ syntax, you may use short English descriptions for partial

credit. (We have double-checked the parentheses to make sure they are correct.)

To give you a better idea of how Compose is supposed to work, you may want to look at the

sample code below that uses Compose to compose DivideBy and Truncate.

1: template < typename Ftype , typename Gtype >

2: class Compose :
3: public FuncObj < typename Gtype::argType,
4: typename Ftype::retType > {
5: protected:
6: Ftype *f;
7: Gtype *g;
8: public:
9: Compose( f, g) {

10: = f ;

11: = g ;
12: }

13: operator()( x) {

14: return ( )(( )( ));
15: }
16: };

void main() {
DivideBy *d = new DivideBy(2);
Truncate *t = new Truncate();
Compose<DivideBy, Truncate> *c1
= new Compose<DivideBy, Truncate>(d,t);

Compose<Truncate, DivideBy> *c2
= new Compose<Truncate, DivideBy>(t,d);

cout << (*c1)(100.7) << endl; // Prints 50.0
cout << (*c2)(11) << endl; // Prints 5

}
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(b) Consider code of the following form, where A, B, C, D are types that might not all be

different (i.e., we could have A = B = C = D = int or A, B, C, D might be four different

types):

class F : public FuncObj<A, B> {
...

};
class G : public FuncObj<C, D> {

...
};
F *f = new F(...);
G *g = new G(...);
Compose<F, G> *h
= new Compose<F, G>(f,g);

cout << (*h)(...) << endl; // call compose function

What will happen if the return type D of g is not the same as the argument type A of f? If it

is possible for an error to occur and possible for an error not to occur, say which conditions

will cause an error and which will not. If it is possible for an error to occur at compile time

or at run time, say when the error will occur and why.

(c) Our Compose template is written assuming that Ftype and Gtype are classes that have

argType and retType type definitions. If you wanted to define a Compose template that

works for all function objects, what arguments would your template have and why? Your

answer should be in the form of “the types of variables . . . , the arguments of functions . . . ,

and the return values of . . . ”. Assume that the code in lines 10, 11, and 14 stays the same.

All we want to change are the template parameters on line one and possibly the parts of the

body of the template that refer to template parameters.

The rest of this problem asks about the similarities and differences between C++ function objects

and function closures in languages like Lisp, ML, and Scheme. In studying scope and activation

records, we looked at a function makeCounter that returns a counter, initialized to some integer

value. Here is makeCounter function in Scheme:

(define makeCounter
(lambda (val)

(let (( counter (lambda (inc) (set! val (+ val inc)) val)) )
counter)))

Here is part of an interactive session using makeCounter

==> (define c (makeCounter 3))
#<unspecified>
==> (c 2)
5
==> (c 2)
7

The first input defines a counter c, initialized to 3. The second input line adds 2, producing value

5, and the third input line adds 2 again, producing value 7.

A general idea for translating Lisp functions into C++ function objects is to translate each function

f into a class A so that objects from class A are function objects that behave like f. If f is defined

within some nested scope, then the constructor for A will put the global variables of f into the

function object, so that an instance of A behaves like a closure for f.

Since makeCounter does not have any free variables, we can translate makeCounter into a class

MAKECOUNTER that has a constructor with no parameters.
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class MAKECOUNTER {
public:

class COUNTER {
protected:

int val;
public:

COUNTER(int init){val = init;}
int operator()(int inc) {

val = val + inc;
return val;

}
};
MAKECOUNTER(){}
COUNTER* operator()(int val) {

return new COUNTER(val);
}

};

We can create a MAKECOUNTER function object and use it to create a COUNTER function object as

follows.

MAKECOUNTER *m = new MAKECOUNTER();
MAKECOUNTER::COUNTER * c = (*m)(3);

cout << (*c)(2) << endl; // Prints 5

(d) Thinking generally about Lisp closures and C++ function objects, describe one way in which

C++ function objects might serve some programming objectives better than Lisp closures.

(e) Thinking generally about Lisp closures and C++ function objects, describe one way in which

Lisp closures might serve some programming objectives better than C++ function objects.

(f) Do you think this approach sketched in this problem will allow you to translate an arbitrary

nesting of Lisp or ML functions into C++ function objects? You may want to consider the

following variation of MAKECOUNTER in which the counter value val is placed in the outer

class instead of the inner class.

class MAKECOUNTER {
protected:

int val;

public:
class COUNTER {
private:

MAKECOUNTER *mc;

public:
COUNTER(MAKECOUNTER* mc, int init) {
this->mc = mc;
mc->val = init;

}

int operator()(int inc) {
mc->val = mc->val + inc;
return mc->val;

}
};
friend class COUNTER;

MAKECOUNTER(){}
COUNTER* operator()(int val) {

return new COUNTER(this,val);
}

};
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3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expression Objects
We can represent expressions given by the grammar

e ::= num | e + e

using objects from a class called expression. We begin with an “abstract class” called expres-

sion. While this class has no instances, it lists the operations commons to all kinds of expressions.

These are a predicate telling whether there are subexpressions, the left and right subexpressions

(if the expression is not atomic), and a method computing the value of the expression.

class expression() =
private fields:

(* none appear in the _interface_ *)
public methods:

atomic?() (* returns true if no subexpressions *)
lsub() (* returns ‘‘left’’ subexpression if not atomic *)
rsub() (* returns ‘‘right’’ subexpression if not atomic *)
value() (* compute value of expression *)

end

Since the grammar gives two cases, we have two subclasses of expression, one for numbers and

one for sums.

class number(n) = extend expression() with
private fields:

val num = n
public methods:

atomic?() = true
lsub () = none (* not allowed to call this, *)
rsub () = none (* because atomic?() returns true *)
value () = num

end

class sum(e1,e2) = extend expression() with
private fields:

val left = e1
val right = e2

public methods:
atomic?() = false
lsub () = left
rsub () = right
value () = ( left.value() ) + ( right.value() )

end

(a) Product Class

Extend this class hierarchy by writing a prod class to represent product expressions of the

form

e ::= . . . | e ∗ e

(b) Method Calls

Suppose we construct a compound expression by

val a = number(3);
val b = number(5);
val c = number(7);
val d = sum(a,b);
val e = prod(d,c);
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and send the message value to e. Explain the sequence of calls that are used to compute

the value of this expression: e.value(). What value is returned?

(c) Unary Expressions

Extend this class hierarchy by writing a square class to represent squaring expressions of

the form

e ::= . . . | e2

What changes will be required in the expression interface? What changes will be re-

quired in subclasses of expression? What changes will be required in functions that use

expressions?∗ What changes will be required in functions that do not use expressions?

(Try to make as few changes as possible to the program.)

(d) Ternary Expressions

Extend this class hierarchy by writing a cond class to represent conditionals† of the form

e ::= . . . | e?e : e

What changes will be required if we wish to add this ternary operator? (As in part (c), try to

make as few changes as possible to the program.)

(e) N-Ary Expressions

Explain what kind of interface to expressions we would need if we would like to support

atomic, unary, binary, ternary and n−ary operators without making further changes to the

interface. In this part of the problem, we are not concerned with minimizing the changes to

the program; instead, we are interested in minimizing the changes that may be needed in

the future.

4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Objects vs. Type Case
With object oriented programming, classes and objects can be used to avoid “type case” state-

ments. Here is a program using a form of case statement that inspects a user-defined type tag

to distinguish between different classes of shape objects. This program would not statically type-

check in most typed languages since the correspondence between the tag field of an object and the

class of the object is not statically guaranteed and visible to the type checker. However, in an un-

typed language like Smalltalk, a program like this could behave in a computationally reasonable

way.

enum shape_tag { s_point, s_circle, s_rectangle };

class point {
shape_tag tag;
int x;
int y;

point (int xval, int yval)
{ x = xval; y = yval; tag = s_point; }

int x_coord () { return x; }
int y_coord () { return y; }
void move (int dx, int dy) { x += dx; y += dy; }

};

class circle {
shape_tag tag;

∗Keep in mind that not all functions simply want to evaluate entire expressions. They may call the other methods as well.
†In C, conditional expressions a?b:c evaluate a, and then return the value of b if a is non zero, or return the value of c if a

is zero.
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point c;
int r;

circle (point center, int radius)
{ c = center; r = radius; tag = s_circle }

point center () { return c; }
int radius () { return radius; }
void move (int dx, int dy) { c.move (dx, dy); }
void stretch (int dr) { r += dr; }

};

class rectangle {
shape_tag tag;
point tl;
point br;

rectangle (point topleft, point botright)
{ tl = topleft; br = botright; tag = s_rectangle; }

point top_left () { return tl; }
point bot_right () { return br; }
void move (int dx, int dy) { tl.move (dx, dy); br.move (dx, dy); }
void stretch (int dx, int dy) { br.move (dx, dy); }

};

/* Rotate shape 90 degrees. */
void rotate (void *shape) {
switch ((shape_tag *) shape) {

case s_point:
case s_circle:
break;

case s_rectangle:
{

rectangle *rect = (rectangle *) shape;
int d = ((rect->bot_right ().x_coord ()

- rect->top_left ().x_coord ()) -
(rect->top_left ().y_coord ()
- rect->bot_right ().y_coord ()));

rect->move (d, d);
rect->stretch (-2.0 * d, -2.0 * d);

}
}

}

(a) Rewrite this so that instead of rotate being a function, each class has a rotate method,

and the classes do not have a tag.

(b) Discuss, from the point of view of someone maintaining and modifying code, the differences

between adding a triangle class to the first version (as written above) and adding a triangle

class to the second (produced in part (a) of this question).

(c) Discuss the differences between changing the definition of rotate (say, from 90 degrees to

the left to 90 degrees to the right) in the first and second versions. Assume you have added

a triangle class so that there is more than one class with a nontrivial rotate method.

5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Visitor Design Pattern
The extension and maintenance of an object hierarchy can be greatly simplified (or greatly compli-
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cated) by design decisions made early in the life of the hierarchy. This question explores various

design possibilities for an object hierarchy representing arithmetic expressions.

The designers of the hierarchy have already decided to structure it as shown below, with a base

class Expression and derived classes IntegerExp, AddExp, MultExp and so on. They are

now contemplating how to implement various operations on Expressions, such as printing the

expression in parenthesized form or evaluating the expression. They are asking you, a freshly-

minted language expert, to help.

The obvious way of implementing such operations is by adding a method to each class for each
operation. The Expression hierarchy would then look like:

class Expression
{

virtual void parenPrint();
virtual void evaluate();
//...

}
class IntegerExp : public Expression
{

virtual void parenPrint();
virtual void evaluate();
//...

}
class AddExp : public Expression
{

virtual void parenPrint();
virtual void evaluate();
//...

}

Suppose there are n subclasses of Expression altogether, each similar to IntegerExp and

AddExp shown here. How many classes would have to be added or changed to add each of the

following things?

(a) A new class to represent product expressions.

(b) A new operation to graphically draw the expression parse tree.

Another way of implementing expression classes and operations uses a pattern called the Visitor

Design Pattern. In this pattern, each operation is represented by a Visitor class. Each Visitor

class has a visitCLS method for each expression class CLS in the hierarchy. The expression

class CLS is set up to call the visitCLS method to perform the operation for that particular

class. Each class in the expression hierarchy has an accept method which accepts a Visitor as

an argument and “allows the Visitor to visit the class and perform its operation.” The expression

class does not need to know what operation the visitor is performing.

If you write a Visitor class ParenPrintVisitor to print an expression tree, it would be used as

follows:

Expression *expTree = ...some code that builds the expression tree...;
Visitor *printer = new ParenPrintVisitor();
expTree->accept(printer);

The first line defines an expression, the second defines an instance of your ParenPrintVisitor
class, and the third passes your visitor object to the accept method of the expression object.

The expression class hierarchy using the Visitor Design Pattern has this form, with an accept
method in each class and possibly other methods.
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class Expression
{

virtual void accept(Visitor *vis) = 0; //Abstract class
//...

}
class IntegerExp : public Expression
{

virtual void accept(Visitor *vis) {vis->visitIntExp(this);};
//...

}
class AddExp : public Expression
{

virtual void accept(Visitor *vis)
{ lhs->accept(vis); vis->visitAddExp(this); rhs->accept(vis); }
//...

}

The associated Visitor abstract class, naming the methods that must be included in each visitor,
and some example subclasses, have this form:

class Visitor
{

virtual void visitIntExp(IntegerExp *exp) = 0;
virtual void visitAddExp(AddExp *exp) = 0; // Abstract class

}

class ParenPrintVisitor : public Visitor
{

virtual void visitIntExp(IntegerExp *exp) {// IntExp print code};
virtual void visitAddExp(AddExp *exp) {// AddExp print code};

}

class EvaluateVisitor : public Visitor
{

virtual void visitIntExp(IntegerExp *exp) {// IntExp eval code};
virtual void visitAddExp(IntegerExp *exp) {// AddExp eval code};

}

Suppose there are n subclasses of Expression, and m subclasses of Visitor. How many classes

would have to be added or changed to add each of the following things using the Visitor Design

Pattern?

(c) A new class to represent product expressions.

(d) A new operation to graphically draw the expression parse tree.

The designers want your advice.

(e) Under what circumstances would you recommend using the standard design?

(f) Under what circumstances would you recommend using the Visitor Design Pattern?
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