Introduction to Artificial Intelligence

CS 121 – Final Examination

Thursday, March 18, 2004

8:30-11:30am
This final examination is closed book and closed notes, but you are allowed two two-sided 8.5" x 11" pages of notes. It consists of NBPAGES pages (including this one), 8 problems, and 35 points. We would like you to write your answers on the exam paper, in the spaces provided. If there isn’t sufficient room, write on the back of a page, but please put an arrow on the front to tell us to look there. However, excessive verbosity will be penalized. You have 3 hours to complete the exam. Examinations turned in after the end of the examination period will not be graded.

Stanford University Honor Code:

I attest that I have not given or received aid in this examination, and that I have done my share and taken an active part in seeing to it that others as well as myself uphold the spirit and letter of the Honor Code.

Name (printed):
__
Leland username: __

Signature:

__

SUID number:
__

	Problem#
	Your grade
	Max. grade

	I
	
	5

	II
	
	6

	III
	
	5

	IV
	
	3

	V
	
	3

	VI
	
	5

	VII
	
	5

	VIII
	
	3

	Total
	
	35

The standard of academic conduct for Stanford students is as follows:

A. The Honor Code is an undertaking of the students, individually and collectively:

1.that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in class work, in the preparation of reports, or in any other work that is to be used by the instructor as the basis of grading;

2.that they will do their share and take an active part in seeing to it that they as well as others uphold the spirit and letter of the Honor Code.

B. The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring examinations and from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned above. The faculty will also avoid, as far as practicable, academic procedures that create temptations to violate the Honor Code.

C. While the faculty alone has the right and obligation to set academic requirements, the students and faculty will work together to establish optimal conditions for honorable academic work.
I. (5 points) Search

Consider the following depth-first search algorithm to search a finite state space that contains one or several goal states:

1. Insert the start node of the search tree in the fringe.

2. Loop

3.
If the fringe is empty, then return failure.

4.
Remove the front-most node N from the fringe.

5.
If N passes the goal test, then return the node (along with the path to it).

6.
Insert all successor nodes of N at the front of the fringe.

7. End

1. The figure below shows a portion of the actual state space. Each node of this graph depicts a state and each arrow a transition between states. (Other states lie behind the dotted lines.) Assume that we run the above algorithm on this state space. What problem would we run into? [Note that the state space is NOT the search tree.]

Your answer:

The algorithm may loop infinitely.
2. Suppose that we keep track of all the states of generated nodes and that we insert a new node in the fringe only if its state is not one of these states.

a)
Is the new algorithm complete? Why or why not?

b)
If the algorithm finds a solution, is the length of the solution path optimal (assume each edge has cost 1)? Why or why not?

Your answers:

a) Yes. The state space is finite and we do not expand nodes labeled by an already encountered state. Hence, the search tree is finite and the search will terminate.

b) No. The problem says that there might be several goal states. Depth-first may expand a path to a goal node at some depth before exploring another path leading to another goal node at a smaller depth.

II. (6 points) Search
The four-peg version of the Towers-of-Hanoi puzzle is as follows. Four pegs – A, B, C, and D – can each hold n rings at a time. There are n rings R1, R2, …, Rn, such that Ri is smaller than Rj for any i < j. A legal placement of the rings on the pegs requires that (1) whenever any two rings appear on the same peg, the smaller one is above the larger one and (2) all n rings must be on pegs. In the start placement, all rings are on peg A. In the goal placement, all rings are on peg D. The figure below shows the start state for n = 4.

[image: image1]
1. Formulate this problem as a search problem, more precisely: define a representation for each state, give the initial and goal states in this representation, and define the successor function (describe how one can compute the successors of a legal state). What is the total number of legal states? How many successors can a state have at most?

Your answer:

A state can be represented by a quadruplet (a,b,c,d), where each element represents a peg (a for A, b for B, etc…) and is the list of ring indices (integers) on that peg from top to bottom. The initial state is ((R1,R2,…,Rn),nil,nil,nil), where ‘nil’ denotes the empty list. The goal state is (nil,nil,nil, (R1,R2,…,Rn)).

Given any state (a,b,c,d), its successors are obtained as follows: For any pair – say, a and b – such that the first element of a is less than the first element of b, then remove the first element of a and insert it at the front of b.

Each ring can be on any one of the 4 pegs, so there are 4n states in total

There are at most 6 successors, each corresponding to an unordered pair of pegs.

2. Comments on the advantages/drawbacks of using each of the following blind search techniques: breadth-first, depth-first, iterative deepening? In each case, tell us whether the search should explicitly deal with repeated states and, if yes, how should it do it?

Your answer:

Breadth-first would be guaranteed to find a solution with minimal number of steps, but could run out of memory if n is large and the depth of the solution is large. Since the same state can be generated many times, the algorithm can record states already generated and avoid generating them again.

Depth-first could loop for ever because of repeated states. One way to avoid the problem is to record the states encountered along the path currently explored and to avoid repeating any of these states. In that case, loops can no longer happen, and depth-first is guaranteed to find a solution, but this solution may not be optimal. Note that depth-first will expand only one path, since each path eventually leads to a goal state. Note also that depth-first may also consume a lot of memory, since the explored path may be very long.

Iterative-deepening generates an optimal solution using less memory than breadth-first. However, because it will only record states along the currently explored path (otherwise it would use as much memory as breadth-first), it may perform the same work several time along different branches.

3. Let the cost of moving a ring from one peg to another be 1. Define two admissible heuristic functions (other than the trivial heuristic h=0) for an A* search. Tell us whether one is more informed (equivalently, more accurate) than the other.

Your answer:

In any given state, let ka, kb, kc be the number of rings on pegs A, B, and C, respectively.

A first admissible heuristic function is h1 = ka+kb+kc. Since each such ring on A, B, or C must be moved at least once, h1 clearly underestimates the cost of going to the goal.

A second admissible heuristic function is:

h2 = ka+kb+kc+max{(ka-1),0}+max{(kb-1),0}+max{(kc-1),0}.

Indeed, if there are several rings on a peg other than D, each ring other than the bottom one will have to be moved at least once to another peg other than D.

Clearly, h2 is greater than or equal to h1 in every state, and is strictly greater than h1 in some state. So, h2 is more informed than h1.

III. (5 points) Constraint Satisfaction

Consider the following problem:

A delivery robot needs to schedule delivery activities a, b, c, d, and e. An activity may only happen at time 1, 2, 3, or 4 (we assume it is instantaneous). Activity b must not happen at 3 and activity c must not happen at 2. Activities a and b must not occur simultaneously, nor should activities b and c and activities b and d. Activities a and d must occur simultaneously. Activity c must occur before d, while e must happen before a, b, c, and d.

1. Express this problem as a constraint satisfaction problem: What are the variables, their original domains, and the constraints? [Note: The original domain of a variable contains all possible values of the variable before unary constraints are applied. Your set of constraints must therefore contain all unary constraints.] If appropriate, define the notations you use to denote the relations.

Your answer:

Let A, B, C, D, and E designate the times at which the activities a, b, c, d, and e happen, respectively. These are the variables of the CSP.

The domain of each variable is {1, 2, 3, 4}.

The constraints are:

B (3

C (2

A (B

B (C

B (D

A = D

C < D

E < A

E < B

E < C

E < D

2. Find a solution of this problem (by hand) using the backtracking algorithm with forward checking and the most-constrained-variable heuristic. Write out the steps performed by the algorithm.

Your answer:

The backtracking algorithm selects a first variable. For each possible value of this variable, it selects a second variable, etc… The most-constrained-variable heuristic consists of selecting the variable that has the fewest remaining possible values (as it yields the smallest branching factor). If a variable has no more possible value, the algorithm must backtrack to the most recent choice where an alternative can be explored.

· Initially, the most constrained variables are B and C (3 values each). Pick B to be chosen first. It can take values 1, 2, or 4.

· Choose B = 1. Then, there remains no value for E. Backtrack to the choice of B.

· Choose B = 2. E becomes the most constrained variable, with a single possible value: E = 1.

· Set E to 1. The remaining values for A, C, and D are 3 and 4. They are all equally constrained. Pick A as the variable to be chosen next.

· Choose A = 3. Then D becomes the most constrained variable with only one possible value D = 3.

· Set D to 3. It remains no valid value for C. Backtrack to the choice of A.

· Choose A = 4. Then D becomes the most constrained variable with only one possible value D = 4.

· Set D to 4. Then it remains a single value for C, C=3.

· Set C = 3

The algorithm terminates here, with A = 4, B = 2, C = 3, D = 4, and E = 1.

IV. (3 points) Planning

Two flasks F1 and F2 have volume capacities of C1 and C2, respectively. CONT(f,x) means “flask f contains volume x of some liquid”, where x is a real number. Let the initial state of the world be defined by: CONT(F1,A1), CONT(F2,A2), where A1 and A2 are given real constants.

1. Write the description of the action POUR(f,f’) (standing for “pour as much as possible of the content of flask f into flask f’ ”), in the form of a precondition list and an effect list.

Your answer:

POUR(f,f’)

Preconditions: CONT(f,x), CONT(f’,y)

Effects : -CONT(f,x),-CONT(f’,y), CONT(f, max{x+y-C2,0}), CONT(f’,min{x+y,C2})

2. Assume that we tell the planner that if a goal contains both CONT(F2,B) and CONT(F2,B’), where B and B’ are two distinct constants, then this goal is impossible. Suppose the goal is to achieve CONT(F2,G2), where G2 is a given constant smaller than C2. What difficulties would encounter a backward planner in attempting to compute the regression of CONT(F2,G2) through POUR(F1, F2) in order to generate a non-impossible goal? [Hint: Consider the two cases where POUR add CONT(F2,G2) to the state of the world and where it adds CONT(F2,B), where B(G2.. What happens in each case?]

Your answer:

To regress CONT(F2,G2) through POUR(F1, F2) we consider two cases:

- Case where min{x+y,C2} = G2. In this case, since we also know that G2 < C2, it must be the case that x+y = G2. Then, the regression is CONT(F1,x), CONT(F2,G2-x). But there are infinitely many possible values for x. How to pick one?

[To handle such a situation, the backward planner must be given the ability to perform simple algebraic calculus.]

- Case where min{x+y,C2} (G2. Then, the regressed goal contains both CONT(F2,G2) and CONT(F2,min{x+y,C2}), so it is impossible.

V. (3 points) Alpha-Beta Procedure

Consider a game where the same state can be reached via different sequences of actions. Let the game tree T for this game represent all possible sequences of actions starting at the initial state of the game. So, several nodes may be labeled by the same state. The two players are MAX and MIN.

Suppose we are executing the alpha-beta procedure on the whole tree T (i.e., the root is the initial state and the leaves are end positions) to decide the first move. Assume that at a node N in T, the procedure discontinues the search along some paths branching out from N, i.e., does not consider the successors of N corresponding to these branches.

1. Under which conditions the alpha-beta procedure should discontinue its search below N?

Your answer:

- If N is a MAX node and its alpha is (beta of a MIN ancestor of N.

- If N is a MIN node and its beta is (alpha of a MAX ancestor of N.
2. Suppose that later the alpha-beta procedure reaches another node N' that is labeled by the same state as N. Should the search below N' be automatically discontinued in the same way as it was discontinued below N? Explain briefly your answer.

Your answer:

No. Whether search is discontinued along some paths below a node depends on the alpha/beta values above this node. In turn these values depend on computations along paths of the tree parallel to the discontinued paths. For two nodes with the same state, the paths that determine the alpha/beta values above these two nodes may not be the same. Hence, the alpha/beta values may be different above the two nodes.

VI. (5 points) Belief Nets

You are given the following belief net (it is the same example as used in class):

[image: image2.png][l e P |
TIT
T|F|0.94

F|T|0.29
F | F|0.001

1. Before you make any observation, how would you compute the prior probability of MaryCalls? [We don’t ask you to do the numerical computation. We ask you to express the probability of MaryCalls, P(M), using quantities that are given in the belief net. To simplify notations, replace MaryCalls by M, Earthquake by E, etc… and let P(M), P(-M), P(E), … denote the probability of M, not M, E, etc…]

Your answer:

M directly depends only on whether there is an alarm or not, so:

P(M) = P(M|A)P(A) + P(M|-A)P(-A)

A conditional probability table (CPT) in the BN gives P(M|A) and P(M|-A).

A (resp. –A) directly depends on whether there are an earthquake and/or a burglary, so:

P(A) = P(A|B,E)P(B(E) + P(A|B,-E)P(B(-E) + P(A|-B,E)P(-B(E) + P(A|-B,-E)P(-B(-E)

A CPT in the BN gives P(A|B,E), P(A|B,-E) P(A|-B,E) P(A|-B,-E).

P(-A) = 1-P(A)

Since E and B are independent, we have:

P(B(E) = P(B)P(E)

P(B(-E) = P(B)P(-E)

P(-B(E) = P(-B)P(E)

P(-B(-E) = P(-B)P(-E)

P(B) and P(E) are given by the BN.

So, P(M) has been reduced to known quantities.
2. Now, assume that you observe that JohnCalls is True (i.e., Pr(J)=1). How would you compute the new (posterior) probability of MaryCalls? [Again, we don’t ask you for numerical values. Explain how you would do the computation. In this explanation, you will need to use the prior probability of JohnCalls, P(J). No need to explain how you compute it, since its computation is very similar to that of P(M).]

Your answer:

We need to compute P(M|J).

The BN tells that:

P(M|J)
= P(M|A,J)P(A|J) + P(M|-A,J)P(-A|J)

= P(M|A)P(A|J) + P(M|-A)P(-A|J)

(since M depends on J though A)

Bayes’ rule tells us: P(A|J) = P(J|A)P(A)/P(J).

The BN gives P(J|A). P(J) can be computed in the same way as P(M). P(A) was computed for question 1.

So, we can compute P(A|J). P(-A|J) = 1 – P(A|J). Hence, we get P(M|J).

VII. (5 points) Learning a Decision Tree

We give you the following training set where each example is characterized by the values of 4 observable predicates A, B, C, D and the value of the concept predicate CONCEPT. Using the Decision Tree Learning method described in class, build a decision tree of minimum height that agrees with all examples.

	Ex #
	A
	B
	C
	D
	CONCEPT

	1
	T
	F
	T
	F
	T

	2
	F
	F
	F
	F
	T

	3
	F
	F
	T
	T
	F

	4
	T
	T
	F
	T
	F

	5
	T
	T
	T
	T
	T

	6
	F
	F
	T
	T
	F

	7
	T
	F
	T
	T
	T

	8
	T
	T
	T
	F
	T

	9
	F
	T
	T
	T
	F

	10
	T
	T
	T
	T
	T

Your answer:

The first predicate to test (root of the tree) is A. Based on A, only two examples are misclassified, one (4) if A is True and one (2) if it is False.

The two children of A should be C (if A is True) and D (if A is False):

- If A is True, then if C is True, CONCEPT is True, and if C is False, CONCEPT is False.

- If A is False, then if D is True, CONCEPT is False, and if D is False, CONCEPT is True.

Note: This is not the only answer.

VIII. (3 points) Inductive Learning
1. Give one advantage of the Decision Tree Learning method over the Version Space Method.

Your answer:

- DTL is faster, because it does not require representing the possibly large G- and S-boundaries of the version space.

- Thanks to the majority rule, DTL can easily handle a noisy training set. This is difficult with VS.

2. Give one advantage of the Version Space Method over the Decision Tree Learning method

Your answer:

- VS is incremental, i.e., doesn’t require knowing all the training examples ahead of time. In contrast, DTL needs them. Adding a single example requires performing DTL on the whole training set again; the new DT may be very different from the previous one.

- At any one time VS can return all hypotheses that agree with the training examples, not just one.

[image: image3.png]

B

C

D

R1

R2

R3

R4

A

PAGE
10

