
Homework 2
Due 15 October

Handout 3
CS242: Autumn 2003

8 October

Reading

1. From Chapter 4, read Sections 4.1–4.2 and 4.4–4.5. You may skim section 4.3 on denotational
semantics if you like.

2. Read Chapter 5 on the Algol family of programming languages and ML.

Problems

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parsing and Precedence
Draw parse tress for the following expressions, assuming the grammar and precedence described
in Example 4.2:

(a) 1 − 1 ∗ 1.
(b) 1 − 1 + 1.
(c) 1 − 1 + 1 − 1 + 1, if we give + higher precedence than −.

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lambda Calculus Reduction
Use lambda calculus reduction to find a shorter expression for (λx.λy.xy)(λx.xy). Begin by renam-
ing bound variables. You should do all possible reductions to get the shortest possible expression.
What goes wrong if you do not rename bound variables?

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbolic Evaluation
The Algol-like program fragment

function f(x)
return x+4

end;
function g(y)

return 3-y
end;
f(g(1));

can be written as the following lambda expression:



 (λf.λg.f (g 1))

︸ ︷︷ ︸

main

(λx.x + 4)
︸ ︷︷ ︸

f




 (λy.3 − y)

︸ ︷︷ ︸

g

Reduce the expression to a normal form in two different ways, as described below.

(a) Reduce the expression by choosing, at each step, the reduction that eliminates a λ as far to
the left as possible.

(b) Reduce the expression by choosing, at each step, the reduction that eliminates a λ as far to
the right as possible.
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4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lazy Evaluation and Parallelism
In a “lazy” language, a function call f(e) is evaluated by passing the unevaluated argument to
the function body. If the value of the argument is needed, then it is evaluated as part of the
evaluation of the body of f. For example, consider the function g defined by

fun g(x, y) = if x = 0

then 1
else if x + y = 0

then 2
else 3;

In a lazy language, the call g(3, 4+ 2) is evaluated by passing some representation of the expres-
sions 3 and 4 + 2 to g. The test x = 0 is evaluated using the argument 3. If it were true, the
function would return 1 without ever computing 4 + 2. Since the test is false, the function must
evaluate x + y, which now causes the actual parameter 4 + 2 to be evaluated. Some examples
of lazy functional languages are Miranda, Haskell and Lazy ML; these languages do not have
assignment or other imperative features with side effects.
If we are working in a pure functional language without side-effects, then for any function call
f(e1, e2), we can evaluate e1 before e2 or e2 before e1. Since neither can have side-effects, neither
can affect the value of the other. However, if the language is lazy, we might not need to evaluate
both of these expression. Therefore, something can go wrong if we evaluate both expressions and
one of them does not terminate.
As Backus argues in his Turing Award lecture, an advantage of pure functional languages is
the possibility of parallel evaluation. For example, in evaluating a function call f(e1, e2) we can
evaluate both e1 and e2 in parallel. In fact, we could even start evaluating the body of f in parallel
as well.

(a) Assume we evaluate g(e1, e2) by starting to evaluate g, e1, and e2 in parallel, where g is
the function defined above. Is it possible that one process will have to wait for another to
complete? How can this happen?

(b) Now, suppose the value of e1 is zero and evaluation of e2 terminates with an error. In
the normal (i.e., eager) evaluation order that is used in C and other common languages,
evaluation of the expression g(e1, e2) will terminate in error. What will happen with lazy
evaluation? Parallel evaluation?

(c) Suppose you want the same value, for every expression, as lazy evaluation, but you want to
evaluate expressions in parallel to take advantage of your new pocket-sized multiprocessor.
What actions should happen, if you evaluate g(e1, e2) by starting g, e1, and e2 in parallel, if
the value of e1 is zero and evaluation of e2 terminates in an error?

(d) Suppose, now, that the language contains side-effects. What if e1 is z, and e2 contains an
assignment to z. Can you still evaluate the arguments of g(e1, e2) in parallel? How? Or why
not?

5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-Assignment Languages
A number of so-called single-assignment languages have been developed over the years, many
designed for parallel scientific computing. Single assignment conditions are also used in pro-
gram optimization and in hardware description languages. Single-assignment conditions arise
in hardware since only one assignment to each variable may occur per clock cycle.
One example single-assignment language is SISAL, which stands for Streams and Iteration in
a Single Assignment Language. Another is SAC, or Single-Assignment C. Programs in single-
assignment languages must satisfy the following condition:

Single-Assignment Condition: During any run of the program, each variable may be
assigned a value only once, within the scope of the variable.
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The following program fragment satisfies this condition

if (y>3) then x = 42+29/3 else x = 13.39;

since only one branch of the if-then-else will be executed on any run of the program. The program
x=2; loop forever; x=3 also satisfies the condition since no execution will complete both
assignments.
Single-assignment languages often have specialized loop constructs, since otherwise it would be
impossible to execute an assignment inside a loop body that gets executed more than once. Here
is one form, from SISAL:

for 〈range〉
〈body〉

returns 〈returns clause〉
end for

An example illustrating this form is the following loop, which computes the dot (or inner) product
of two vectors:

for i in 1, size
elt_prod := x[i] * y[i]

returns value of sum elt_prod
end for

This loop is parallelizable since different products x[i]∗y[i] can be computed in parallel. A typical
SISAL program has a sequential outer loop containing a set of parallel loops.
Suppose you have the job of building a parallelizing compiler for a single-assignment language.
Assume that the programs you compile satisfy the single-assignment condition and do not contain
any explicit process fork or other parallelizing instructions. Your implementation must find parts
of programs that can be safely executed in parallel, producing the same output values as if the
program was executed sequentially on a single processor.
Assume for simplicity that every variable is assigned a value before the value of the variable is
used an in expression. Also assume that there is no potential source of side effects in the language
other than assignment.

(a) Explain how you might execute parts of the sample program

x = 5;
y = f(g(x),h(x));
if y==5 then z=g(x) else z=h(x);

in parallel. More specifically, assume that your implementation will schedule the following
processes in some way:

process 1 – set x to 5
process 2 – call g(x)
process 3 – call h(x)
process 4 – call f(g(x),h(x)) and set y to this value
process 5 – test y==5
process 6 – call g(x) and then set z=g(x)
process 7 – call h(x) and then set z=h(x)

For each process, list the processes that this process must wait for and list the processes that
can be executed in parallel with it. For simplicity, assume that a call cannot be executed until
the parameters have been evaluated and assume that processes 6 and 7 are not divided into
smaller processes that execute the calls but do not assign to z. Assume that parameter
passing in the example code is by value.
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(b) If you further divide process 6 into two processes, one that calls g(x) and one that assigns
to z, and similarly divide process 7 into two processes, can you execute the calls g(x) and
h(x) in parallel? Could your compiler correctly eliminate these calls from processes 6 and
7? Explain briefly.

(c) Would the parallel execution of processes you describe in parts (a) and (b), if any, be correct
if the program does not satisfy the single-assignment condition? Explain briefly.

(d) Is the single-assignment condition decidable? Specifically, given an program written in a
subset of C, for concreteness, is it possible for a compiler to decide whether this program
satisfies the single-assignment condition? Explain why or why not. If not, can you think of
a decidable condition that implies the single-assignment condition and allows many useful
single-assignment programs to be recognized?

(e) Suppose a single-assignment language has no side-effecting operations other than assign-
ment. Does this language pass the declarative language test? Explain why or why not?

6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Algol 60 Pass-By-Name
The following Algol 60 code declares a procedure P with one pass-by-name integer parameter.
Explain how the procedure call P(A[i]) changes the values of i and A by substituting the actual
parameters for the formal parameters, according to the Algol 60 copy rule. What integer values
are printed by tprogram? using pass-by-name parameter passing?
The lineinteger x does not declare local variables – this is just Algol 60 syntax declaring the
type of the procedure parameter.

begin
integer i;
integer array A[1:2];

procedure P(x);
integer x;
begin

i := x;
x := i

end

i := 1;
A[1] := 2; A[2] := 3;
P (A[i]);
print (i, A[1], A[2])

end

7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Currying
This problem asks you to show that the ML types ′a → (′b → ′c) and (′a ∗ ′b) → ′c are essentially
equivalent.

(a) Define higher-order ML functions

Curry : ((′a ∗ ′b) → ′c) → (′a → (′b → ′c))

and
UnCurry : (′a → (′b → ′c)) → ((′a ∗ ′b) → ′c)

(b) For all functions f : (′a ∗ ′b) → ′c and g : ′a → (′b → ′c), the following two equalities should
hold (if you wrote the right functions):

UnCurry(Curry(f)) = f
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Curry(UnCurry(g)) = g.

Explain why each is true, for the functions you have written. Your answer can be 3 or 4
sentences long. Try to give the main idea in a clear, succinct way. (We are more interested
in insight than number of words.) Be sure to consider termination behavior as well.

8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ML implementation of lambda reduction
This exercise asks you to implement β-reduction in ML and test your reduction function. The
next few paragraphs explain the datatype you should use and give you some example terms. The
ML function declarations with parts missing are on the CS242 web site at
http://www.stanford.edu/class/cs242/handouts/lambda-eval.txt To submit your program on
the Leland systems, create a directory for your project called hw2 and run /usr/class/cs242/bin/submit
from that directory. Make sure that your hw2 directory only contains files for this programming
assignment.
Lambda terms with addition have the BNF

t ::= v | c | t + t | t t |λv. t

In words, a lambda terms is either a variable, a constant (symbol with a fixed meaning), a sum
of two terms, an application of one term to another, or a lambda abstraction. It is assumed that
there are infinitely many variables, v1, v2, v3, . . . so we can write a term with as many variables as
we need, and there are enough “unused” variables that we can always α-convert when we need
to. Since the only operation built into this version of lambda calculus is addition, we might as
well assume that the constants are numbers 0, 1, 2, . . .. Some examples of terms produced by this
grammar are λy. y + x and λy. λx. y(y x)

We can write a very similar ML datatype for lambda terms with addition, representing the vari-
ables v1, v2, v3, . . . in the form Var(1), Var(2), . . . and the numbers 0, 1, 2, . . . in the form
Const(0), Const(1), Const(2), . . ., as follows

datatype term = Var of int| Const of int | Plus of term * term
| App of term * term | Lambda of int* term

Here are some example terms that can be used to make larger terms more readable.

val x = Var(1);
val y = Var(2);
val one = Const(1);
val two = Const(2);

Using the convenient declarations val x_ = 1; val y_ = 2; that let us write the numbers
1 and 2 using symbols that remind us of variables x and y, we can write terms λy. y + x and
λy. λx. y(y x), along with the application of the second term to the first, as

val twice = Lambda(y_, Lambda(x_, App(y, App(y,x))));
val addx = Lambda(y_, Plus(y,x));
val test = App(twice,addx);

You might notice that test is the lambda term used in lecture to illustrate the need for renaming
bound variables when performing β-reduction.

(a) Write a function that substitutes a term for a variable, without renaming bound variables.
Your function should have the form below, with the missing parts indicated by (*-- missing part --*)
filled in. The function subst{t,x,s) substitutes t for all free occurrences of x in s and is
defined by cases on the form of s:
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fun subst(t,x,Var(n)) = if x=n then t else Var(n)
| subst(t,x,Const(n)) = Const(n)
| subst(t,x,Lambda(n,t1)) = if x=n then (*-- missing part --*)

else (*-- missing part --*)
| subst(t,x,App(t1,t2)) = (*-- missing part --*)
| subst(t,x,Plus(t1,t2)) = (*-- missing part --*)

(b) Write a function ev that evaluates a terms using subst. This function should not re-
name bound variables. Use the following form which breaks the problem into separate
cases. In each case, evaluate all the parts that you can, but just return an expression like
ev (App(Const(3),Const(4))) as is since there is no way to reduce this further. How-
ever, when an expression adds two numbers, you should return their sum.

fun ev(Var(n)) = Var(n)
| ev(Const(n)) = Const(n)
| ev(Lambda(n,t1)) = Lambda(n,ev(t1))
| ev(App(t1,t2)) =

(case ev(t1) of
Var(n) => App(Var(n),ev(t2)) |

Const(n) => App(Const(n),ev(t2)) |
Lambda(n,t) => (*-- missing part --*) |
App(t,t1) => App(App(t,t1),ev(t2)) |

Plus(t,t1) => (*-- missing part --*)
| ev(Plus(t1,t2)) =

case ev(t1) of
Var(n) => Plus(Var(n),ev(t2)) |

Const(n) => (case ev(t2) of
Var(m) => Plus(Const(n),Var(m)) |

Const(m) => (*-- missing part --*) |
Lambda(m,t) => Plus(Const(n),Lambda(n,t))|
App(t3,t4) => (*-- missing part --*) |

Plus(t3,t4) => App(Const(n),Plus(t3,t4)) )|
Lambda(n,t) => Plus(Lambda(n,t),ev(t2)) |
App(t,t1) => Plus(App(t,t1),ev(t2)) |

Plus(t,t1) => (*-- missing part --*) ;

Note that the case given for ev(Lambda(n,t1)) evaluates the body of a lambda expression.
(c) Write a function alpha that renames bound variables so that no free variable in alpha(term)

is the same as any bound variable. One way to do this is define
alpha(term) = alph( ... ,term, ...)where alph has additional arguments besides
the term itself. For example, you could try something like
alpha(term) = alph(free_variables(term),term)where free_variables is a func-
tion that returns a list of free variables in a term. The idea here might be to use the list of
free variables so that you can rename bound variables to names that are not in the list.
There might also be some way to use the fact that variables are numbered to simplify this.
You can be creative, but use your creativity to write a short, easy to read function, not some
complicated mess. There is no need for assignment or reference cells, so do not use them.

(d) Define eval(term) = ev(alpha(term)) and compare ev(test) with eval(test).
(e) (Extra Credit) Consider replacing ev(Lambda(n,t1)) = Lambda(n,ev(t1))

with ev(Lambda(n,t1)) = Lambda(n,t1). How is the resulting new definition of eval
better? Worse? (Hint: Think about the definition of factorial in Homework 1.)
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