
CS161: Design and Analysis of Algorithms Summer 2004

Problem Set #5 Solutions

General Notes

• Regrade Policy: If you believe an error has been made in the grading of your problem
set, you may resubmit it for a regrade. If the error consists of more than an error in
addition of points, please include with your problem set a detailed explanation of
which problems you think you deserve more points on and why. We reserve the right
to regrade your entire problem set, so your final grade may either increase or decrease.

1. [25 points] Coin Changing

Consider a currency system with k ≥ 1 distinct (integer) denominations d1 < . . . < dk.
Assume that d1 = 1 so that any integer amount greater than 0 can be formed.
Throughout the problem, assume there are always coins of every denomination available
when needed (i.e. you cannot “run out” of any denomination). Our goal will be to
determine how to make change using the fewest number of coins.

Some parts of this problem are similar to problem 16-1 on page 402 of CLRS. You may
wish to read the statement of that problem to see how similar questions are presented.

(a) [2 points] Describe a greedy strategy for making change using as few coins
as possible. This strategy should work for the US coin system which uses
denominations {1, 5, 10, 25}. You do not need to prove the correctness of this
strategy for this set of denominations.

Answer: The greedy strategy consists of always taking the largest denomination
that we can at the time. We repeat this until we have the correct amount of
change.

MAKE-CHANGE(M)
1 for i = k downto 1
2 count[i]← bM/dic
3 M ← M − count[i] · di

Since for each denomination we calculate the number of coins we can take until
we would make more than the amount of change asked for, this operation takes
time O(k).

We can also write this in a slightly less efficient manner that will be useful when
analyzing the correctness of the greedy strategy. In this case, we simply take one
coin at a time of the largest denomination possible.

MAKE-CHANGE-SLOW(M)
1 for i = k downto 1
2 while M ≥ di

3 count[i]← count[i] + 1
4 M ←M − di

This runs in time O(C +k) where C is the number of coins in the greedy solution.

Problem Set #5 Solutions 2

(b) [5 points] Suppose that di = ci−1 for some integer c > 1, i.e. the denominations
are 1, c, c2, . . . , ck−1. Prove that the greedy strategy from part (a) is optimal.

Answer: We’ll represent a change solution by a series of counts, one for each coin
denomination. The counts must obey the property

∑k
i=1 count[i] · di = M . The

number of coins in this solution is
∑k

i=1 count[i]. Note that the counts for each
coin denomination di < dk must be strictly less than c in an optimal solution.
Otherwise, if we have count[i] ≥ c, we can replace c of the di = ci−1 coins which
have value c ∗ ci−1 = ci with one di+1 = ci coin and get a smaller count.

We will prove by contradiction that the greedy solution is optimal. Let the optimal
count values be represented by optimal[i]. Let j be the first index (highest)
for which count[j] 6= optimal[j]. We know that count[j] > optimal[j] because
the greedy solution always takes the maximum number of any coin and this is
the first value on which they disagree. If the optimal solution chose more of
coin dj , then it would have made too much change. Let B =

∑j−1
i=1 count[i] · di,

the amount of change that the greedy solution makes with the coins 1 . . . j − 1.
Since the optimal solution used fewer coins of denomination dj , we know that
the amount of change that the optimal solution makes with coins 1 . . . j − 1 is
D = B + (count[j] − optimal[j]) · dj = B + (count[j] − optimal[j]) · cj−1. Since
this value is greater than cj−1, we will show that the optimal solution must take
at least c coins for some coin d1 . . . dj−1.

Assume that the optimal solution has optimal[i] < c for i = 1 . . . j− 1. Then, the
amount of change that the optimal solution makes with the first j − 1 coins is

D =

j−1∑

i=1

optimal[i] · di

≤

j−1∑

i=1

(c− 1) · ci−1

= (c− 1)

j−1∑

i=1

ci−1

= (c− 1)

j−2∑

i=0

ci

= (c− 1)
cj−1 − 1

c− 1

= cj−1 − 1

However, this contradicts the fact that D was greater than cj−1. Thus, the optimal
solution must take at least c coins for some denomination less than dj. But, as
we showed above, this solution can’t be optimal. This is a contradiction and
therefore the greedy solution must take the same number of coins for all coins as
the optimal solution, and thus must itself be optimal.

(c) [2 points] Give a set of coin denominations for which the greedy algorithm will

Problem Set #5 Solutions 3

not always yield the optimal solution. Your set should include d1 = 1 so that
every positive integer amount can be formed.

Answer: A simple example is the set of US denominations without the nickel. If
you simply have the values {1, 10, 25}, the greedy solution will fail. For example,
if you are trying to make change for 30 cents, the greedy solution will first take a
quarter, followed by 5 pennies, a total of six coins. However, the optimal solution
actually consists of three dimes.

(d) [5 points] Suppose you wish to make change for the amount M using an arbitrary
set of denominations (although we still make the assumption that di are distinct
integers and d1 = 1). Give an O(Mk) time algorithm to calculate the minimum
number of coins needed. State the (asymptotic) space usage of your algorithm in
terms of the relevant parameters.

Answer: We can solve this problem using dynamic programming. Notice that
for any value M , we can calculate the optimal solution by looking back at the
number of coins needed to make M − di coins for all i and choosing the smallest
number. We fill an array T which ranges from 1 . . .M . At each point in the array,
we store the optimal number of coins needed to make change. We initialize the
cell T [0] with the value 0. Then, for every other cell up to T [M] we calculate

T [i] = 1 + min
1≤j≤k

T [i− dj]

where we assume that for x < 0, T [x] =∞. We fill in the table up till T [M] and
then simply look in that cell for the optimal number of coins. Since we have to fill
in M values in the table and each value looks back at k different cells and takes
the minimum, the running time of this algorithm is O(Mk). At any time, we can
look back until the i− dk cell, so the space usage is O(min(dk, M)).

(e) [5 points] Suppose Eugene owes Nina an amount M . Give an O(Mkdk) time
algorithm to determine the minimum number of coins that need to exchange hands
in order to settle the debt (Nina can give change). Assume that neither Eugene
nor Nina will run out of any denomination. State the (asymptotic) space usage
of your algorithm in terms of the relevant parameters.

Answer: We can define an upper bound on the amount of money that Eugene
gives Nina that can be part of an optimal solution. Let’s say that Eugene gives
Nina an amount more than Mdk and Nina gives change. Eugene gives at least M
coins, and Nina still gives back coins. But, we know that Eugene could simply
have given Nina M coins of denomination d1 = 1 to make a total value of M
without Nina having to give any change. So, we know that Eugene giving an
amount more than Mdk can’t be an optimal solution.

We can therefore use our solution from part (d) to find the optimal ways of giving
change for all values 1 . . .Mdk. Then, for each value i that Eugene can give in
the range M . . .Mdk, Nina will need to give i −M change. We simply sum the
number of coins that Eugene gives plus the number of coins that Nina gives:
T [i] + T [i−M]. The minimum over all i is the optimal way to settle the debt.

Problem Set #5 Solutions 4

To find the optimal ways to make change for all values up till Mdk takes time
O(Mkdk) using the algorithm in part (d). Notice that in the process of computing
the optimum for Mdk the algorithm finds the optimal ways to make change for
all the values 1 . . .Mdk so we only need to run it once. Summing and taking the
minimum will take time O(Mdk), so the running time is bounded by the dynamic
programming part. The algorithm will need to store the previous dk solutions for
the dynamic programming and the previous M solutions for the summation of
T [i] + T [i−M]. So, the space usage of the algorithm is O(dk + M).

(f) [6 points] Consider again the greedy algorithm stated in part (a) of the problem.
We want to decide, in a given currency system d1 < . . . < dk, whether the greedy
algorithm is optimal. Give a dynamic programming algorithm to determine the
smallest amount M for which the greedy algorithm fails to produce the optimal
solution. If the greedy approach is always optimal your algorithm should detect
and report this. State the (asymptotic) running time and space usage of your
algorithm in terms of the relevant parameters. You may assume that k ≥ 2 so
that the greedy algorithm is not trivial.

Hint: Can you find an upper bound B such that if greedy is optimal for all
M ≤ B, then greedy must be optimal for all M?

Answer: We claim that if a counterexample to greedy’s optimality exists, it must
exist for some M < dk +dk−1. The main idea is that for such M , the greedy choice
is to choose dk, but we will show that doing so either yields an optimal solution
or a smaller counterexample to greedy’s optimality.

Thus, suppose (for a contradiction) that M ≥ dk + dk−1 is the smallest amount
such that greedy is not optimal for this amount. This means that OPT [M] >
OPT [M − dk] + 1. However, there must be some denomination dj 6= dk such
that OPT [M] = OPT [M − dj] + 1 (recall how we computed OPT [i] in part
(d)). By assumption, greedy must be optimal for this amount, otherwise we
have a smaller counterexample. However, since dj ≤ dk−1 (since j 6= k), this
means the optimal greedy choice for M − dj ≥ dk is in fact dk; therefore,
OPT [M − dj] = OPT [M − dj − dk] + 1. Thus,

OPT [M] = OPT [M − dj − dk] + 2

However, notice that we can go from M − dk − dj to M − dk using only the coin
dj ; therefore, OPT [M − dk] ≤ OPT [M − dk − dj] + 1. Combining this with the
first inequality we established yields

OPT [M] > OPT [M − dk − dj] + 2

for the desired contradiction.

Thus, we simply need to compute the optimal solutions for M = 1 . . . dk−1 + dk,
using the algorithm from part (d). As we compute optimum, we must check that
greedy is still optimal by checking whether OPT [M] = OPT [M − dj] + 1, where
dj is the largest denomination ≤ M . If we fail to find a counterexample before
M = dk + dk−1, we may stop and report that greedy is always optimal.

Problem Set #5 Solutions 5

The space requirement O(dk) and the running time of O(kdk) are obtained by
letting M = O(dk) in the results from part (d).

2. [16 points] Amortized Weight-Balanced Trees

Throughout this problem, your explanations should be as complete as possible, but
they do not need to be formal. In particular, rather than proving tree properties by
induction you may simply argue why they should hold.

(a) [3 points] Do problem 17-3(a) on page 427 of CLRS.

Answer: We first perform an in-order walk starting from x and store the sorted
output in an array. This will require space Θ(size[x]). Then, to rebuild the
subtree rooted at x, we start by taking the median of the array which we
can find in constant time (by calculating its address in the array) and put it
at the root of the subtree. This guarantees that the root of the subtree is
1/2-balanced. We recursively repeat this for the two halves of the array to
rebuild the subtrees. The total time for the algorithm follows the recurrence
T (size[x]) = 2T (size[x]/2) + 1 = Θ(size[x]).

(b) [2 points] Do problem 17-3(b) on page 427 of CLRS.

Answer: If we perform a search in an n-node α-balanced binary search tree, the
worst case split at any point in a subtree with i nodes is recursing to a subtree
with αi nodes since we know that the number of nodes in any subtree is bounded
by this value. So, the recurrence is T [n] = T [αn] + 1 = Θ(log1/α n), which since
α is a constant is simply Θ(log n).

(c) [3 points] Do problem 17-3(c) on page 427 of CLRS.

Answer: If we define the potential of the tree as

Φ(T) = c
∑

x∈T :∆(x)≥2

∆(x)

where ∆(x) = |size[left[x]] − size[right[x]]|, then the potential for any BST is
non-negative. This is easy to see as every term in the summation is the absolute
value of the difference in the subtree sizes and therefore is non-negative. Also, we
assume that the constant c is positive, thus giving a positive potential Φ(T).

For a 1/2-balanced BST, we know that size[left[x]] ≤ (1/2)size[x] and
size[right[x]] ≤ (1/2)size[x] for all nodes x in the tree. We will prove by
contradiction that ∆(x) < 2 for all x in the tree. Assume that ∆(x) ≥ 2. Then,
|size[left[x]] − size[right[x]]| ≥ 2. Without loss of generality, assume that the
left subtree is larger, so we can drop the absolute value signs. We also know that
the sum of the sizes of the left subtree and the right subtree must be size[x]− 1.
Substituting this in for size[right[x]], we find

size[left[x]] − size[right[x]] ≥ 2

size[left[x]] − (size[x]− size[left[x]] − 1) ≥ 2

2 · size[left[x]] ≥ 1 + size[x]

size[left[x]] ≥ 1/2 + (1/2)size[x]

Problem Set #5 Solutions 6

But, we know from the α-balanced condition that size[left[x]] ≤ (1/2)size[x],
which is a contradiction. Therefore, for all nodes x, ∆(x) < 2. The summation
in the potential equation is only over nodes with ∆(x) ≥ 2. Since no such nodes
exist, the summation is 0, and thus Φ(T) = 0 for a 1/2-balanced tree.

(d) [4 points] Do problem 17-3(d) on page 427 of CLRS.

Answer: We need to pick the constant c such that at any time that we need to
rebuild a subtree of size m, we have that the potential Φ(T) is at least m. This
is because the amortized cost of rebuilding the subtree is equal to the actual cost
plus the difference in potential. If we want a constant amortized cost, we need

ĉrebuild = crebuild + Φi − Φi−1

O(1) = m + Φi − Φi−1

Φi−1 ≥ m

since we know that the end potential Φi is always greater than zero.

We need to figure out the minimum possible potential in the tree that would
cause us to rebuild a subtree of size m rooted at x. x must not be α-balanced, or
we wouldn’t need to rebuild the subtree. Say the left subtree is larger. Then, to
violate the α-balanced criteria, we must have size[left[x]] > α·m. Since the size of
the subtrees must equal m−1, we know that size[right[x]] = m−1−size[left[x]] <
m− 1− α ·m = (1− α)m− 1.

We have

∆(x) = size[left[x]] − size[right[x]]

> α ·m− ((1− α)m− 1)

= (2α− 1)m + 1

We can then bound the total tree potential Φ(T) > c((2α − 1)m + 1). We need
the potential larger than m to pay the cost of rebuilding the subtree, so

m ≤ c((2α− 1)m + 1)

c ≥
m

(2α− 1)m + 1

=
1

2α− 1 + 1/m

≥
1

2α

Therefore, if we pick c larger than this constant based on α, we can rebuild the
subtree of size m in amortized cost O(1).

(e) [4 points] Do problem 17-3(e) on page 427 of CLRS.

Answer: The amortized cost of the insert or delete operation in an n-node α-
balanced tree is the actual cost plus the difference in potential between the two
states. From part (b), we showed that search took time O(lg n) in an α-balanced
tree, so the actual time to insert or delete will be O(lg n). When we insert or

Problem Set #5 Solutions 7

delete a node x, we can only change the ∆(i) for nodes i that are on the path
from the node x to the root. All other ∆(i) will remain the same since we don’t
change their subtree sizes. At worst, we will increase each of the ∆(i) for i in the
path by 1 since we may add the node x to the larger subtree in every case. Again,
as we showed in part (b), there are O(lg n) such nodes. The potential Φ(T) can
therefore increase by at most c

∑
i∈path 1 = O(c lgn) = O(lg n). So, the amortized

cost for insertion and deletion is O(lg n) + O(lg n) = O(lg n).

3. [10 points] Off-Line Minimum

Throughout this problem, your explanations should be as complete as possible, but
they do not need to be formal. In particular, when asked to prove the correctness of
the algorithm given in the problem, you do not need to use loop invariants; you may
simply argue why a certain property should hold.

(a) [1 point] Do problem 21-1(a) on page 519 of CLRS.

Answer: For the sequence 4, 8, E, 3, E, 9, 2, 6, E, E, E, 1, 7, E, 5 the extracted
array will hold 4, 3, 2, 6, 8, 1.

(b) [5 points] Do problem 21-1(b) on page 519 of CLRS.

Answer: We will show that the extracted array is correct by contradiction.
Assume that the extracted array is not correct. Let x = extracted[j] be the
smallest value extracted[j] for which the extracted array is incorrect. Let the
correct solution reside in the array correct. Call y the value of correct[j]. We
have two cases, one where x > y and one where x < y. We will prove that neither
case can occur.

Assume that x > y. Then the element y can’t appear in the extracted array, or it
would have been the smallest value for which the extracted array was incorrect.
Since we’ve already processed y before processing x, it must have had a set value
of m + 1. But, if correct[j] was set to y, then y must initially have been in some
Ki with i ≤ j. Since extracted[j] had no value yet when we processed y, then we
couldn’t have put y in set Km+1 since we only union with the set above us and
we haven’t unioned Kj yet. Therefore, we can’t have x > y.

Assume that x < y. We argue that the element x must appear in the correct array.
Obviously x must appear before the jth extraction in the original sequence since
the OFF-LINE-MINIMUM algorithm never moves sets of elements backwards, it
only unions with sets later than it. If we hadn’t extracted x by the jth extraction,
then the optimal solutions should have chosen x instead of y for the jth extraction
since x is smaller. Therefore, the optimal solution must have extracted x for some
i < j. But, that means that extracted[i] holds some z > x. By similar reasoning
as above, we couldn’t have moved x past set Ki since extracted[i] would have been
empty at the time x was chosen. So, since we only union with sets above us and
Ki hasn’t been unioned yet, we can’t put x in extracted[j] before extracted[i].
Therefore, we can’t have x < y.

Since we have shown that we must have extracted[j] = correct[j] for all j, the
OFF-LINE-MINIMUM algorithm returns the correct array.

Problem Set #5 Solutions 8

(c) [4 points] Do problem 21-1(c) on page 519 of CLRS.

Answer: We can efficiently implement OFF-LINE-MINIMUM using a disjoint-
set forest. We begin by creating n sets, one for each number, using the MAKE-
SET operation. Then, we call UNION n − m times to create the Kj sets, the
sequences of insertions between extractions. For each set Kj , we will also maintain
3 additional pieces of information, number, prev, and next in the representative
element of the set (actually this information will be at all the elements, but it
will only be maintained for the representative). number will correspond to j
and can easily be set with the initial creating of the sets. prev will point to the
representative element of Kj−1 and next will point to the representative element
of Kj+1. We can maintain these three properties through unions as follows: when
we union two sets j and l where l is the next set that still exists after j, we set
number of the new representative equal to the maximum of the two representative
numbers, in this case, l. We set prev of the new set equal to prev of set j and we
set next of prev of j equal to the new representative element. Similarly, we set
next of the new set equal to next of set l and we set prev of next of l equal to
the new representative element.
In the OFF-LINE-MINIMUM algorithm, each iteration of the for loop (n
iterations) will first call FIND-SET on i (line 2). We use the number field of
the returned representative as j. Then, in line 5, to determine the smallest l
greater than j for which set Kl exists, we can simply follow the next pointer
from j, which takes constant time. In line 6, we call UNION again, at most m
times throughout the n iterations. For each UNION call, we follow the procedure
above for updating the number, prev and next, all of which take constant time.
Therefore, we have a total of n MAKE-SET operations, n FIND-SET operations,
and n UNION operations. Since we have 3n total operations and n MAKE-
SET operations, we know by Theorem 21.13 that the worst-case running time is
O(3nα(n)) = O(nα(n)).

4. [23 points] Articulation Points and Bridges

Throughout this problem, your explanations should be as complete as possible. You
do not need to formally prove the correctness of any algorithm you are asked to give;
however, when asked to prove some property of articulation points or bridges, your
argument should be as formal as possible.

Notice that only parts (a)-(f) of problem 22-2 are assigned. Thus, do not worry about
biconnected components for this problem.

If you are looking for the definition of a simple cycle, check appendix B.4.

(a) [3 points] Do problem 22-2(a) on page 558 of CLRS.

Answer: First we will prove the forward direction: If the root of Gπ is an
articulation point, then it has at least 2 children in Gπ. We will prove the
contrapositive, the if the root has less than 2 children in Gπ, then it is not an
articulation point. If r is the root and has no children, then it has no edges
adjacent to it. Thus removing r from G can’t disconnect the graph and r is not

Problem Set #5 Solutions 9

an articulation point. If r has one child, then all other nodes in Gπ are reachable
through the child. Therefore, removing r from G will not disconnect G and r is
not an articulation point.

For the reverse direction, we need to show that if the root has at least 2 children
in Gπ then the root is an articulation point. We will prove this by contradiction.
Suppose the root has the two children C1 and C2 and that C1 was explored first in
the DFS. If the root is not an articulation point, then there exists a path between
a node in C1 and one in C2 that does not include the root r. But, while exploring
C1, we should have explored this path and thus the nodes of C2 should be children
of some node of C1. But, since they are in a separate subtree of the root, we know
that no path can exist between them and thus r is an articulation point.

(b) [4 points] Do problem 22-2(b) on page 558 of CLRS.

Answer: First we will prove the forward direction. Assume that v is an
articulation point of G. Let Cr be the connected component of G− v containing
the root of the tree Gπ. Let s be a neighbor of v that is not in Cr (this neighbor
must exist since removing v must create at least two connected components) and
Cs be the connected component containing s. In Gπ, all the proper ancestors of
v are in Cr, and all the descendants of s are in Cs. Thus, there can be no edges
between descendants of s and proper ancestors of v.

To prove the backward direction, if such a vertex s exists and there is no back
edge from s or any of it’s descendants to a proper ancestor of v, then, we know
that the only path from the root of the tree to s goes through v. Therefore, if we
remove v from the graph, we have no path from the root of the tree Gπ to s, and
we have disconnected the graph. Thus, v is an articulation point.

(c) [4 points] Do problem 22-2(c) on page 559 of CLRS.

Answer: We can compute low[v] for all vertices v by starting at the leaves of the
tree Gπ. We compute low[v] as follows:

low[v] = min(d[v], min
y∈children(v)

low[y], min
backedge(v,w)

d[w])

For leaves v, there are no descendants u of v, so this returns either d[v] or d[w] is
there is a back edge (v, w). For vertices v in the tree, if low[v] = d[w], then either
there is a back edge (v, w), or there is a back edge (u, w) for some descendant u.
The last term in the min expression handles the case where (v, w) is a back edge.
If u is a descendant of v in Gπ, we know that d[u] > d[v] since u is visited after v
in the depth first search. Therefore, if d[w] < d[v], we also have d[w] < d[u], so
we will have set low[u] = d[w]. The middle term in the min expression therefore
handles the case where (u, w) is a back edge for some descendant u. Since we start
at the leaves of the tree and work our way up, we will have computed everything
we need when computing low[v].

For each node v, we look at d[v] and something related to all the edges leading
from v, either tree edges leading to the children or back edges. So, the total
running time is linear in the number of edges in G, O(E).

Problem Set #5 Solutions 10

(d) [4 points] Do problem 22-2(d) on page 559 of CLRS.

Answer: To compute the articulation points of G, we first run the depth first
search and the algorithm from part (c). Depth first search runs in time O(V +E)
and since the graph is connected, we know E > |V | − 1 so this is simply O(E).
We also showed that the algorithm from (c) runs in time O(E). Thus, we have
calculated low[v] for all v ∈ V . By part (a), we can test whether the root is
an articulation point in O(1) time. By part (b), any non-root vertex v is an
articulation point if and only if it has a child s in Gπ with no back edge to a
proper ancestor of v. If low[s] > d[v], then there must be a back edge to a proper
ancestor of v. Otherwise, if there is an edge between a node u that is not a proper
ancestor of v and s, and u was visited before v, then we should have explored s
before visiting v.

So, if v has a child s in Gπ such that low[s] ≤ d[v], then s has no back edge to a
proper ancestor of v and thus v is an articulation point. We can check this in time
proportional to the number of children of v in Gπ, so over all non-root vertices,
this takes O(V) time. Thus, the total time to find all the articulation points is
O(E).

(e) [4 points] Do problem 22-2(e) on page 559 of CLRS.

Answer: We will first prove the forward direction: if an edge (u, v) is a bridge
then it can not lie on a simple cycle. We will prove this by proving the
contrapositive, if (u, v) is on a simple cycle, then it is not a bridge. We know that
if (u, v) is a simple cycle, then there is a cycle u → v → x1 → x2 · · · → xn → u,
such that all of u, v, xi are distinct. If we remove the edge (u, v), then any path
which used to exist in the graph G also exists in G′. We can prove this because
any path which didn’t include the edge (u, v) obviously still exists. Any path
which did include the edge (u, v) can be modified to eliminate the edge u → v
and include the path u → xn · · · → x1 → v and similarly for the edge v → u.
Thus, (u, v) is not a bridge. So, if (u, v) is a bridge, then it is not on a simple
cycle.

We will now prove the reverse direction and show that if an edge (u, v) is not on
a simple cycle, then it is a bridge. We will prove this by contradiction. Assume
(u, v) is not on a simply cycle but it is not a bridge. Let’s say that we remove
the edge (u, v). Since (u, v) is not a bridge, there is still a path connecting u and
v, u → x1 → x2 · · · → xn → v. Then, the edges v → u → x1 · · · → xn → v form
a simple cycle. But, we assumed that (u, v) wasn’t on a simple cycle. So, (u, v)
must be a bridge.

(f) [4 points] Do problem 22-2(f) on page 559 of CLRS.

Answer: Any bridge in the graph G must exist in the graph Gπ. Otherwise,
assume that (u, v) is a bridge and that we explore u first. Since removing (u, v)
disconnects G, the only way to explore v is through the edge (u, v). So, we only
need to consider the edges in Gπ as bridges. If there are no simple cycles in the
graph that contain the edge (u, v) and we explore u first, then we know that there
are no back edges between v and anything else. Also, we know that anything

Problem Set #5 Solutions 11

in the subtree of v can only have back edges to other nodes in the subtree of
v. Therefore, we will have low[v] = d[v] since v is the first node visited in the
subtree rooted at v. Thus, we can look over all the edges of Gπ and see whether
low[v] = d[v]. If so, then we will output that (parent[v]Gπ

, v) is a bridge, i.e. that
v and its parent in Gπ form a bridge. Computing low[v] for all vertices v takes
time O(E) as we showed in part (c). Looping over all the edges takes time O(V)
since there are |V | − 1 edges in Gπ. Thus the total time to calculate the bridges
in G is O(E).

5. [18 points] Assorted Graph Problems

Throughout this problem, your explanations should be as complete as possible, but
they do not need to be formal. In particular, when asked to prove the correctness of
the algorithm given in the problem, you do not need to use loop invariants; you may
simply argue why a certain property should hold.

(a) [5 points] Do problem 22.1-5 on page 530 of CLRS.

Answer: The edge (u, w) exists in the square of a graph G if there exists a vertex
v such that the edges (u, v) and (v, w) exist in G. To calculate this efficiently from
an adjacency matrix, we notice that this condition is exactly what we get when
we square the matrix. The cell M2[u, w] =

∑
v M [u, v] ·M [v, w] when we multiply

two matrices. So, if we represent edges present in G with ones and all other entries
as zeroes, we will get the square of the matrix with zeroes when edges aren’t in
the graph G2 and positive integers representing the number of paths of length
exactly two for edges that are in G2. Using Strassen’s algorithm or other more
sophisticated matrix multiplication algorithms, we can compute this in O(V 2.376).

Using adjacency lists, we need to loop over all edges in the graph G. For each
edge (u, v), we will look at the adjacency list of v for all edges (v, w) and add the
edge (u, w) to the adjacency lists for G2. The maximum number of edges in the
adjacency list for v is V , so the total running time is O(V E). This assumes that
we can add and resolve conflicts when inserting into the adjacency lists for G2 in
constant time. We can do this by having hash tables for each vertex instead of
linked lists.

(b) [4 points] Use your result from part (a) to give an algorithm for computing Gk

for some integer k ≥ 1. Try to make your algorithm as efficient as possible.
For which k is it asymptotically better to convert G from one representation to
another prior to computing Gk?

Answer: To calculate the Gk graph using the adjacency matrix representation,
we can use the trick of repeated squaring. Thus, by first calculating Gk/2 for even
k, and G(k−1)/2 for odd k, we can solve the problem in time O(V 2.376 lg k). For
adjacency lists, we can do the same thing. If we calculate the G2 graph, we can
calculate the G4 graph by running our algorithm from part (a) on the G2 graph.
Thus, to calculate Gk using adjacency lists takes time O(V E lg k). Converting
between the two representations takes time O(V 2) which is asymptotically less
than calculating G2 in either case. Converting between the two represenations

Problem Set #5 Solutions 12

therefore depends on how many edges you have relative to the number of vertices.
If E = o(V 1.376) then you should convert to the adjacency list representation and
otherwise you should convert to the matrix. Notice that the number of edges
will keep changing for each Gi so you may need to convert back and forth when
calculating Gk.

(c) [4 points] Do problem 22.3-11 on page 549 of CLRS. How does your algorithm
compare (in the asymptotic running time sense) with the algorithm given in class
and in section 21.1 of CLRS for determining the connected components of G using
disjoint-set data structures?

Answer: We will first modify DFS to label the connected components.

DFS(G)
1 for each vertex u ∈ V [G]
2 do color[u] ← WHITE
3 π[u]← NIL
4 time← 0
5 k ← 0
6 for each vertex u ∈ V [G]
7 do if color[u] = WHITE
8 k ← k + 1
9 DFS-VISIT(u, k)

Lines 5, 8, and 9 are the ones which were added or changed. In DFS-VISIT, we
will always call DFS-VISIT with the same value of k. In addition, after setting
the color of u to BLACK, we will set the connected component, cc[u] to k.

Since the graph G is undirected, two nodes u and v will only get the same
connected component label if there is a path between them in the graph G.

The running time of this algorithm is the same as for DFS which is O(V + E).
The algorithm given in section 21.1 of CLRS runs in time O((V +E)α(V)), which
is asymptotically slower. However, α(V) is very small (≤ 4) for any reasonable
size V , so the running times are comparable.

(d) [5 points] Do problem 22.4-2 on page 552 of CLRS.

Answer: We first run topological sort on the graph G. This takes time O(V +E).
We know that any path that runs between s and t must use only the vertices
located between s and t in the topological sort. If there was a vertex a < s in the
topological sort, then there can’t be a path from s→ a in G. Likewise there can
be no vertex b > t on a path from s to t. So, we can ignore all vertices < s or
> t in the topological sort. Then, we can use dynamic programming to calculate
the number of paths from s to t. We will label each node from s to t with the
number of paths from s to that node. We start by labelling the node s with a 1
since there is one path from s to s and by labelling all other nodes with 0. Then,
for each node i starting from s in the sort, we calculate the number of paths from
s as

Problem Set #5 Solutions 13

paths[i] =
∑

(j,i)∈E

paths[j]

We finish when we calculate paths[t] which we output as the answer. This
algorithm is correct since all paths from s to i must only contain vertices between
s and i in the topological sort. These we have calculated by the time we calculate
paths[i]. Also, the predecessor to i on any path from s to i must be such that
there is an edge from (pred, i). We sum over all possible predecessors to calculate
paths[i]. For at most each vertex, we sum over the number of incoming edges.
So, in total, we look at each edge once. Therefore, the running time of this step
is O(V + E). Thus, the total time for this algorithm is O(V + E) which is linear
in the size of the input.

6. [18 points] Minimal Spanning Trees

Throughout this problem, if you are arguing about the correctness of a minimal
spanning tree algorithm, please be as formal as possible in proving the property the
algorithm relies on for its correctness; however, you do not need to resort to loop
invariants or similar formal methods to prove the correctness of the actual algorithm.

(a) [6 points] Do problem 23.1-11 on page 567 of CLRS.

Answer: If we decrease the weight of an edge (u, v) not in T , then the new
minimal spanning tree may now contain that edge. The algorithm to compute
the new minimum spanning tree is to find the heaviest weight edge on the path
from u→ v. If this edge weight is higher than the weight of edge (u, v), then we
delete this edge and add (u, v). Else, we do nothing. The running time of this
algorithm is the time taken to find the heaviest weight edge on the path u → v.
We can do this by running DFS from from u till we hit v since there is only one
path from u to v in a tree. The running time is O(V + E) = O(V) since this is a
tree. The result is obviously a spanning tree. We will show that it is a minimum
spanning tree.

We will do this by considering Kruskal’s algorithm over the new graph. Kruskal’s
algorithm grows an MST by always adding the lowest weight edge that does not
create a cycle. For all edges in the MST with weight less than w′(u, v), we will
take the exact same edges as we did before. When we consider the edge (u, v),
we have two choices, either we take the edge or we don’t. If we don’t take the
edge, then (u, v) must have created a cycle in the MST. All edges in the cycle
must have weight less than w′(u, v) or they wouldn’t be in the MST already. The
algorithm will then proceed as before. This corresponds to the above case where
we don’t modify the MST. If we take the edge (u, v) then all further edges will be
added in the same manner until we reach the one which creates a cycle with the
edge (u, v). This will be the highest weight edge in the original path from u→ v,
which we won’t add. All other edges will be added as before. This corresponds
to the case where our algorithm deletes the highest weight edge on the path from

Problem Set #5 Solutions 14

u→ v and adds the edge (u, v). Our algorithm produces the same spanning tree
that Kruskal’s algorithm produces, and it is therefore a minimum spanning tree.

(b) [6 points] Do problem 23.2-7 on page 574 of CLRS.

Answer: Let’s assume that we add the new vertex and incident edges and
initialize all the edge weights to ∞. Then, we can take any of the edges and
add it to the original spanning tree to give a minimum spanning tree. Using the
answer from part (a), we know that we can reduce the weight of this edge and
the other edges one at a time, add the edge to the MST, and remove the edge
with the highest weight in the newly created cycle. This will run in time O(V 2)
since there may be at most V edges from the new vertex. However, we can do
better by noticing that the only possible edges in the new MST are the ones in
the old MST or the new edges we just added. There are a total of |V | − 1 edges
in the old MST and a total of at most |V | edges added. So, if we simply run
either Kruskal’s or Prim’s algorithm on the graph with all the vertices but only
these |E| = 2|V | − 1 = O(V) possible edges, we will create the new MST in time
O(V lg V), which is better than the O(V 2) time.

(c) [6 points] Do problem 23.2-8 on page 574 of CLRS.

Answer: This algorithm does not compute the minimum spanning tree correctly.
Suppose we have a graph with three nodes, A, B, C. Suppose also that the graph
has three edges with the following weights: w(A, B) = 1, w(B, C) = 2, w(C, A) =
3. Let’s say we partition the graph into the two sets V1 = {A, C} and V2 = {B}.
This partition satisfies the condition that |V1| and |V2| differ by at most 1. The
edges sets will be E1 = {(A, C)i} and E2 = Ø. So, when we recursively solve the
subproblems, we will add the edge (A, C). Then, when we select the minimum
edge that crosses the partition, we will select the edge (A, B) with weight 1. The
total weight of our MST is 1 + 3 = 4. However, the actual minimum spanning
tree has edges (A, B) and (B, C) and weight 1 + 2 = 3. Therefore, this algorithm
fails to produce the correct minimum spanning tree.

