
Homework 1
Due 8 October

Handout 1
CS242: Autumn 2003

1 October

Reading

1. Read Chapters 1–3 in the textbook.

2. (Optional) J. McCarthy, Recursive functions of symbolic expressions and their computation by
machine, Comm. ACM 3,4 (1960) 184–195. You can find a link to this on the CS242 web site. The
most relevant sections are 1, 2 and 4; you can also skim the other sections if you like.

Problems

1. Partial and Total Functions
For each of the following function definitions, give the graph of the function. Say whether this
is a partial function or a total function on the integers. If the function is partial, say where the
function is defined and undefined.
For example, the graph of f(x) = if x > 0 then x + 2 else x/0 is the set of ordered pairs
{〈x, x + 2〉 |x > 0}. This is a partial function. It is defined on all integers greater than 0 and
undefined on integers less than or equal to 0.
Functions:

(a) f(x) = if x ∗ 5 > 40 then x ∗ x else x + 1/0

(b) f(x) = if x > 1 then 1 else f(x + 1)

(c) f(x) = if x ≤ 1 then log(x) else f(x + 2)

2. Deciding Simple Properties of Programs
Suppose you are given a function Halt42 that, given the source code of a function f and a number
n, will determine whether or not the call f(n) returns the number 42. To be more precise, assume
that you are writing a C or Java program that reads in another program as a string. Your program
is allowed to call Halt42 with a pair of string inputs. Assume that the call to Halt42 returns true

if the arguments are a program P and an input n such that P (n) returns 42, and returns false if
the arguments are a program P and an input n such that P (n) does not return 42. You should
not make any assumptions about the behavior of Halt42 on arguments that do not consist of a
syntactically correct program and some input to that program.
Can you solve the halting problem using Halt42? More specifically, can you write a program that
reads a program text P as input, reads an integer n as input, and then decides whether P (n)
halts? You may assume that any program P you are given begins with a read statement that
reads a single integer from standard input. This problem does not ask you to write the program
to solve the halting problem. It just asks whether it is possible to do so.
If you believe that the halting problem can be solved if you are given Halt42, then explain your
answer by describing how a program solving the halting problem would work. If you believe that
the halting problem cannot be solved using Halt42, then explain briefly why you think not.

3. Cons Cell Representations
(a) Draw the list structure created by evaluating

(cons (cons ’A ’B) ’C).

1

(b) Write a Pure Lisp expression that will result in this
representation, with no sharing of the (A . B) cell.
Explain why your expression produces this structure. A B

C

A B

(c) Write a Pure Lisp expression that will result in this
representation, with sharing of the (A . B) cell. Ex-
plain why your expression produces this structure. A B

C

While writing your expressions, use only these Lisp constructs: lambda abstraction, function
application, the atoms ’A ’B ’C, and the basic list functions (cons, car, cdr, atom, eq).
Assume a simple-minded Lisp implementation that does not try to do any clever detection of
common subexpressions or advanced memory allocation optimizations.

4. Conditional Expressions in Lisp
The semantics of the Lisp conditional expression

(cond (p1 e1)...(pn en))

is explained in the text. This expression does not have a value if p1, . . . , pk are false and pk+1 does
not have a value, regardless of the values of pk+2, . . . , pn.
Imagine you are an MIT student in 1958 and you and McCarthy are considering alternative
interpretations for conditionals in Lisp.

(a) Suppose McCarthy suggests that the value of (cond (p1 e1)...(pn en)) should be the value is
ek if pk is true and if, for every i < k, the value of expression pi is either false or undefined. Is
it possible to implement this interpretation. Why or why not? (Hint: Remember the halting
problem.)

(b) Another design for conditional might allow any of several values if more than one of the
guards (p1, . . . , pn) is true. More specifically (and be sure to read carefully), suppose someone
suggest the following meaning for conditional:

i. The conditional’s value is undefined if none of the pk are true.
ii. If some pk is true, then the implementation must return the value of ej for some j with

pj true. However, it need not be the first such ej .

Notice that in (cond (a b) (c d) (e f)), for example, if a runs forever, c evaluates to true, and
e halts in error, the value of this expression should be the value of d, if it has one. Briefly
describe a way to implement conditional so that properties [i] and [ii] are true. You only need
to write two or three sentences to explain the main idea.

(c) Under the original interpretation, the function

(defun odd (x) (cond ((eq x 0) nil)
((eq x 1) t)
((> x 0) (odd (- x 2)))
(t (odd (+ x 2)))))

would give us t for odd numbers and nil for even numbers. Modify this expression so that
it would always give us t for odd numbers and nil for even numbers under the alternate
interpretation described in part (b).

(d) The normal implementation of boolean OR is designed not to evaluate a sub-expression unless
it is necesary. This is called the “short-circuiting OR”, and it may be defined as follows:

Scor(e1, e2) =















true if e1 = true

true if e1 = false and e2 = true

false if e1 = e2 = false

undefined otherwise

2

It allows for e2 to be undefined if e1 is true.
The “parallel OR” is a related construct which gives an answer whenever possible (possibly
doing some unnecessary sub-expression evaluation). It is defined similarly:

Por(e1, e2) =















true if e1 = true

true if e2 = true

false if e1 = e2 = false

undefined otherwise

It allows for e2 to be undefined if e1 is true, and also allows e1 to be undefined if e2 is true.
You may assume that e1 and e2 do not have side-effects.
Of the original interpretation, the interpretation in part (a), and the interpretation in part
(b), which ones would allow us to implement Scor most easily? What about Por? Which
interpretation would make implementations of “short-circuiting OR” difficult? Which inter-
pretations would make implementation of “parallel OR” difficult? Why?

5. Self-application and recursion
As noted in the text, McCarthy’s 1960 paper comments that the lambda notation alone is in-
adequate for defining recursive functions. This is not correct, but the method for expressing
recursion using only lambda is tricky enough that we can’t fault McCarthy for not figuring it out.
This problem asks you to explain a clever way of writing factorial without using anything that
looks like a recursive declaration, and then asks you to figure out how to write the Fibonacci
function in the same way.

(a) This expression computes 6! by applying a clever factorial function to the number 6:

((lambda (n)
((lambda (fact)

(fact fact n))
(lambda (ft k)

(if (= k 0)
1
(* k (ft ft (- k 1)))))))

6)

This uses the Scheme conditional expression (if test-exp then-exp else-exp). If the
value of the test-exp is true then the then-exp is returned, else the else-exp. Explain
why this factorial function works. Your explanation should include some English sentences
and some symbolic calculation in the style of β-reduction. If you are confused and want to
use Google, try “Y-combinator” or “fixed-point operator”.

(b) Devise an analogous expression for computing the 10th Fibonacci number.

6. Reference Counting
This question is about a possible implementation of garbage collection for Lisp. Both impure
and Pure Lisp have lambda abstraction, function application, and elementary functions atom,
eq, car, cdr, and cons. Impure Lisp also has rplaca, rplacd and other functions that have
side-effects on memory cells.
Reference counting is a simple garbage collection scheme that associates a reference count with
each datum in memory. When memory is allocated, the associated reference count is set to 0.
When a pointer is set to point to a location, the count for that location is incremented. If a
pointer to a location is reset or destroyed, the count for the location is decremented. Consequently,
the reference count always tells how many pointers there are to a given datum. When a count
reaches 0, the datum is considered garbage and returned to the free-storage list. For example,
after evaluation of (cdr (cons (cons ’A ’B) (cons ’C ’D))), the cell created for (cons
’A ’B) is garbage, but the cell for (cons ’C ’D) is not.

3

(a) Describe how reference counting could be used for garbage collection in evaluating the ex-
pression:

(car (cdr (cons (cons a b) (cons c d))))

where a, b, c, d are previously defined names for cells. Assume that the reference counts
for a, b, c, d are initially set to some numbers greater than 0, so that these do not become
garbage. Assume that the result of the entire expression is not garbage. How many of the
three cons cells generated by the evaluation of this expression can be returned to the free-
storage list?

(b) The “impure” Lisp function rplaca takes as arguments a cons cell c and a value v and
modifies c’s address field to point to v. Note that this operation does not produce a new cons
cell; it modifies the one it receives as an argument. The function rplacd performs the same
function with respect the decrement portion of its argument cons cell.
Lisp programs using rplaca or rplacd may create memory structures that cannot be
garbage collected properly by reference counting. Describe a configuration of cons cells
that can be created using operations of Pure Lisp and rplaca and rplacd. Explain why the
reference counting algorithm deos not work properly on this structure.

(c) Think of another context (Hint: e.g. file system) in which reference counting is used to
collect unused resources. Describe how the problem you discovered in the previous question
is avoided or solved in this context.

7. Concurrency in Lisp
The concept of future was popularized by R. Halstead’s work on the language Multilisp for con-
current Lisp programming. Operationally, a future consists of a location in memory (part of a
cons cell) and a process that is intended to place a value in this location at some time “in the
future.” More specifically, the evaluation of (future e) proceeds as follows:

i. The location ` that will contain the value of (future e) is identified (if the value is going
to go into an existing cons cell) or created if needed.

ii. A process is created to evaluate e.
iii. When the process evaluating e completes, the value of e is placed in the location `.
iv. The process that invoked (future e) continues in parallel with the new process. If the

originating process tries to read the contents of location ` while it is still empty, then the
process blocks until the location has been filled with the value of e.

Other than this construct, all other operations in this problem are defined as in Pure Lisp. For
example, if expression e evaluates to the list (1 2 3), then the expression
(cons ’a (future e))

produces a list whose first element if the atom ’a and whose tail becomes (1 2 3) when the
process evaluating e terminates. The value of the future construct is that the program can
operate on the car of this list while the value of the cdr is being computed in parallel. However,
if the program tries to examine the cdr of the list before the value has been placed in the empty
location, then the computation will block (wait) until the data is available.

(a) Assuming an unbounded number of processors, how much time would you expect the evalu-
ation of the following fib function to take, on positive integer argument n?

(defun fib (n)
(cond ((eq n 0) 1)

((eq n 1) 1)
(T (plus (future (fib (minus n 1)))

(future (fib (minus n 2)))))))

4

We are only interested in time up to a multiplicative constant; you may use “big Oh” notation
if you wish. If two instructions are done at the same time by two processors, count that as
one unit of time.

(b) At first glance, we might expect that two expressions
(...e ...)
(...(future e) ...)

which differ only because an occurrence of a subexpression e is replaced by (future e),
would be equivalent. However, there are some circumstances when the result of evaluating
one might differ from the other. More specifically, side effects may cause problems. To
demonstrate this, write an expression of the form (...e ...) so that when the e is changed
to (future e), the expression’s value or behavior might be different because of side effects,
and explain why. Do not be concerned with the efficiency of either computation or the degree
of parallelism.

(c) Side effects are not the only cause for different evaluation results. Write a Pure Lisp ex-
pression of the form (...e’ ...) so that when the e’ is changed to (future e’), the
expression’s value or behavior might be different, and explain why.

5

