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Answer Guidelines

• These guidelines cover the default assumptions that should be made when answering
a question. In all cases, explicit instructions given in the question supersede
these guidelines.

• Try to keep your answers to the space provided. If you need additional space, use
the blank page at the end of the exam and/or the back side of normal pages. If you
do, please tell us where to find the continuation of your answer and clearly label the
answer text with the corresponding question number and part.

• Your answers need to be complete and concise. Unless explicitly told otherwise, you
must provide justification for your answers, but are not required to formally prove
them. If you’re asked to give an algorithm and its running time, you do not need to
prove correctness or do a formal running time analysis; a brief explanation for both
is sufficient.

• You may use anything proven in class, in the textbook, or on the homework without
proof, unless explicitly asked to prove it.

• When your solution refers to an algorithm or data structure we covered in class, please
be sure to specify all the relevant parameters. For instance, specify whether you’re
using randomized or deterministic Select, Quicksort; MIN or MAX heap; chaining or
open addressing collision resolution for hash tables, number of slots in the hash table;
skip list propagation parameter; and so on. Every factor that effects performance (or
correctness) should be addressed, although it’s acceptable to say, for instance, “using
universal hashing” without explicitly specifying a universal hash function family.

• When answering with a running time or space bound please be sure to specify whether
it’s a worst-case, expected, or amortized bound. Unless stated otherwise, any type of
bound is acceptable. If giving an expected-case bound, be careful not to make any
assumptions about the distribution of the input(s) - the expectation should be over
randomization internal to the algorithm or data structure.

• You may assume that all elements’ keys are comparable using ≤. Other than
that, you should NOT assume any properties of elements, keys, or their
distribution, unless explicitly specified.

• Assume graphs are given using the adjacency list representation unless specified
otherwise. If you are asked to formulate a graph, you may use whichever
representation is convenient.
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1. [64 points] Algorithm Design

Please read these directions carefully, they contain several hints and are crucial to
approaching this question effectively.

In this question, you will be given six optimization problems and asked to give a
polynomial time algorithm to determine the value of the optimal solution, if possible.
Note that your algorithm only needs to find the value of the best solution. Two of
the problems can be solved using a greedy approach, three can be solved
using dynamic programming, and one problem is NP-Complete. For each
of the five problems that have a polytime algorithm, you need to give an algorithm
(pseudocode is more than enough) and state its running time (no formal analysis
needed). You should try to give the most efficient algorithm possible; assume
that whenever it is correct, a greedy algorithm will be more efficient than DP.

Any algorithm you give should run in time polynomial in n, under the assumption
that all other variables are polynomially bounded as a function of n. Give the running
time in terms of the relevant variables.

If your approach is greedy, prove that your greedy algorithm is optimal.
The proof does not need to be formal, but you should clearly explain why the greedy
choice property holds. If your approach is dynamic programming, argue
informally why the optimal substructure exploited by your algorithm is
present. You do NOT need to explain why the greedy approach fails, although it
may be helpful to think about that when analyzing the problem initially. If you
believe the problem is NP-Complete, just state so. No proof or justification
is necessary; do not spend your time trying to come up with a reduction (in fact, the
formal reduction for this particular NP-Complete problem is nontrivial).

You may use any result proven in class, in the textbook, on the homeworks, or on
the midterm without proof. In particular, you may use any of the algorithms we’ve
covered as a subroutine. In fact, at least one of the problems has a simple solution
that takes advantage of this.

Several of the problems are variations of problems you’ve seen in this class. Be careful
not to assume that the same technique still applies, or that a more efficient technique
does not. Pay close attention to the differences, they are important.

Each of the five algorithms is worth 12 points; you will receive 4 points
for correctly identifying the NP-Complete problem. Even if you are unable
to come up with an algorithm for a problem, you should at least try to determine
which approach is likely to work. We will give partial credit for correctly labeling
each problem as “Greedy”, “DP”, or “NP-Complete”.

This question is meant to be long on thinking, short on writing. Your explanations
should be as brief as possible. Please do not try to fill up all the space provided.
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(a) Consider the following variation of the gas station problem. You are an eccentric
billionaire planning a cross-country trip along a straight highway with n+1 gas
stations. You start at gas station 0, and the distance to gas station i is di miles
(0 = d0 < d1 < . . . < dn). Your car’s gas tank holds G > 0 gallons and your car
travels m > 0 miles on each gallon of gas. You start with an empty tank of gas
(at gas station 0), and your destination is gas station n. You may not run out
of gas, although you may arrive at a gas station with an empty tank.

As you are very rich, rather than trying to plan the cheapest trip, you want to
minimize the total number of stops you need to make (you stop at a gas station
only if you need to buy gas there).

Assume that G, m, and all di are positive integers (except d0 = 0) and are
polynomially bounded as a function of n. Assume all di are distinct.

If possible, give a polynomial time algorithm to determine the value of the
optimal solution (i.e. the minimum number of stops).
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(b) You have n books on your bookshelf, and you’ve decided to alphabetize them
by their title. A move consists of pulling out some book B[i] and inserting it
between any two books on the shelf.

You want to compute the minimum number of such moves needed to alphabetize
the books on the shelf.

Assume each book B[i] has a distinct title and two titles can be compared in
constant time.

If possible, give a polynomial time algorithm to determine the value of the
optimal solution (i.e. the minimum number of moves).
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(c) You have a sequence S of n characters from an alphabet of size k ≤ n; each
character may occur many times in the sequence. You want to find the longest
subsequence of S where all occurrences of the same character are together in one
place; for example, if S = aaaccaaaccbccbbbab, then the longest such subsequence
is aaaaaaccccbbbb = aaa aaacc ccbbb b. In other words, any alphabet character
that appears in S may only appear in one contiguous block in the subsequence.

If possible, give a polynomial time algorithm to determine the value of the
optimal solution (i.e. the length of the longest such subsequence).
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(d) Consider the following variation of the subset sum problem. You have an array
A of n distinct nonnegative integers and you wish to determine the smallest
subset of A (if any) that adds up to some positive integer x > 0. Each element
of A may be used at most once in the sum.

Assume x is polynomially bounded as a function of n. Assume that all A[i] are
distinct nonnegative integers.

If possible, give a polynomial time algorithm to determine the value of the
optimal solution (i.e. the size of the minimum subset, or ∞ if none exists).
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(e) You have a rod of adamantium metal of length L meters and you want to cut
it in n specific places: L1, L2, . . . , Ln meters from the left end. A mad scientist
charges x dollars to cut an x-meter rod any place you want.

Assume L is polynomially bounded as a function of n. Assume that all Li are
distinct real numbers strictly between 0 and L, i.e. 0 < L1 < . . . < Ln < L.
You should not assume Li are integers.

If possible, give a polynomial time algorithm to determine the value of the
optimal solution (i.e. the minimum cost in dollars).
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(f) You are designing an online dating website and currently there are n boys and
n girls that need to be matched up. Unfortunately, due to a database crash the
only information you have about them is their heights: an array B specifying
the heights of the n boys and an array G specifying the heights of the n girls.

You want to match them up in a way that will minimize the largest height
difference within any couple. Formally, you want to minimize the quantity
maxn

j=1
|bj − gj|, where (bj , gj) is the jth couple.

Assume that all the B[i] and G[i] are positive real numbers that are polynomially
bounded as a function of n. You should not assume they are integers.

If possible, give a polynomial time algorithm to determine the value of the
optimal solution (i.e. the smallest possible maximum height difference).
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2. [22 points] Augmenting Skip Lists

In class we saw how to augment red-black trees to efficiently maintain dynamic
order statistics. In this problem, you will augment skip lists to accomplish the same
purpose. Throughout this problem, assume that the propagation parameter p = 1/2.

Recall that in order-statistic trees, each node kept a field size[x] that equals the size
of the subtree rooted at x. In an order-statistic skip list, we will keep a similar field
for each cell in the skip list.

To reestablish the notation we used in the handout and on the problem sets, recall
that a skip list consists of L levels, each of which is a linked list. The bottom level is
level 0, and contains all the elements in the list. Each cell contains the pointers next,
below, and above as well as the field key. In this problem, we will also assume all cells
contain the pointer prev, so that each list is in effect doubly linked. Finally, each
linked list also has a dummy cell at the beginning and end to indicate the beginning
and end of the list. These cells have key −∞ and ∞ respectively. We assume all
elements in the list have distinct keys.

For every cell c, we add a new field c.size which equals the number of elements in the
skip list whose key is less than c.key but greater than c.prev.key; in other words, if
c is a node in level h, then c.size represents the number of elements in the skip
list between c.prev and c that were not propagated to level h.

In answering the questions below, you do not need to give a detailed implementation
of each function; the only things that should be specified precisely are operations
that involve the new size field. You should NOT give complete pseudocode;
in particular, feel free to ignore boundary cases (involving the dummy cells) if
that simplifies the explanation. The main idea behind each implementation can
be explained using a clear and informative diagram and a few English sentences. Be
sure to justify the (expected) time bounds.
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(a) [6 points] Sketch how you would implement the OS-SELECT(i) operation,
which returns the ith smallest element in the skip list. Explain why your
algorithm runs in expected time Θ(lg n).

(b) [6 points] Sketch how you would implement the OS-RANK(x) operation, which
returns the rank of (number of elements less than or equal to) a given element
x in the list. Explain why your algorithm runs in expected time Θ(lg n).
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(c) [10 points] Sketch how you would maintain the size field without affecting the
asymptotic running time of the INSERT and DELETE operations.



CS161 Final 13

3. [21 points] Shortest Paths

You are traveling in a galaxy whose planets are positioned on a n× n× n cubic grid:
there is a planet at every lattice (integer) location (a, b, c) for 1 ≤ a, b, c ≤ n. You are
trying to get from planet Earth located at (1, 1, 1) to planet Hoth located at (n, n, n)
as quickly as possible.

Travel is possible between planets that are exactly one unit apart, i.e. you may travel
between (a, b, c) and (a, b−1, c) but NOT between (a, b, c) and (a−1, b+1, c). Travel
between such neighboring planets takes exactly one day. However, there are two
additional factors to consider.

First, some planets have worm holes that allow you to jump to other planets,
potentially far far away. Assume your pet robot has a list of W existing worm holes,
where W = O(1). Each worm hole w allows you to travel from its start location to
its end location in time tw. We assume this travel time is an integer number of days,
although it may be negative or zero. Also, we assume that it is impossible to
travel back in time infinitely by using these worm holes.

Second, some planets are controlled by the evil empire and therefore travel through
them is restricted. The empire maintains very tight control within its borders, and
therefore travel between any two empire-controlled planets is impossible without
getting caught. However, you may travel from a free planet to an empire-controlled
planet (or vice versa) in one day as usual. Assume that your pet robot’s galactic
database tells you whether each planet is free.

Your goal is to get from Earth to Hoth in the shortest amount of time possible, given
the travel constraints imposed by the evil empire, and possibly taking advantage of
the worm holes.
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(a) [6 points] Formulate this problem as a single-source shortest-path problem in
a graph G. State precisely what the nodes and edges of G are, whether G is
weighted or unweighted, directed or undirected. If your graph is weighted, all
edge weights should be integer and finite. Also, your formulation should not
be a multigraph; be sure that there is only one edge between u and v if G is
undirected, or only one edge from u to v if G is directed. Finally, state which
graph representation (adjacency list or adjacency matrix) you would use in this
problem, and why.

(b) [4 points] Which algorithm would you use to solve the problem you formulated
in part (a)? Justify your choice. Give a tight bound on its running time in terms
of n.
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(c) [3 points] Your pet robot just integrated the worm hole information with the
list of empire-controlled planets, and concluded that the empire controls the
start and end planets of all worm holes with tw < 0. How does this change your
answer to part (b)? Justify and give the new running time in terms of n, if it
changed.

(d) [4 points] You examine the data and realize things are even worse than you
thought. In fact, the empire controls the start and end planets of all worm
holes. How does this change your answer to part (c)? Justify and give the new
running time in terms of n, if it changed.

(e) [4 points] For your success, you’ve been put in charge of a galaxy-wide
smuggling operation. You now need to compute the fastest way to smuggle
goods from any planet A to any planet B. Which algorithm would you use to
solve this problem and why? Justify your answer by comparing the running
times of the algorithms we’ve seen in class for this problem. Do NOT make
assumptions from parts (c) and (d) about inaccessiblity of worm holes.
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4. [13 points] Boolean Chains

A boolean chain is a sequence of n boolean random variables X1, . . . , Xn such that
the value of Xi depends only on the value of Xi−1. Graphically we can represent the
chain as shown:

X1 −→ X2 −→ . . . −→ Xn

Each arrow represents a probabilistic dependence of Xi on Xi−1; this dependence
consists of four probabilities:

• Pr[Xi = T | Xi−1 = T ]

• Pr[Xi = T | Xi−1 = F ]

• Pr[Xi = F | Xi−1 = T ]

• Pr[Xi = F | Xi−1 = F ]

For the first node in the chain we simply have Pr[X1 = T ] and Pr[X1 = F ].

Notice that the probability of any assignment (X1 = x1, X2 = x2, . . . , Xn = xn),
where each xi is either T or F , is therefore equal to

Pr[X1 = x1] · Pr[X2 = x2 | X1 = x1] · . . . · Pr[Xn = xn|Xn−1 = xn−1]

(a) [2 points] Give the basic constraints on these probabilities, beyond the fact
that all probabilities are between 0 and 1.
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(b) [6 points] Consider the problem of finding the most likely truth assignment
to the variables X1, . . . , Xn. Formulate this problem as a single-source shortest
path problem in some graph G. Be explicit about what the nodes and edges of
G are, and what the weights on these edges should be. What algorithm would
you use to find the shortest path and what is its running time as a function of
n?

Hint: It may be helpful to introduce an auxilliary variable X0 which is always
true, so that X1 may be treated almost uniformly with X2, . . . , Xn.

(c) [5 points] Give a dynamic programming algorithm to find the most likely
assignment in time Θ(n).
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5. [12 points] Dynamic Hash Tables

In order to maintain expected O(1) performance for hash table operations in an
m-bucket hash table that holds n entries, the load factor α = n/m must be O(1).
However, what if we don’t know in advance how many items the table needs to
hold? Choosing a large m means wasting memory, choosing a small m means poor
performance when n = ω(m). Thus, m will have to grow dynamically.

We will analyze a hash table that uses chaining to resolve collisions. Thus, the table
is an array of buckets, each of which is a linked list. Elements are inserted at the
beginning of the list corresponding to the bucket they hash to; empty buckets are
initialized to NIL. We assume the hash function h(x, m) satisfies the assumptions
of simple uniform hashing.

Throughout this problem, assume h(x, m) takes ch = O(1) units of time to compute,
while arithmetic operations, memory accesses, and memory allocations take 1 unit.

(a) [2 points] Explain why we cannot simply grow the bucket array every time we
need to expand the hash table, without rehashing all the elements in the table.

Our goal will be to maintain the property that α ≤ 2. We will not worry about
reclaiming memory if too many elements are deleted.

We say the hash table is full when n = 2m. If we try to insert into a full hash table,
we need to grow the table in order to maintain the constraint on α. Thus, prior to
inserting we will do the following:

• allocate a new array of buckets with m′ = 2m

• for each element x in the hash table, insert x into new bucket h(x, m′)

• free the old hashtable (ignore this cost in your analysis)

The second and third steps above are done by iterating over the linked list within
each bucket.
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(b) [1 point] What is α′ right after the reallocation but prior to inserting the next
element? No explanation required.

(c) [7 points] Analyze the performance of the INSERT operation (including
reallocation when the table is full) using the amortized analysis method of your
choice. Your analysis does not need to be completely formal, but should be
detailed. Ignore the cost of deallocating memory in your analysis.

(d) [2 points] Are we restricted to using the same function h when growing the
hash table, or can we switch from h(x, m) to some other hash function h′(x, m′),
if h′(x, m′) satisfies the assumptions of simple uniform hashing? Explain.
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6. [18 points] Dynamic Transitive Closure

Consider the problem of maintaining the dynamic transitive closure of a graph G as
edges are inserted into G. As on the homework, assume that each edge is inserted at
most once, and we want an O(V 3) bound on the total time needed to maintain the
transitive closure G∗.

Consider the following algorithm. At every point, we keep the adjacency matrix A∗

of G∗. For every edge (u, v) added to G, if the edge is already in G∗, we do nothing.
Otherwise, we compute the following sets of nodes:

• P (u) = {x : (x, u) ∈ E∗}, i.e. predecessors of u

• S(u) = {x : (u, x) ∈ E∗}, i.e. successors of u

• P (v) = {x : (x, v) ∈ E∗}, i.e. predecessors of v

• S(v) = {x : (v, x) ∈ E∗}, i.e. successors of v

Now, for each edge (x, y) such that x ∈ P (u) − P (v) and y ∈ S(v) − S(u), add the
edge (x, y) to G∗ if it’s not already there.

(a) [4 points] Argue (informally) that this algorithm is correct. That is, show why
adding the edge u → v will only add edges from P (u) to S(v), and then show
the edges we don’t consider must already be present in G∗.

(b) [2 points] Show how to compute these sets in time O(V ) using the adjacency
matrix A∗. Make sure to explain why the set difference may be computed in
O(V ) time here.
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Now suppose (u, v) is the edge we are adding to G∗. We want to show that we don’t
consider too many edges that are already present in G∗.

(c) [3 points] Argue that if we consider adding (x, y), then (x, v) and (u, y) are
absent from G∗ but will be added when we add (u, v).

(d) [9 points] Now, use the accounting method to show that this implies that the
total time needed to process all the updates is O(V 3). Don’t forget the time
necessary to compute P (u) − P (v) and S(v) − S(u).

Hint: Charge 0 for considering edges; but charge enough for adding an edge to
G∗ to account for the actual cost of reconsidering edges. Think about how many
edges (x, y) are considered and how many edges are added while adding (u, v)
to the graph.
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7. [30 points] Short Answers

For true/false questions, be sure to provide a detailed and complete (but not
necessarily long!) explanation for your answer. We will only award points for justified
answers and explanations in order to discourage random guessing.

(a) [2 points] Give an upper and lower bound on the number of strongly connected
components of a directed acyclic graph G = (V, E) in terms of |V | and/or |E|.
Your bounds should be exact rather than asymptotic, and as tight as possible.

(b) [4 points] Given an unsorted array A of n elements, it is possible to construct
a binary search tree T from these elements in time Θ(n) if we do not require T
to be balanced.

A: True / False Explanation:

(c) [4 points] In a binary search tree of height h, we can implement the
DECREASE-KEY operation using O(h) rotations and no other operations.

A: True / False Explanation:
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(d) [5 points] You have a directed acyclic graph G = (V, E). Suppose some subset
V ′ ⊆ V is colored green. We want to color green any ancestor of a node in V ′.
Give an efficient algorithm to do this and analyze its running time in terms of
|V | and/or |E|.

(e) [4 points] Recall that a vertex cover of an undirected graph G = (V, E) is a
subset V ′ ⊆ V such that for any edge (u, v) ∈ E, we have u ∈ V ′ or v ∈ V ′ (or
both). Suppose that you have an algorithm to solve the vertex cover decision
problem (deciding whether G has a vertex cover of size ≤ k) that runs in time
in time f(|V |, |E|). How fast can you solve the corresponding optimization
problem (finding the size of the minimum vertex cover)?
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(f) [5 points] Recall that in the bipartite matching problem, the Ford-Fulkerson
flow algorithm had a running time O(V E) because |M | = |f ∗| ≤ |V |/2. The
Edmonds-Karp flow algorithm has running time O(V E2). Thus, for bipartite
matching, Ford-Fulkerson is asymptotically faster than Edmonds-Karp unless
|E| = O(1).

A: True / False Explanation:

(g) [6 points] Suppose you have an undirected graph G where all the edge weights
are integers between 0 and |E|. How would you find the minimum spanning tree
of G? Analyze the running time of your algorithm.
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Additional Answer Space


