August 1981

Report. No. STAN-CS-81-869

Computer Science
Comprehensive Examinations
1978/79 - 1980/81

cdited by

Carolyn E. Tajnai

Department of Computer Science

Stanford University
Stanford, CA 94305

2o 220
SN T O

\
S Taa
Lrpsatts

~~~~~~






Computer Science
Comprehensive Examinations
1978/79 - 1280/81

edited by

Carolyn E. Tajnai

Department of Computer Science

Stanford University
Stanford, CA 94305







Abstract

The Stanford Computer Science Comprehensive Examination was conceived Spring Quarter
1971/72 and since then has been given winter and spring quarters each year. The Comp serves
several purposes in the department. There are no course requirements in the Ph.D. and the Ph.D.
Minor programs, and only one (CS293, Computer Laboratory) in the Master's program. Therefore,
the Comp fulfills the breadth and depth requirements. The Ph.D. Minor and Master's student must
pass at the Master's level to be eligible for the degree. For the Ph.D. student it serves as a “Rite of
Passage;” the exam must be passed at the Ph.D. level by the end of six quarters of full-time study
(excluding summers) for the student to continue in the program.

This report is a collection of comprehensive examinations from Winter Quarter 1978/79 through
Spring Quarter 1980181.






Foreword

In November, 1978, Frank Liang published the first collection of Computer Science Department
Comprehensive Examinations, STAN-CS-75-677, and the document proved to be a tremendous success. No
attempt has been made to emulate Frank’s style; this collection is strictly utilitarian.

The comprehensive examination serves several purposes in the department. There are no course
requirements in the Ph.D. and the Ph.D. Minor programs, and only one (CS293, Computer Laboratory) in the
Master’s program. Therefore, the comprehensive fulfills the breadth and depth requirement. The Ph.D.
Minor and Master’s student must pass the exam at the Master’s level to be digible for the degree. For the
Ph.D. student it serves as a “Rite of Passage;” the exam must be passed at the Ph.D. level by the end of six
quarters of full-time study (excluding summers) for the student to continue in the program.

The written portion is a six-hour examination given winter and spring quarters. Until January, 1979, the
programming portion was a 5-day take-home project given the week after the written portion, and the two
were graded together. At the June 13, 1978, Faculty Mesting it was decided to separate them; the grading
would be independent.

During 1979/80 the Comprehensive Examination Committee became aware of the difficulty of equitably
grading a program written during a high stress, five day period. The following motion was passed at the June
10, 1980, faculty mesting.

Professor (Michael) Genesereth, representing the Comprehensive Examination Committee,
proposed that the following procedure be adopted for the Comprehensive Programming Problem.

“Students in the M.S. and Ph.D. programs (and Ph.D. Minor students who have passed the
written examination) in Computer Science must prepare a programming project of sufficient
complexity and qudlity to demonstrate competence in computer programming.

This project must be supervised and endorsed by a member of the Computer Science
Department faculty and submitted to the Comprehensive Examination Committee for final
approval. The project must be written at Stanford by the student, working independently.

The project must exhibit the use of sophisticated agorithms and data structures and be well
documented. Programs will be judged on the basis of correctness, efficiency, clarity, and style.
The project may be the result of CS293 work, although it need not be. The project should
represent at least 3 units of work.”

Professor Genesercth made a motion that the proposal be accepted; Professor (Forest) Baskeit
seconded the motion, and it was passed.

At the faculty meeting on June 9, 1981, new guidelines Computer Science Department Requirements for the
Comprehensive Programming Project were adopted, for further clarification. See page ix of this report.

For those of you who are preparing to take the exam, lots of good luck.

Caolyn Tg na
July 1981

1ii






Comprehensive Examination Reading List
(Revised August 21, 1981)
ALGORITHMS AND DATA STRUCTURES
Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, Massachusetts, 1974, Chapters 1, 2, 3, 4.1-4.4, 5.1-5.4. Chapter 10.1-10.5 covers some of

the same material as Garey & Johnson (below).

Garey, M. R., and Johnson, D. S., Computers and Intractability, Freeman, San Francisco, 1978, Chapters
1-3.

Knuth, D. E., The Art of Computer Programming, Volume 1, Addison-Wesley, Reading, Massachusetts,
1968, Chapter 2 (except for Section 2.3.4).

ARTIFICIAL INTELLIGENCE

Barr, A.V. and E.A. Feigenbaum (eds.), Handbook of Artificial Intelligence, Volume 1., Kaufmann, Stanford,
1981.

Winston, P.H.,Artificial Intelligence, Addison-Wesley, Reading, Massachusetts, 1977, Part I, Chapters 1-9.

HARDWARE SYSTEMS

General:

Mano, M., Computer System Architecture, Prentice-Hall, Englewood Cliffs, New Jersey, 1976, Chapters I-5,
7, 8, 11.1, 11.2, 11.5, and 12; or you may substitute Gschwind, H. W. & McCluskey, E. J., Design of Digital
Computers, Springer-Verlag, New York, 1975, Chapters 2, 3, 5, 6, 7, 8.2, 8.3 (except for 8.3.5.1), 8.4.
Memory Hierarchy:

Matick, R., Computer Storage Systems and Technology, Wiley Intcrscience, Chapter 9.

Strecker, W. D., Cache Memories for PDP-11 Family Computers, 3rd Annual Computer Architecture
Symposium.

Computer Systems:

C. A. C. M. Jan 1978: CRAY-1, pages 63-72; IBM 370, pages 73-96.
Stack Computers:

Stone, H. Introdic tinto Computer Architecture, SRA, 75, Chapter 7.
1/0:

Kraft, G. D. and Toy, W. N., Mini/Microcomputer Ilardware Design, Prentice-Hall, 1979, Chapters 3, 5, 6,
8, 9.



NUMERICAL ANALYSIS

Atkinson, K. E., An Introduction to Numerical Analysis, Wiley, New York, 1978, Chapters I-3. Or you may
substitute Conte, S. D., and De Boor, C., lementary Numerical Analysis: An Algorithmic Approach, 2nd
ed., McGraw-Hill, New York, New York, Chapters 1-2 and 4.1-4.8; or Conte and De Boor, 3rd ed., 1980,
Chapters I-3.

Forsythe, G. E., Malcolm, M. A., and Moler, C. B., Computer Methods for Mathematical Computations,
Prentice-Hall, 1977, Chapters 2, 4.4, and 4.5.

Forsythe, G. E., and Moler, C. B., Computer Solution of Linear Algebraic Systems, Prentice-Hall, 1967.

SOFTWARE SYSTEMS
Aho, A. V., and Ullman, J. D., Principles of Compiler Design, Wiley, New York, New York, 1975.
Brinch Hansen, P., Operating System Principles, Prentice-Hall, 1973.

Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R., Structured Programming, Academic Press, New York,
New York, 1972.

Graham, R., Principles of Systems Programming, Addison-Wesley, Reading, Méssachu':setts, 1975.

Stone, H. S.,Introduction to Computer Organization and Data Structures, McGraw-Hi& New York, New
York, 1972, Chapters I-8. Contains basic knowledge about computer organization. Most students should
just skim this.

Watson, R., Timesharing System Design Concepts, McGraw-Hi& 1970, section 2.4, or Denning, P., “Virtual
Memory,” Computing Surveys, September, 1970.

THEORY OF COMPUTATION

Hopcroft, J., and Ullman, J., Introductionto Automata Theory, Languages, and Computation, Addison-
Wesley, 1979, Chapters I-3, 4.1-4.6, 5-7, 8.1-8.5.

Manna, Z., Introductionto Mathematical Theory of Computation, McGraw-Hi& 1973, Chapters 1, 2 and
3. Alternative introductions to logic appear in Mendelson, E., Introduction to Mathematical Logic, V an
Nostrand, Chapters I-2, or Enderton, H., A Mathematical Introduction to Logic, Academic Press, 1973,
Chapters 1-2.

McCarthy, J., and Talcott, C., LISP: Programming and Proving, (available from Stanford Bookstore) 1980,
Chapters I-3.

RECOMMENDED COURSES

The Comprehensive Exam is meant generally to cover the material from the following courses: CS 111
(assembly language); 311 (hardware) 137A (numerical analysis); 107, 142, 143, and 246A (systems); 144A, B
(data structures); 156 (theory of computation); and 223 (art'icial intelligence). Since the precise content of
these courses varies somewhat, the actual scope of the Exam will be determined by the references above.
Please note that the reading list includes some material involving structured programming as well as the
history and culture of Computer Science even though it does not correspond to any particular course.



The Exam will also assume a certain mathematical sophistication and a knowledge of programming. The
mathematical sophistication required may include knowledge of techniques such as induction, recursion,
“divide and conquer” (e.g., techniques in sorting algorithms, case arguments, etc.), and will be at the level
of an upper division undergraduate in the mathematical sciences. Proofs of correctness for simple programs
may be required. The programming knowledge required will be an ALGOL-like language (e.g., Pascal), a
knowledge of LISP, and possibly some assembly language. The exam will be “open-book-and-notes.” This
means you are allowed to use any materials you bring with you, plus copies of the above materials which
will be made available. Non-smoking and smoking examination rooms will be scheduled. Copies of previous
exams are available from the department.

PROGRAMMING PROBLEM

Students in the M.S. and Ph.D. programs (and Ph.D. Minor students who have passed the written examina-
tion) in Computer Science must prepare a programming project of sufficient complexity and quality to
demonstrate competence in computer programming.

This project must be supervised and endorsed by a member of the Computer Science Department faculty and
submitted to the Comprehensive Examination Committee for final approval. The project must be written
at Stanford by the student, working independently.

The project must exhibit the use of sophisticated algorithms and data structures and be well documented.
Programs will be judged on the basis of correctness, efficiency, clarity, and style. The project may be the
result of CS 293 work, although it need not be. The project should represent at least 3 units of work.

The text

Kernighan, B. W. and Plauger, P. J., The Elements of Programming Style,
McGraw-Hi& New York, New York, 1974.

discusses some matters of style.

Good luck.



Computer Science Department

Requirements for the Comprehensive Programming Project

This memo specifies the requirements for the Comprehensive Programming Project. It is intended as a

guide to students doing the Project, to Faculty members sunervisine them, and to future Comprehensive
Committees.

The policy on the Project was set by the Faculty in a resolution reproduced below. This memo also details
the present Comprehensive Committee’s interpretation of the resolution, and the manner in which it will be
implemented.

1. Faculty Resolution

As stated in  the Charge to the Comprehensive Committee
(<CSD.FILESSCOMPCHARGE.DOC), the following resolution was passed at the June 10, 1980
Faculty meeting:

“Students in the M.S. and Ph.D. programs (and Ph.D Minor students, who have passed the
written examination) in Computer Science must prepare a programming project of sufficient
complexity and qudity to demonstrate competence in computer programming.

“This project must be supervised and endorsed by a member of the Computer Science
Department faculty and submitted to the Comprehensive Examination Committee for fina
approval. The project must be written at Stanford by the student, working independently.

"The project must exhibit the use of sophisticated agorithms and data structures and be well
documcented. Programs will be judged on the basis of correctness, efficiency, clarity, and style.
The project may be the result of CS293 work, athough it need not be. The project should
represent at least 3 units of work.”

2. Complexity

The project must involve both design of algorithms and data structures, and actual programming.
It should bc such that the design aspect is significant. A program that is very long, but consists
only of alarge number of trivial algorithms and data structures, is not adequate. Al
implementation of a program from Someone cise's design is not adequate.

As aguidclinc, a program that correctly and completely solves onc of the Comprehensive
Programming Problems sct between 1972 and 1980 would be considered sufficiently complex.
(Some of these were published in Tech. Report STAN-CS-78-677; the others may be obtained
from Carolyn Tajnai). However, these specific problems arc not acceptable as projects because
full solutions to them have been published.



3. Qudity

Projects will be judged on quality of both code and documentation. The judgement of code will
be based on correctness, clarity, style and efficiency. A program should be easily readable by an
experienced programmer conversant with the language used.

The importance of good documentation cannot be emphasized too strongly. Both interna and

externd documentation are essential. Between them, they should clearly and concisely state a
least the following:

a. The purpose of the project: the problem it solves or the service it provides.

b. The architecture of the solution: program structure, major data structures, and the
relationships beween them.

c. Design decisions taken, alternatives considered and the rationale behind the choices made.
Reasons for choosing particular algorithms and data structures should be given.
Clarity/efficiency, spaceltime and other tradeoffs should be documented and justified.

d. The implementation: how data structures are implemented and details of agorithms used.

e. Details of test runs performed and the results produced. Testing should be sufficient to
demongtrate that the project achieves its stated purpose.

f. Citations and acknowledgements of al literary material used and al advice received from
others (see section 4).

Verbosity should be avoided; 8 to 10 pages of externa documentation should normally suffice.

[t is up to the student in the documentation not only to make clear what was done and how it was
done, but also to give some evidence that the way it was donc is superior to alternative
possibilities. The documentation should be written for a person having a good general knowledge

of Computer Science and programming, but no speccific knowledge of the particular project or
project area

Copies of projects of adequate complexity and quality may be obtained from Carolyn Tgnai.
Candidates are strongly advised to examine these.



4. Use of Projects Written for Other Purposes

A project written for some other purpose may be submitted as a Comprehensive Project, provided
it is written while the author is a student a Stanford. In particular the following are acceptable:

a A course project;
b. A 293 project:
c. A project done as part of a Research Assistantship.

However, the evauation of the project as a Comprehensive Project is entirely independent of any
other evaluation. For example, it is concelvable that a course project earning an “A” would be
insufficient to satisfy the requirements of the Comprehensive,

A program that is part of a larger program or system is acceptable as a Comprehensive Project,
provided:

a The portion submitted is complex enough by itself to satisfy the requirements given above.

b. The portion submitted can be run and tested. The fact that the state of the rest of the system
prevented running and testing is not acceptable as an excuse.

5. Obtaining Advice

A student may consult the literature or seek advice on aspects of higher project if necessary.
However, al assistance and sources of information must be acknowledged in the documentation.

Receiving unacknowledged information or advice constitutes an Honor Code violation.
Receiving and acknowledging an excessive amount of assistance is not a violation, but may lead to
the project being rejected as inadequate. A student in doubt as to how much assistance is
reasonable, should consult the Faculty member supcrvising the project or amember of the
Comprehensve Committee.

If the faculty advisor has any questions related to the suitability of the project he/she should
consult the Comprehensive Committee.

6. Administration

The following procedure should be followed by astudent wishing to tuke the Programming
Project:

a Arrange to do the project under the direction of a Faculty member. Both the student and
Faculty member should ensure that the project satisfies the requirements Stated above.

b. On completion of the project to the Faculty member’s satisfaction, obtain a Project
Submission Form from Carolyn Tgnal, fill it in and have the Faculty member sign it. The
form states that the project is the student’s own work and that, in the opinion of the Faculty
member, it is adequate.

Xi



¢. Hand the signed form and the project to Carolyn Tajnai, who will passit on to the
domprchensive Committee and eventually communicate the grade to the student. A graded
project may be examined, but not kept, by the student; it will be kept on file for three years
by the Department.

7. Grading

The Committee will grade projects as expeditioudy as possble. In particular, it guarantees:

a To examine a project and give an “immediate response’ within ten working days. This
response will be either agrade. if the grade is not in doubt, or a statement that the
Committee requires more time to consider the project.

b. To grade any project handed in during the first two weeks of any quarter (including
Summer) in time for graduation a the end of that quarter.

These are minimum performance guarantees; the Committee will aways endeavour to better
them.

As with the written Comprehensive Exam, the Programming Project can be passed a the MS or
PHD levdl. If a project is not considered worth a pass at the level required by the student, it will
be returned with comments, and the student will normaly be given the opportunity to improve
and resubmit it. In the case of a project that is wholly inadequate or is submitted more than three
times in al, however, the Committce may require the student to undertake a completely new
project.

This document was approved by the Faculty of the Department of Computer Science at the June
9, 1981, meeting.



Winter Quarter 1978/79
Written Examination .

Solutions . .

Programming Project .

Spring Quarter 1978179

Written Examination. . .

Solutions . . .

Programming Project . .

Winter Quarter 1979/80
Written Examination .
Solutions . . .

Programming Project . .

Spring Quarter 1979180

Written Examination. . .

Solutions .

Programming Project . .

Winter Quarter 1980181

Table of Contents

...........

Written Examination and Solutions . .

Spring Quarter 1980/81

Written Examination and Solutions

Instructions and Honor Code

X i

P

-----

..........

88 <

7

106

113
128
149

185

183

215



WINTER 78/79 COMPREHENSIVE EXAMINATION

Theory of Computation

1. Turing (5 points)
(@ Why did A. M. Turing invent the “Turing machine”?

(b) Did he spend more years of hislife working with abstract “Turing machines’
or with real computer6l (Give some background information to support your

answer.)

2. Resolution and Unification (7 points)

Prove by resolution that the following set of clauses is unsatisfiable.

P(g(z, w):z: w)
~P(z,y,u)V P(y, 2,v)V ~P(z,v,w) V Py, z, w)
~P(k(z), z, k(z))

3. Sorted Languages (21 points)

Consider strings over an alphabet {a;, . . ., a} whose letters are linearly or-
dered: g)<.a.<am. If a=z1;3 . . . z, isastring, let sorted(a) be the string
Zp,Zp, ... Tpy Where pipz. . . ppisapermutation of {1,2,...,n} and zp < zp, <

< Zp,.
If L is alanguage over {ai, . . . , am}, define new languages a6 follows:

sortedsubset = {a € L | a= sorted(a) };
sorted(L) = {sorted(a) |a EL};
unsorted(L) = {a] sorted(a) = sorted(P) for some € L}.
Prove or disprove the following statements:
(@) If L is context-free then sortedsubset(L)is context-free,
(b) If L iscontext-free then sorted(L) is context-free.
(c) If L is context-free then unsorted(L) is context-free.



4. Context sensitive grammar6 (12 pints)

Determine the language generated by the following grammar. (Upper case
|etters are nonterminals, lower case letters are terminals, and S is the start symbol.)

S — PABQ BU = VA
PA — PCT BV - VA
TA — BCT PV — PA
TB — BT PA—aX
CB — BC XA —=aX
TQ—-UQ XB = bX
CU—-UB XQ—qq

Hint: Consider the strings derivable from PA"B™Q.



5. Program Verification (15 points)

Invent a suitable inductive assertion at point B and prove the following program
partially correct with respect to the given input and output predicates. Generate
and prove all verification conditions.

Q

A
z>1

) = (irue )

B

((y’___;z)Az,* f

t

2
|22 A (zmody 7 0)

z = (X is prime) )




Artificial | ntelligence

1. Theorem proving (5 points)

It hab been suggested that work on theorem proving ha6 been shelved tem-
porarily. Supposing thie is correct, what would be the reason for this trend? State
your answer briefly.

2. Production systems (5 points)

Comment briefly on the differences between production system architecture6
when used for (a) psychological model6 of cognitive skill6 (such a6 PSG) and (b)
expert systems (such as MYCIN or AM).

3. Performance (5 points)

Pick ONE of the pairs of program6 listed below and contrast the approaches

used in the two programs of that pair. In light of the superior performance of the
“less intelligent” program, defend the continued use of Al in such problem areas.

(3) HEARSAY - DRAGON
(b) CHESS 4.6 [or 4.5 or 4.7)- CAPS
(c) INTERNIST [Pople's early version] - MY CIN

4. Choice of Task Domain (9 points)

Order the tasks below by the time it will take to produce commercia robots
to do them. State the genera principle6 you use to make the ordering and explain
any exceptions.

Planning a med

Cooking a meal

Serving a meal

Teaching arithmetic
Teaching soccer

Teaching (about) Shakespeare



5. Coneepts (9 points)

Briefly define each of the following Al concept6 and methods, and give a one
or two sentence description of the conditiona under which it is relevant:

actors

alpha-beta technique
British Museum agorithm
goal-directed search

LISP

Simon’6 ant

6. Games (27 points)

Consider the following problem:

You and an opponent are facing 11 stacks of pennies, of heights 11,10,3,...,1.
You will alternate moves, removing pennies, and each time someone takes the
final penny in astack his OPPONENT will receive one point. During his turn,
each player must remove three pennies (three from one pile, two from one pile and
one from another, or one each from three separ ate piles). What should be your
first move? (Assume that your opponent will play perfect&, that you are trying
to maximize the number of points you will receive, and that your program can
have as much time and space as it calls for.)

(a) [10 points] Sketch the body of a recursive program to solve this problem.
You may omit the details, and use math notation and concepts liberally.

(b) {7 points] Now fill in the details of the above sketch, such as the base steps
of the recursion and the initialization of any necessary variables and data structures.

(c) [2 points] Wha language might be appropriate to implement this program
in (very briefly mention why)?

(d) [4 points] A ssume that, rather than being infallible, your opponents are many
and varied in their skill. How might “intelligence” be inserted into the program
so that it might attain very high scores?

(e) [4 points] How might a software analogue of “caching” be used to improve
the program’s efficiency? (If you prefer, you may answer this question using the
software analogue of any other hardware concept.)



Systems

1. Compiler runtime organization (15 points)

Suppose you are writing an Algol compiler for some machine whose instruction
set you know. Sketch how you would implement run-time display management
on this machine. Where would you store the stack pointer, display pointers, and
other necessary information? What would a stack frame look like?

2. One-pass, multi-pass compilers (5 points)

(@ What are the advantage6 of multi-pass compilers over one-pass compilers?

(b) Describe away to handle code generation for forward jumps in a one-pass
compiler for the generation of code in-core and for the generation of relocatable

code on a file.

3. Exponentiation (12 points)

(@ [10 points] Pascal is sometimes criticized for lacking an exponentiation
operator. Suppose you intended to add this operator (denoted ss) to the language.
Define precisely the meaning of assb, where a and b are integer or real expressions.
When will as#b be illegal (undefined)? What will be its type and value when it is
legal? There is no single answer-try to make reasonable choices.

(b) [2 points] Based on your answer above, does the usefulness of the exponen-
tiation operator justify the complexity it entails?

4. Parameter passing (8 points)

Suppose you are given a compiler for an Algol-like language. The language
does not allow to specify in which way parameter6 are to be passed but you know
that the compiler uses the same mechanism for all parameter types. Write one or
more program fragment6 to determine whether parameter passing is

— call by value
— call by value result
— call by reference

— call by name.
Indicate how the answer can be derived from the result of your program.



5. Banker’s Algorithm (5 points)

What is the purpose of the Banker's Algorithm? What information does it
require?

6. Synchronization (5 points)

A critical region of a concurrent program may be executed only when no other
critical region is being executed. Let us analogously define a serious region, which
allows possibly one other serious region to be executed simultaneously.

Write an Algol-like program implementing this “amost” mutual exclusion for
process s of n processes, each with one serious region. Show formally that your
solution is correct in that (2) no more than two processes can execute their serious
regions simultaneously, and (b) if fewer than two processes are in their serious
regions, and other processes are waiting to enter their serious regions, then one
will eventually be alowed to enter.

You may use shared variables, semaphores, critical regions, and conditional
critical regions in your solution.

7. The Class Concept (10 points)

Write a Simula class implementing a bounded stack of integers. It should be
possible to specify the stack limit when individual stacks are created. Provide the
operations push, pop, and test-for-empty-stack, assuming that stack overflow and
underflow never occur. Show how to create and use instances of this class in a
program.



Hardware

1. Logic design (33 points)
(@ [5 points] Write the state table of the following circuit:

T arre 5 a J e+ Ia_’__l
Aall TTdel] [bc||ll4D
K

(|| "

I

x~

(b) [8 points] Design a counter with the same state table, minimizing the number
of gates.

(c) [15 points] Design asynchronous counter with the same state table, using D
flip-flops. '
(d) [2 points] f¥e 2advantages of synchronous counters over asynchronous ones.

(e) [3 points] Give three reasons why one combinational circuit may be preferable
to another requiring fewer gates.

2. Logic Technology (7 points)

Briefly describe each of the following logies:
RTL

MOS

ECL

TTL

Schottky

Josephson  Junction

1L



3. Architecture (15 points)

(@ [1 point] What is a stack machine?
(b) [1 point] What is a register machine?
(©) [3 points] Whatare each’s advantages over the other?

(d) [10 points] Sketch how you would organize the CPU of a stack machine.
Draw a block diagram showing the major components and their interconnections.
It should be detailed enough to reveal how the stack is implemented in terms of
other components.

4. Celebrities (5 points)

Name an accomplishment of each of the following persons:
M. Wilkes

T. Kilbum

S. Cray

G. Amdahl

G. Bel



Analysis of Algorithms

1. Tree traversal (24 points)

(@ [15 points] The non-recursive procedure shown below performs an inorder
traversal of a binary tree without using a stack. However, certain key parts of the
procedure have been left out. You are to fill in the blanks by figuring out how the
algorithm works.

The tree is represented in the usual manner, with each node having pointers
to its left and right sons. The algorithm work8 by modifying certain pointers in
the tree and later restoring them. When the traversal is completed, the tree has
been returned to its origina state.

t + root;
while ¢ £ A do begin
if left(t) = A then begin
visit(t);t — |
end
else begin
P + left(t);
comment p iS atemporary variable used only in this block;
while right(p) £ A and right(p) #
do p « right(p);
if right(p) = A then-begin
comment modify tree link to “remember our place’;
right(p) — t; t — lefi(t)

end

else begin
visit(t);
comment fix up ‘tree nin¥;
right(p) «— ;b=

end
end
end;

(b) [9 points] Now modify the above procedure so that it performs a preorder
traversal of the tree. Try to make as few changes as possible.

10



2. Data structures (20 points)

For each of the situations described below, you are to design a data structure
to represent the set of values so that the indicated operations can be performed
quickly. You should briefly describe how the operations ar e to be performed using
your data structure, and estimate the running time.

(@ [8 points] We are given a set of numbers, and we want to perform the following

operations:

(1) Add a number to the set, where this number is known to be larger than
al of the numbers currently in the set.

(2) Delete the smallest number from the set.
(3) Delete the median number from the set. (In other words, if there are n
numbers currently in the set, delete the [n/2] th smallest number.)
For parts (b), (c), and (d), consider the following situation. We have a supply
of jars with specified capacities. We want to perform the following operations:
(1) Adda new jar of a specified capacity to our supply.

(2) Given a volume of liquid, find the smallest jar that can hold this volume.
This jar is then deleted from our supply.

Answer the question for each of the following cases:
(b) [4 points] Jar capacities and liquid volumes are real numbers €1, 50].
(c) [4 points] Jar capacities are real numbers; liquid volumes are integers €1, 50].

(d) [4 points] Jar capacities are integers € [1, 50]; liquid volumes are real numbers.

11



3. Register allocation (18 pints)

Consider a hypothetical computer with the following instructions:

N «m load register 4 from memory location m
N « rl om register i gets the result of riom
n « ri orj register i gets the result of riorj

where e isa binary operation.

(@) [12 points] Suppose we are given a parenthesized expression involving only
distinct variables (memory locations) and the operator o, for example

((aod)oc)o(do((ecf)og)).

We want to determine the minimum number of registers that are needed to compute

the value of this expression.

Since the variables are distinct, you need not worry about common sub-
expressions. You may use commutativity of the operator e, but do not assume
associativity. Also, assume that the computer has an infinite number of registers,
whose contents are initially undefined.

Give a formula for the minimum number of registers required by a given
expression, and explain how the computation should be arranged to achieve this
minimum number. You may introduce any additional notions that are appropriate.

(b) [4 points] Now assume that the machine has only k registers. What is the
length (number of operations) of the shortest expression that cannot be computed
by this machine?

12



Numerical Analysis

1. Stable Algorithms, well-conditioned Problems (21 points)

In numerical computation, it is important to distinguish between an ill-
conditioned problem and an unstable algorithm. In general, a problem isill-
conditioned if asmall change in the data defining the problem results in alarge
change in the solution. An algorithm is numerically unstable if it introduces large
errors in the computed solutions to problems which are not ill-conditioned. Note
that conditioning is a property of the problem itself and that stability is a property
of the particular method used to solve the problem. Here is a list of common
numerical problems and possible methods for solving them. For each case, choose
one of the following which comes closest to describing the situation. Briefly explain
your conclusions by providing examples, pointing to error analyses, etc.

“Good-good”: Well-conditioned problem and stable algorithm.

" Good-bad” : Well-conditioned problem and unstable algorithm.

‘Bad-good” : Ill-conditioned problem and stable algorithm.

‘Bad-bad”: Ill-conditioned problem and unstable algorithm.

(@ Integration of a smooth function f(z) over [0,1] using Simpson’'s rule with
equally spaced points.

(b) Differentiation of the same function using finite differences with equally spaced
points. '

(c) Computation of the roots of f(X) = z°—>5z* 4923 —T2z24-2z using Newton’s
method. Note that f(x) = x(x — 1)3(z — 2).

(d) Inversion of the matrix

0001 1
A =
(7 2)

using Gaussian elimination with no pivoting.

(e) Inversion of the same matrix using Gaussian elimination with partial pivoting.



(f) Inversion of the positive definite matrix

(i 19

using Gaussian elimination with no pivoting.

(@9 Inversion of the same positive definite matrix using Gaussian elimination with
complete pivoting.

2. One-sided finite-difference approximation (15 points)
(@) Find coefficients e, 8, and 7 so that

Y = af(z) + Bf(z +h) + 7f(z + 2h)

IS a good approximation to the first derivative f(x). Note that this is a ‘one-sided”
approximation because no values of f to the left of x are used. Make whatever

smoothness assumptions you think appropriate.
(b) Obtain an error bound of the form
[ — (=) < .
What are ¢ and &?

(c) How small must A be in order that this formula can be used to compute cos(z)
to four places of accuracy from atable of sin(x)?

3. Decomposition Of a Matrix (8 points)

Exercise 9.8 in Forsythe and Moler, Computer Solution of Linear Algebraic

Systems, asks for a proof of the following “theorem”.
Any symmetric, nonsingular matrix A can be expressed as a product

A=LDLT

where L is a lower triangular matrix with positive diagonal elements, LT isits
transpose, and D is a diagonal matrix with 41 on the diagonal.

(@) Show by means of a simple counterexample that this “theorem” is false.

(b) What additional hypothesis on A would make the statement valid? (A hypoth-
esis less strict than positive definiteness is possible.)

14



4. Representation of floating point numbers (8 points)

A new minicomputer, the Avon 9000, has an unorthodox arithmetic unit.
When the following problem is executed, the operating system signals adivision
by zero. What base might be used for the representation of floating point numbers
in the Avon 9000 firmware?

begin
H:=1.0/2.0
x; =2.0/3.0 - H
Y. =3.0/5.0 -H

Ei=(X+X+X)—H
Fr=Y4+Y4+Y+4+Y+Y)—H
@ = F/E
print @

end

5. p-norm (8 points)

The p-norm of avector z is defined for 1 < p < 00 by

Il = (l=il?) "

(a) What is
limp—eollzllp ?

(No proof required.)
(b) What is the purpose of the restriction 1 <p?

(c) What difficulty with floating-point arithmetic might be encountered in a sub
routine or procedure that computes the p-norm of avector by directly implementing
the definition?

15



e

SOLUTIONS - WINTER 78/79

Theory of Computation

[. (@) In order to prove that things were uncomputable by agorithms, it was
desirable to have a smple device that could (in principle) compute all computable
things.

(b) He designed ancestors of electronic computers during World War |1, as part
of hisimportant code-breaking work, then he was chief architect of the Manchester- -
Ferranti machines in the late 40s and early 50s. Thus, by far the greatest part of
his involvement was with concrete machines.

2. Set ztg(Z, W),y « Z,u« Win the second clause; resolve it with the first
to get P(Z, z, V) V ~P(g(Z, W), v, w) V P(W,z, w). Now set V t Z, W+ W and get
P(Z,2,Z)V P(W,z,W). Findly set z « z, Z « k(x), W « k({z) and get 8.

3. (a) True, since sortedsubset(L) = LNa} . . . ay,, and the intersection of context-
free with regular is context-free,
(b) Falsg; since L = (abe)* is regular, hence context-free, but sorted(L) ==
{a™™"™|n>1} is not context-free.
(c) False, by (a) and (b), since sorted(L) = sortedsubset(unsorted(L)).

4. Let m, N =>_1. The only derivations from PA"B™Q that don't lead to dead ends
essentially have the form PA"B™Q — PCTA™1B™Q —* PC(BC)*~1TB™Q —*
PC(BC)"™B™T'Q -  PC(BC)"B™UQ —*  FPBltmgnyQ —*
PBr—itmyUBrQ — PB—2TmyABnQ —* PVAr—l+mpng
PAm+Tm™BnQ, or the form PA"B™Q — aXA"~1B™Q —* a"XB™Q —* a"b™XQ —
a"b™qgq.

Thus, the terminal strings are al derived as follows, for some k> 1: S—
PABQ —* PA2BQ —* PAB2Q —* PASBQ —* . . . —* PAPw1BRQ —*
aF+1pFgq, where Fi denotes the kth Fibonacci number.

5. At point B we have “z> 1 and (y- 1)) <z and z =Vw(2 CW_C (v- 1) =
z mod w 5% 0)“. Proof: The first time we get to B this is clearly true. Going
backwards around the loop, beforey —=y <41 wemay assert“z >land ? < z
and z=VYu2<w<y= xmodw 5% 0)"; before z =2z A (xmody 5£0) we
have “z > 1 and yz <<zand z = Vu2 <w <(y—1) = zmod w 5 0)". All
verification conditions are trivial except we must show that “z > | and (y- 1)2 <
z and z = Yuw(2 < w < (y—1) = x mod w % 0)" and not “(y* < x) Az" implies
“z=(z is prime)“.

If not, we have one of two cases. (a) z fase and x is prime. Then there is
awsuchthat 2 S w<y—1<+/z2<zand zmedw = 0, so w is a proper
divisor of z; contradiction. (b) z true and z is not prime. Then, since x > I,
we have X = uv for some proper divisors u and v, where2 < u<v < x; in
particular, xmod u = 0. Therefore 2 S u<y—lisfdse ie, u>y, and
x = W > u2>y% contradiction. . . -

16



Artificia Intelligence

1. (1) The decade-old flurry of excitement over Robinson resolution subsided
when few effective strategies were found for constraining the wmbinatorially ex-
plosive starch it entails. (2) Axiomatization of most problems is quite long and
. difficult, hence Al researchers are simply not able to bring predicate calculus
theorem provers to bear on most of the problems they tackle. (3) Many of the
recent AX “expert reasoning” programs are based around inexact plausible reason-
ing, rather than deduction, and therefore utilize atheorem prover only as one
resource, almost as a subroutine, rather than as the central driving mechanism,

2. (1) Complexity of data structures (one working memory consisting of a linear
string of tokens, vs. a set of specially-tailored structured DS's). (2) Placement
of permanent knowledge (only in rules, vs. distributed between rules and data
structures (the knowledge bases)), (3) Complexity of the rules (just a couple of
simple operations like pattern-matching and writing a token into memory, vs. the
ability to call on arbitrary functions, have side effects, be a meaningful chunk of
knowledge to a domain expert). (4) Complexity of the interpreter (ssmple rule
selection schemes, such as cyclic scan, vs. the ability to bring knowledge to bear
to choose the best rule to fire next),

3. Inall cases, the former program is more driven by tables of low-level knowledge,
while the latter is more driven by inferencing off a knowledge base of high-level
information. For example, Dragon uses Markoy processes to simulate speech at a
low level, Chess 4.6 has some of its chess information microcoded into the Cyber:.
Internist is built around tables of symptom-diseast correlations. The defense of
the Al approach comes by way of the following picture:

o

;\ou-ArI P ‘ AL

2)

cost

>

R [4
size of problew

17



The conventional non-AI approaches (x) such as microcoding can buy you
a hefty linear factor against the combinatoria explosion, but only a linear fac-
tor. Ultimately, such programs will not be able to be extended except at an
exponentialy increasing cost. The current Al programs (o), wallowing LISP be-
hemoths by comparison, arc initially more costly (perform poorer), but ultimately
we expect that they have chipped away at the exponent in the problem, that
eventually (as machines and problems attacked grow) the curves will cross, and
Al programs will perform better, A possible example of this behavior aready may
be seen with the Dendral program for enumerating structural isomers of a given
compound: knowledge of each chemical problem constrains the search through the
combinatorial space.

4. The sensorimotor coordination required to walk is far beyond what we can
handle now. Thus soccer, and to a lesser extent serving a meal, are quite along
ways away. Certain limited forms of cooking, those involving very few motions,
will be the first of these to arrive. The more intellectual tasks are certainly bound to
precede all of these physical ones. A great deal of thought has gone into arithmetic,
and is going on even now with CAI efforts. Thus that may be the first out of the
six tasks to be successfully carried out automatically. Planning a mea requires
so much less rea-world knowledge than teaching Shakespeare that it will come
about much sooner. So our ordering is: 1st - teaching arithmetic, 2nd - planning
ameal, 3rd/4th - cooking a meal, teaching Shakespeare, 5th ~ serving a meal, 6th

" — teaching soccer.

5. “Actors’ are modular units of representltion, as developed by Carl Hewitt of
MIT, and function by message-passing. They are appropriate to coordinating a
large network of simple processes.

“af technique” refers to a tree-pruning procedure for cutting down the amount
of nodes necessary to expand when carrying out a minimax search in an AND/OR
tree. By comparing the expected value of a branch against (a) the best value you
know you can force and (b) the worst value you know you have to settle for, the
program can avoid searching many branches. It is usually preferable to a blind
minimax search, and is commonly used for evaluating game trees.

“‘British Museum algorithm” refers to an exhaustive search, and is relevant
only when nothing else is available, or for tiny problems. The name comes from
the metaphor of having enough monkeys at typewriters eventually produce all the
works in the British Museum.

“Goal-directed search” refers to the problem-solving strategy of working back-
ward from a goal, setting up relevant subgoals, and choosing the next node to
expand as one that is necessary for achieving the goal or current subgoa. I$ is
generally useful whenever a sense of direction toward the goal is possible.

18



“Simon’s ant” refers to the behavior of an ant crawling on abeach: it appears
to follow a very complex path, but when we ook cleser we see that it was really
just avoiding obstructions, that the complexity was in the environment, not in the
performer. The point is that simple control mechanisms in a complex environment
can produce very complex behavior.

6. (a) Best (S, par)=
max; ; res{par X Best (S with §; S; Si decremented by 1, —par))

where Sisthe list of pile heights, initially S= (1110987654 3 2 1); wristhe
parity, which is 1 when, you play, -1 when your opponent plays; and where we
assume that the maximal 3, j, k will be bound and available at the end of calling
Best; thus their final value dictates the initial move, and the final value returned
by Best is the score (hopefully positive!) we can expect to obtain against a perfect
opponent.

(b)
S~ (1110987654321)
par « |
Move « (00 0)

Best(S, par) =
. Tempscore « 0
VSieS, if Sv < 0 then return — 999999999
gdseif Si =0 then

Tempscore +— Tempscore — par
Remove S; from S

if 3°,(Ss) < 3 then
M = {i|S; € S}
Return Tempscorc — [par X length(S)]

Move « (ijk) maximizing the quantity
Tempscore - [par X Best(S with §;5;S, decremented, — par)]
which maximal quantity is Returned as the value for this function.

As above, the value of the top-level call of Best will be the expected fina
score, and the value of Move will be the pile-numbers of the piles from which the
three coins should initially be removed.

(c) Lisp comes to mind, not only because thisis the Al section of the exam,
but also because of its ability to handle recursion, list deletions, forall/foreach
mappings, etc. In short, trandating the (b) program into Lisp would take but a,
small fraction of the time it would take for Basic, Cobel, and other straw men.

19



Systems

1. The following solution works for most general register machines, such as the
PDP-10. More details can be found in Gries, €tc.

One register is used for the Stack Pointer; a contiguous block is used for display
registers. All of these registers must be usuable as index registers on your machine.
With a fixed size display it is OK to limit the maximum procedure nesting, say
to seven levels. No display level is needed for top-level global variables, which
art directly accessible. Each display register points to the beginning of the local
variable area of the stack frame for its display level, so that variables on that
level may be accessed. When exiting a procedure, its static and dynamic links are

. found via the display register for the block level of the procedure.

ypysm
STACK POINIER —— ,
ﬁ I;RAa.s e
D)5 PLA] pasding
j \ )
LOCALS 1 e STATIR Liphs
N (frA-"r 5% Ofawd:
OIVARIC Ui LWE P& ptflip o¥
EnreRARS ()
Z 2 (ALdpys Poia 7 0m3 B8loCtx ETANCRRE
Aantrea n 10 PRSVI S FRat of PRO6Ram)
. FrRA~v) Ny PN TS sanc
. LEvEL ) FRA AS THE
PAR TS ) R s ot Lrutn
LETN foderss PIsPAY CEL,
OYRARIC LMK fn.n; b2
S TATIC LINK : (EL ©
SIZATVIIIIT 2L : FRan€
: (0IRS cryy
A<USS) o)

STACK FLamE A& Procrduge caLl

2. There is no need for restrictions on the ordering of declarations, since forward
references can be resolved in a later pass. . ’

The presence of separate passes adds modularity to the compiler, in that each
pass is concerned with asmall part of compilation rather than every part (syntax
analysis, semantic analysis, code generation, optimization, €tc.) at once.

If code generation is handled in a separate pass, then only this pass need be
rewritten in order to transport the compiler to another machine.

Optimization is facilitated because the compiler can aways know, through
information obtained from an earlier pass, which subexpressions will be needed
later, how many registers will be needed |ater, ete.

20

e



Also, the debugging capabilities in modern Lisp languages make it very easy to
check the partially-complete program, tO change the sign in front of “par" and
try it again, etc., compared to compiled languages (and interpretive ones without
a “break package’).

(d) Modelling the user seems appropriate. We can imagine creating and using
a large knowledge base of models for various types of players (neophyte, mathe-
matician, etc.), and trying to quickly ascertain which “stereotype” our current
player falls into. Each class would have its own special weaknesses which could
be taken advantage of. In addition, a special model could be accreted for each
individual who played the system, and it could thereby know and exploit his own
weaknesses (e.g., laying a trap which a perfect opponent would ignore).

(e) The results of some of the searches may be stored in a place where they
can be accessed when later called for again, so as to avoid Fe-computing them. As a
simple example, consider the situations where after 4 moves, there were 18 distinct
ways to reach the identical state of the piles. It would be a waste to compute n”
where n! will do. Also, there are isomorphs that arise due to the fact that what
matters is merely the SET of pile heights; thus (1204004559 11) is the same
as(1200005594 11). We can imagine storing the results under the SORTED
list of pile heights, inthiscase (00001244559 11). After solving this once,
the second time we' d have the program check for such an entry, it would find and
return it immediately, without recomputing it.

21



Almost the same method is used in both cases. references to yet undefined
symbols are kept in alinked list. One usually uses the address fields of the jJump
instructions to store the link to the previous forward jump to the same address.
When the symbol becomes defined, this list is traced and every member of it is
corrected to jump to the newly found address. When compilation isin-core, the
compiler traces the list. When relocatable code is produced, the linked list ends
up on the object file (since the links arc in the address fields of the instructions
being generated) followed by a “symbol define” loader command at the proper
place; upon encountering this command, the loader defines the symbol and traces
the linked list, correcting the instructions it previously loaded.

3. Below is one set of choices. There are many possibilities, grading will be
based on the simplicity and consistency of your answer. If your answer does not
alow static type determination, it will be penalized, for Pascal is strongly typed.
The following solution isthat used in Algol 60, modified to alow static type
determination.

a integer, b integer: result type isinteger;
b> 0:ass0 =1 ass(n + 1) = as(assn)
It is simpler to make even 0ss0 = 1 rather than ERROR.

b < 0: a = 0: ERROR;
a =1,—1: ass(—D)
le|=2:0
(since these possibilities are useless, a better solution is
smply ERROR for al b < 0).

a real, b integer: result type is red;
b> 0: Exactly as in previous case
b<<0:a=0: ERROR, a5 0: assb =1/(ass(—b))

a real, b real: result type is redl;
a > 0: assb = ezp(bsin(a))
a=0:b>0:assb=0.0
b < 0: a#+b = ERROR
a < 0: assb = ERROR (simpler to cal it ERROR whenever a < 0)

The weight of evidence is against the inclusion of exponentiation. It is rarely
used, even in numerical analysis programs. Its rules are complex and hard to
remember, especially because of the many differing choices which can be made.
It adds other possible confusion to users of the language, e.g. what is the priority
of s+, and does it associate to the left or to the right? Pascal is such a smple
language that the added complexity of this operator would be very noticeable.

22



A contrary answer may receive full credit if it gave an application where
this operator is essential, and if the exponcntiation rules it presented are smple
enough. Advocacy of restricted exponentiation, such as integer powers only, may
also receive credit.” However, merely pointing out that exponentiation is easy to
implement is not sufficient justification. Simplicity of the language is more impor-
tant than ease of implementation; general exponentation is too complex from the
user’s standpoint. .

4. The following program solves the problem
procedure add1(a); g +a + 1;

procedure foo(a, b);
z+1;
if @ = 1 then comment name or reference; _
if b == 2 then print(“name”) else print{“reference”)
else comment Value or value - result;
add1 (z);
if £ = 2 then print( “value - result”) else print( “value");
z+0;
foo(z, z + 1);

5. The Banker’s Algorithm was designed by E.W. Dijkstra for deadlock-free
resource management in operating systems. Each process must declare in advance
how many units of each resource it may need in order to run; while running each
process requests requests and releases units of those resources, staying within its
declared limits. If a process makes a request which cannot safely be granted without
allowing the possibility of deadlock, then that process can wait; eventudly its
request will be granted. Each processis required to eventually return al of every
resource it has borrowed, assuming its requests are granted in afinite time. The
algorithm gets its name from the idea of making loans to processes, which are
later repaid.

8. The program and correctness proof, using semaphores, is takea from Brinch-
Hansen, Operating Systems Principles, page 95, changing every “1" to a“2". The
following program works for process 4, given aglobal semaphore mutez, initialy
2 (the only difference from the critical region case, where the initia valueis 1):

repeat
wait(mutex);
serious-region-i;
signal (mutex);
non-serious-region-i
forever

23



7. Here is a possible answer. Exact adherence to Simula conventions is not re-
quired.
class stack(n); integer n;
begin
integer stackptr;
integer array stackarr{l:n);
procedure push(v); integer v;
begin
stackptr ;= stackptr<-1;
stackarr[stackptr] := v
end push;
procedure pop(v); integer v;
begin
V ;== stackarr[stackptr);
stackptr := stackptr- 1
end pop;
boolean procedure empty;
begin
empty = stackptr =0
end empty;
comment initialize stack to be empty;
stackptr =0
end stack; R

Declarations of stacks:

ref(stack) ab,c

ref(stack) array sa[1:20]

Creation and initialization of stack instances:

a:- new stack(5)
b :- new stack(isj)
for i :==1 step 1 until 20 do sa[i] :- new stack(i)

Stack operations:

a.push(23)

b.pop(k)
if sa[i].empty then sali].push(i) else sa[i].pop(j)

24



Hardware

1. (a) Thisisjust a binary up-counter, state table:

HOI—‘OQ_)

I—‘HOOU
o0
oo~

o
o

R O RO
P oo
e

o oo

R O Fr O
PP OO
o O O o
)

— O = O
— = O O
— =
e B N =

(b) You should have been able to get ZERO gates, because this is the binary
ripple counter.

J a| T of RCE T 9
4 —> A > B >C| >D
- |k ® ¥ 8§ K 1 ks

'

o J, K iwpits o L)’

25



(c) Using K-mapping leads to a mess with this problem; you should know how
to make D flip-flops act like T flip-flops as in the solution below:

- Q b 0 O D . ¢ ;
ckph || 4pB o> ABbD |

(d) Possible answers. Likelihood of glitching-is reduced because all flip-flops
change state at nearly the same instance; they keep the circuit conceptually simple
because only a single clock is used; the counter does not go through “intermediate
states’ when counting, because al transitions are simultaneous; the time required
to change states is that of a single flip-flop, no matter how many the counter
contains.

(e) Possible answers: On an IC, the circuit requiring fewer gates often requires
more chip area than another circuit (the rule for ICs is. minimize wires, not gates).
The larger circuit may be faster, since minimizing gates often requires that gates be
cascaded, increasing the delay time. The larger circuit may involve prepackaged
MSI or LSI chips, and thereby be cheaper and simpler than smaller circuits not
taking advantage of prepackaged devices. The larger circuit may be simpler for
humans to understand, debug, etc. (many “structured programming” ideas apply
to hardware too).

26



2. RTL Resistor Transistor Logic - obsolete, slow, high power consumption; used

in early ICs

MOS Metal Oxide Semiconductor - slow, low power, high/very high density,
used for large memories, microprocessors, other LS|

ECL Emitter Coupled Logic - very fast, costly, high power, difficult to design
with, used for cache memories, high performance CPUs

TTL Transistor Transistor Logic - fast, fairly high power, cheap, easy to
design with, commonly used in many applications

Schottky A faster, more expensive TTL

Josephson Junction Experimental ultra-fast logic (picosecond switching speeds)
based on superconductivity

IIL Integrated Injection Logic - fast, high density, fairly high power, rarely.
used; in some ways a refinement of RTL

3. (8) What is a stack machine? A machine, such as the B8700, in which a stack is
maintained by the hardware. Most instructions take their operands from the stack,
and hence have no address fields. There are no general registers; all computation
is done on the stack.

(a) What is a register machine? A machine, such as the PDP-10, IBM 360, ad
infinitum, which provides an array of registers for general use. Instructions can
address either registers, memory, or both. Stack manipulation instructions may
be available, but their use is optional.

(c) What are each’s advantages over the other’? Stack machines, by eliminat-
ing registers, aso eliminate the thorny problem of register alocation; also, there
are no registers to save and restore around procedure calls. Code generation for
expressions is greatly eased, for stack operations always put intermediate results
exactly where needed for continued expression evauation. By eliminating register
operands, the number of addressing modes is reduced, smplifying the instruction
set. Since most instructions lack address fields, code can be very compact.

Register machines are usually faster than stack machines, for they lack the
overhead required to maintain the stack, and they are able to use high speed logic
for the registers (whereas the stack must be kept in sower main memory). Clever
programmers using registers to storeoften-accessed variables can produce programs
which run much faster than possible on stack machines. Register machines are more
appropriate than stack machine6 for the commonly used languages FORTRAN,

BASIC, COBOL.

The main idea is that the stack is kept in main memory, using a special
register for the stack pointer; other designs are possible.

27



Dia Lo 3¢d):
Jram e 3 Stack orsani setion

in RA
N
ALU , S RAM - STACK Liam 2 /
. STACK
oCERmsT STACK Cowtg, —
Enronce STKR
{0 .
Eve. ACTNE
' [Erack eoron] ‘ . . L st
 {sTAck poin
STACK LIAIT
. CoNTRO],
REGISTER| wwme s ez
- Y
Y
S oA mam '

E——D coarm Y13

4. M. Wilkes -Invented subroutine libraries; wrote first programming text; built

EDSAC
T. Kilburn - Invented index registers, virtual memory
S. Gray - Designer of the world's fastest computers: CDC 7600, Cray-1,

Cray-2
G. Amdahl - Mgor figure in development of IBM 360; later started own

company, marketing a fast and relatively cheap copy of the 370 (called the 470 —

what else?)
G. E€ll - Designed PDP-11; co-authored Computer Structures. Readings and

Examples.

28



Algorithms and Data Structures

1. (a) { «~ root;
while ¢ 75 A do begin
If teft() = A then begin
VISIt(t); t | rignt(t)
end
else begin
p « lefi(t);
comment [) is a temporary variable used only in this block;
while right(p)52 Aand right(p) % ¢
d o p = right(p):
if right(p) ==Athenbegin
comment modify tree link to "remember our place”;
right(p) « t; t « lefi(t)
end
else begin
visit(t);
comment fix up tre¢ link;
right(p) + A j te=| right(t)
end
end 4

end:

(b) Simply move the visit(t) statement in the last else clause up to the beginning
of the corresponding thea clause.

2. (a) Use a doubly-linked list with the numbers in sorted order, and keep pointers
to the firgt, last, and current median elements of the list. We also need a bit to
remember if the number of elementsin the list is odd or even in order to update
the median pointer correctly. All operations can then be done in constant time.

(b) Use a binary search tree. All operations take O(log n) time, on the average.
To ensure O(log n) worst-case time, you must use one of the varieties of balanced
trees, such as AVL treesor 2-3 trees.

(c) Use an array of size 50, with the ith entry pointing to a sorted list of all
jars with capacities € [i, ¢+ + 1). Insert takes about n/100 steps, on the average,
while find-delete takes constant time. For very large n (say n > 2000), it would
be better to use some type of priority queue for each of the sublists. This reduces-
the time to O(log n).

29



It should be noted that we can also use the method of part (c) for part (b),
and vice-versa.

(d) Use an array of size 50, with the ith entry pointing to the list of all jars
with capacity . All operations take O(l) time.

3. (8) The minimum number of registers required to compute expression ¢ is f(e),

where
f(variable) =0

_ [max(fle), f (), if fler) 7 £ (e2)s
fleve )= {f(cx) 1, i f(s,)1 = f (e2).

For example, f (((aob)oc)o(do((eof)og)))=2.

The order in which the operations should be performed to achieve this min-
imum number is recursively defined as follows. For each expression e; o eg, if
fe1) = f(e2), then compute the left operand ¢; first. Otherwise compute the right
operand first.

(b) The shortest expression with f(e) =k 1 has the form ¢; o &3, where ¢; and
ez are the shortest with f(e;) = f{e2) = k. Thus by induction on ¥ the minimum
number of operators, g(k), satisfies g(0) = I, g(k) = 1+ 2g(k — 1); the solution is
g(k) = 2k+1 — 1

30



NUMERICAL ANALYSI S

(1a,b)

(1c)

(1d,e)

(1£,8)

(2a)

Good-good,bad-good.  |f the data x, are spaced a distance h apart,
then a perturbation of one val ue f(xi) by a quantity € will affect
any estimate of the integral of f or the derivative of f at x by
O(en) or 0(s/h), respectively. These results are inherent in the
two problenms; Sinpson's rule and finite differencesdo not introduce
avoi dable errors.

Bad-good, for the problem as a whole. For isolating just the roots
0 and 2, the answer would be good-good. For the three multiplicities
of the root x=1, however, the problemis ill-conditioned: a change
in the coefficients of magnitude 0(E) may correspond to a change in
these three roots of nagnitude 0(&"-" ).

Good-bad,good-good. The inverse of the matrix A = E‘_ ;‘] is 'i _l] + o(e).

This does not change too nuch when A is changed slightly, so the
problem is well-conditioned. Gaussian elimination with partial pivot-
ing solves it stably;, Gaussian elimnation without partial pivoting,
however, is unstable because it involves a multiplication by 1/,
which anplifies rounding errors.

Bad- good, bad-good.  This matrix is nearly singular, so the problem

is ill-conditioned. For positive definite matrices, Gaussian elim
ination is a stable algorithm even with no pivoting.

Let us wite

« f(x) = oFf(x)

B f(x+h) = B[f(x) + hf'(x) + hef“(x)/e + . ..]

¥ £(x+2h) = Y[£(x) + 2hf'(x) + 2B (x) + . ..]
W wish to find values for «, 8 and ¥ so that the sumof these terns
equal s O (x) + Lf'(x) + of"(x) + Cth), where k is as high as
possible. Since we have three parameters, we can in effect specify
the f(x), £'(x), and f"(x) coefficients in the sum These shoul d

be 0, 1, and 0. Thus we must solve
r

0 1 1 [« 0
0 h 2n |8 = .
0 n2/2 2n°| | ¥ 0

31



. (2p)

(3a)

(3b)

The solution to this systemturns out to be («,8,Y) = %: (.% , 2, - % ).
NOTE: An alternative approach would be to derive a formula that is exact

for the nonomals f(x) =1, x, and x2.

A satisfactory, but not conpletely rigorous, approach would be to apply
the fornula derived in part (a) to f(x) = o. Instead, let us observe

that the £'*(x) termin part (a) will domnate the error. Applying a
mean val ue theorem we maywite

f(x+h) = f(x) + nf'(x) + haf"(x)/e + e (§,)/6

f(x+2h) = f(x) + 2nf' (x) + on2 (x) + thf"?(éa)/B,
wher e Elc['x,x-r-h] and §,<[x,x+2h]. We now conpute

«£(x) + Bf(x+h) + ¥ f(x+2h)

= £(x) + BEm(g)/3-200 0 (§,)/3.
Assuning that "' (§) is continuous on [x,x+2h], the latter two terms may
be averaged, yielding

£1(x) - B (£)

for sone €3e[x,x+2h].' So we have atl ast

‘yl BRI %hzse[xxfiile] o @)l .

sin" (X) I <1 for all x, sO we may require(1l/3) n2 < 0. 00005.
|

That is, h<g V0.000].S = 0.012

01
104 » for exanple.

For k = 1,...,n=1, the submatrix formed fromthe first k rows and colums
of A should be nonsingul ar.

32



(&) Even % will probably trigger a divide-by-zero nessage, so the conputation
of Fis ared herring. The question is, in what base(s) b will-E come
out exacty O? The H := 1./2. conputation will be exact provided b is a
miltiple of 2, and X :=2./3. = Hwill be exactprovided b is a multiple
of 3. So a sufficient answer is b = 6 or any nultiple thereof. (Addi- .
tional possibilities exist, in which the rounding error would cancel in
the conputation of E.)

(5a) “x“' - i.e., mi'x lxil .

(5b) For p<i, “ [lp fails to satisfy the triangle inequality, and hence is
not a norm

(5¢) For any p > 1 the quantity % |xi|P may be very large or very snall

conpared to Ixil or “x[[p . Adirect inplementation of the definition
risks unnecessary overflows and underfl ows.

33



computer Sci ence Department - Conprehensive Exam Programm ng Project
Wnter 1979 -- Thursday, January %4, 1:00p.m. to Tuesday, January 9, noon.

The object of this problemis to prepare an interpreter for the "linear
equation |anguage" described below, This language defines the value of
variables inplicitly by means of linear equations, instead of explicitly by

means of assignment statenents. Your inplementation should be on-line, i.e.,
interactive with the user.

Not e. Your interpreter should be witten in well-structured- esyt
understand code. It may be witten in any "ALGOL-like" l|anguage (including
ALGOL w, SAIL, PASCAL) or in your favorite dialect of LISP. Qher |anguages
may be used but only by special arrangement with the commttee.

Here iS the syntax for the laaguage (which incidentally is c¢allad LILaD,
for "Linear Equation Language Allow ng Nonexplicit Definitions"):

(variable) - alB]. . . |zlalb]. . . |z (52 variables in all)
(digit) « o|r|2|3|4|5]6]|7|8]9

(digit string) « (digit)|(digit string)(digit)

(constant) « (digit string)|(digit string).(digit string)

(primary) « (variable)\{constant)|({expression))

(term) « (primary)|(term){primary) |(term)/(primary)

(expression) « (term)|+({term)|-(term)|(expression)+(term) |(expression)-(term)
(equation) « (expression) = (expression)|(equation) = (expression)

(print statenent) ~ (expression):

(statenent) « (equation){cr)|(print statement){cr)

Exanples :
(variable) X
(digit} 1
(digit string) 14
(constant) 3.14
(primary ) X
(term) xy/2
(expression) xy/z - 3.1'1
(equation) xy/z - 3.14 = X = w
(print statenent) X:
(statenent) x: (cr)

Here (cr) stands for the "carriage return" character, All blank spaces
and other characters not appearing in the above syntax are ignored. The
syntax is anbiguous with respect to constants: For exzemple, the (term)
3.1k can be regarded either as a (constant} or as (term){primary)
where the (tem) is3.1 and the (primary) is L . This ambiguity
is resolved by the further rule that a (constant) may not be preceded
or followed by a (digit) .

34



Expressions have their normal-meaning in mathenatics; for exanple,
{term){primery) stands for the value of the (term times the value of
the (primary) .

Note that each (statenent) ends with a (cr) . The user of LELAND,
when prompted, types a (statenent) ; the interpreter processes it and
pronpts the user for another, repeating this cycle until the user gets tired
and stops the job. If an erroneous statement is typed, LELAND gives a
hel pful description of the error and stops further evaluation of that
statenent; the user will be pronpted to try again as if the of fending
statenment had not occurred. (Rowever, in an equation statement cf the
forma ==y where "a=p8"1is OK but y is erroneous, tune "<« =8 "
equation will be accepted by LELAND.) :

Initially all variables have undefined val ues, but each new equation
"defines one of the variables (perhaps in terns of others). For example,
after the three statenents

Xty = 2
X-y = Z
X:

LELAND Wi || print " 1+ .5z " indicating that the value of x nust be one
more than half the value of z , based on the equations given so far. If
the next equation is " 2x =3z ", the interpreter will know that x = 1.5,
y: .5 3 Z=l .

In order to do this in a reasonably sinple way, LELAND allows multiplication
only when at |east one of the two operands being multiplied has a known val ue
based on previous equations; simlarly, division is allowed only when the
value of the divisor is known and non-zero. Thus, LELAKD would conplain
if the three statenents above were followed by the equation " xy = z "; but
" xy =2 "wuld be legal if either x or y had a known val ue.

A1 this is acconplished as follows: |nside LELAND, each variable is
considered to be either "independent" or "dependent". Initially all variables
are independent, but each valid equation makes another variable dependent.
Once a variable becomes dependent, it never becones independent again.

A dependent variable is represented internally as a |inear conbination of
i ndependent variables; in other words,

D = % + clIl Foee. + cka

where the c's are floating-point constants, the I's are variables that are

currently independent, and D is the dependent variable being represented.
If x=0, variable Dis said to be "known".

The stated restrictions on nultiplication and division ensure that 1Zram
can reduce any new equation o =3 to the form

o " d Kkt =0
where the c¢'s are floating-point constants with cj £0 for j £ 0, and
vhere the |'s are variables that are currently independent. If k=, the

35



equation is either redundant (cO = 0) or inconsistent (cO # 0) , and the

user is given an appropriate nessage. |f k>O, a coefficient C., with
| argest absolute value is selected and variable I changes from i ndependent
to dependent. Its current value will be

i = -co/cJ. + Zl% i (-ci/cj)]:i s

and the values of any other dependent variables that currently involve Ij
will be sinplified in accordance with this new val ue.

For example, after the equation " x+ty = 2 " above, LEIAND Will first
obtain
-2+x+y =0

and then either x or y will becone dependent. (LELAND is free to decide

which.) Say y becones dependent, so that y = 2-x ; then the second equation
X-y =z will reduce to

-2+2x-z = 0
hence x will becone dependent and equal to 1+ .5z . On the other hand,

i f tELAND had decided to make X dependent instead of y after the first
equation, the second equation woul d have reduced to

2-2y-2 =0

meking y dependent and equal to 1-.5z : This new dependency would also
be reflected in the current value of X , which would change from 2-y to
1+ .5z .

Wien 1ELAND forns |inear combinations of coefficients, the floating-ppint
quantity x+y is always replaced by zero whenever |x+y | < 0.00001 mex (|x|, jr|) -
A simlar thing heppens in floating-point subtraction. This gets around
probl ens caused by rounding errors, (For exemple, 3 times 1/3 ion't
exactly 1 in floating-point arithmetic, So LELAND m ght not otherw se
realize that x is known after the equations

X = 3z+y+1
= -Y/3
have appeared.)

Your job is to inplenent such a system Haad in well-docunented code,
together with exemples of test runs that demonstrate its correct working in
well-chcaen, nontrivial cases. Ee sure to devise a good wzy to indicate
syntactic and semantic errors to the user. Your program should be reasonably
efficient inits use of time and space.

36



SPRI NG 78/79 COVPREHENSI VE EXAM NATI ON
Algorithms and Data Structures

1. Searching (24 points)
Mr. J. H. Quick (a student) needs to search an ordered table

Alll < A2 <+ < Aln]

to find the largest j such that A[y] < z; and if z < A[l] he wants j to be zero.
But he doesn’'t wish to use binary search, he prefers to use the following scheme
(depending on an integer parameter h):

ji=0
while j +h <nand A[j+h] <z doji=7+h;
while j+1<nandAj+1|<zdoji=7 41

Fortunately he is using a compiler that will not compare A[j + A} with z when
the test *j -+ h < n" fails; so this program will work, for al positive integers A.
He tried it with A = 10, but he wonders if thereis a better value.

(a) Let fi(h, 7, n), falhy 7, 1), fa(hy 7, n), falhy 7, n), Kk 7, ), and fi(h, J, n) be the
number of times Quick’s program evauates “j + h < n","A[j + h] < z",%j:=
IR Y+ 1< n", "Alj+1] < 2", and *j i= j + 1", respectively, as a function
of the given positive integers A and n and the final value of j. For example, if
h<nandi=O0wehave fi =fp=fi=f=1and = fp= 0. Express these
six functions in terms of the quantities |5/}, {n/h],j mod h, and nmod h.

(b) Given n and h, determine the worst case of the algorithm, assuming that the
total running time is

8
Ihyn) =1+ z 5l J, n).
1=l
In other words, determine the value of j that maximizes f(k, j, n).

(c) When n = 80, what is the best choice of h, in the sense that the worst case
running time iS minimum?

(d) For large n explain how to choose an optimum h, and give an approximate
formula for the worst-case running time as a function of n when the best h has
been selected.

37



2. Height and depth in binary trees (20 points)

An extended binary tree is a binary tree in which all nodes are either “internal”
(branch nodes), having two sons, or “externa” (leaf nodes), having no sons. At each
node = of an extended binary tree let h(s) be the length of the longest downward
path from x to a leaf, and let d(x) be the length of the shortest downward path
from z to a leal. Thus, if z is a leaf we have h(x) = d(x) = O, whileif z is a branch
node having sons {(z) and t(x) we have

h(z) = 14 max(h(i(z)), h(r(z))),
d(x) = 14 min(d(I(x)), d(r(z))).

(a) Draw an extended binary tree having d(root) = 4, where the total number
of nodes is as small as possible.

(b) A height-balanced tree satisifies |a((z)) — h(r(z))| < 1 for al branch nodes
z. Prove that h(x) < 2d(x) for al nodes x in a height-balanced tree.

(¢) Draw an extended binary tree having h(root) = 7 and with h(x) < 2d(z) for
all nodes x. Your tree should. have the smallest possible total number of nodes
subject to these conditions, (It need not be height-balanced.)

(d) Prove or disprove: In an extended binary tree having h(x) < 2d(z) for all
nodes X, the height of the root is O(log ), where n is the total number of nodes.

3. Algorithm design (18 poaints)

Suppose we are given a box of a specified capacity and a collection of objects of
various sizes, and we wish to pack the box as fully as possible. More formally, if the
objects have sizes {z;, z3,. . . , X,}, then we want to find asubset SC {1,2,.. ., n}
such that Zies z; isas large as possible, but not greater than the capacity cof
the box.

Assuming that the z; are positive integers, design an algorithm to find an
optimal packing. Write your algorithm as a Pidgin-Algol program or in Knuthian
style. Say why you think your algorithm is good, giving estimates of its running
time and memory requirements. To facilitate practical considerations, assume that
¢ < 1000 and » < 100.

Note: Your program must output not only the size of an optimal packing,
but also a subset S of the objects such that S achieves this maximum.

38



Artificia Intelligence

1. Howard Cosell (60 points)

While the social issues raised by automation are important and difficult, few
could dispute the goal of creating an Al program to replace Howard Cosell. This
guestion deals with the design of such a system: a computer program capable
of following the action of a professional sports event, analyzing it, reporting its
analyses, and leaving no silent moments.

(a) (10 points] Basedon current AX work, what aspects of a sport would you
expect to make this problem more/less difficult? Cite specific aspects of specific AI
programs where appropriate in your discussion. Based on this, select an appropriate
sport that you will consider in the remainder of the problem. (If you truly are
unfamiliar with all professional sports, you may choose the task of commentator
for a live chess match.)

(b) (20 points] What kinds of information could be used by such a program, to
enable or merely to facilitate its operation? For each type, indicate an appropriate
representation (and/or data structure), a rough estimate of the amount of infor-
mation desirable, the difficulty of obtaining it, and its value to the program.

(c) [15 points] Sketch the flow of control through the program, Note how each
type of knowledge mentioned in part (b)above is accessed and used. (If you sup
plied aternatives for representing some type of information in (b), then choose
one of them here.)

(d) {10 points] What are the pros and cons of taking such a knowledge-based
approach? Consider, for example, changing the program to another sport, time
and space costs, debugging the system initially, etc.

(e) [5 points] Assume that you were going to spend about two years working on
this project (e.g. as athesis). Which of the information sources you mentioned in
part (b) (and control structures you sketched in part (c)) would you include, and
which would you exclude? Explain your choices.

39



Systems

Problem 1. (5 points)

Give some comparative advantages and disadvantages of the following parsing
methods:

precedence
LL

LR

LALR

Problem 2. (5 points)

Given a directed acyclic graph representation of a basic block. program frag-
ment, what limitations must be imposed on the order of code generation?

Problem 3. (5 points)

What is aliasing (when this term is applied to programming languages)? Why
is it considered bad? What additional rules could you add to a language like Pascal
to reduce aliasing?

Problem 4. (10 points)

Dcfine a debugging compiler as one that alows the programmer to change
his program during testing without incurring the trouble or expense of complete
recompilation. Discuss a possible implementation of such a compiler. What types
of changes could you support? What information will you need at run time? How
does your scheme interact with the code optimization parts of the compiler?

Problem 5. (5 points)

Define binding time. Give an example of early and late binding of some
attribute. What are advantages and disadvantages of early and late binding?

40



Problem 8. (10 points)

Comment on the following proposal for a new program verification system:

“Tt often happens that one version of an algorithm is easier to prove correct
than another version. Instead of devoting effort to verifying the difficult program,
we should verify the easier program and write a program to show that the two
programs are, in actuality, functionally equivaent. The project is to write a genera
purpose program to detect functional equivaence of any two given programs.”

Problem 7. (5 points)

Pascal binds the else clause in if-then-el se statements to the most recent then
clause. Write an unambiguous, context-free grammar that enforces this binding
in the state generating rules,

For simplicity, assume that you are dealing only with assignment statement6
and conditional statements. Thus, the problem is to convert the ambiguous BNF
specification

<statement>> :i= <assignment>| if <expression> then <statement> |
if <expression> then <statement> else <statement>

into an unambiguous grammar.

Problem 8. (5 points)

How is synchronization of concurrent processes normally done in a message
oriented operating system?

Problem 9. (10 points)

Activation record retention is a general programming language scheme that
can be used to solve the funarg problem in Lisp and the call by name problem
in Algol. Describe briefly how activation record retention can be used as a major
element in the implementation of an operating system that is based on monitors

-and is procedure oriented.

41



Numerical Analyss

1. Nonlinear equations (15 points)

(a) Suppose we are given the equation

ee—e °

z—sinhz43=0, snhx = 5

and propose t0 solve it by a method of successive substitution in the following
manner:
£ ;= some initial guess

¢+ =sinh(z®)— 3, £=0,12,....

Show that this procedure cannot be expected to converge to a solution of the given
eguation.

(b) How might we modify the procedure so as to achieve rapid convergence to a
correct solution, still using a form of successive substitution?

2. Well-conditioned problems; stable algorithms (25 points)

Given as data the coordinates (u;, ug) and (v, v) of two vectors u and v in
the plane, our object is to devise a stable agorithm for computing the angle ¢
between u and v.

(@ The angle ¢ can be defined by the formula

U1y Fugty o uTy
(W} + w2 (o} + od)i/2 " lully [lvll

Cosp =

from which ¢ might be computed by taking the inverse cosine. We say in generd
that a numerical problem is well-conditioned if a small change in the data defining
the problem results in only a small change in the solution. Show by means of this
formula that the quantity ¢ is well-conditioned as a function of the data uy, uz,
v, ». (Hint: Take the partial derivative of cos @ with respect to u;, and then from
this compute the partial of ¢ with respect to u;. By symmetry, wg, v1, and v are
essentially the same.)

42



(b) Wesay in general that a numerical algorithm is stable if it does not introduce
large errors in the computed solutions to problems which are well-conditioned.
Show that computing ¢ by means of the above formula and the inverse cosine is
nof numerically stable.

(c) An dternative algorithm is the following. First normalize the vectors,

u \%

b= ——

YRR VT R

then compute a :== || — d||z, B:=||4 + D]z . Now, compute

__ |t arctan(a/B), a<f
= —=2 arctan(f/a), a>p.

Why is this algorithm better than the one proposed in (b)?

3. Linear least squares and band matrices (20 points)

The vector x that minimizes |jb—Az]|z satisfies the normal equations ATAz =
ATb. Suppose that A is m X n, where m >n, and has the property that for
1=1,2,...,m we have

aij#0andax#0 = |j—kl<w,
for some positive integer w. The matrix A is then said to be a rectangular band
matrix with band width w. (For this concept to be useful we should have w < n.)

(a) Show that ATAisa symmetric band matrix and determine its band width.

(b) Show that ATA is positive semidefinite, and positive definite if A is nonsin-
gular. Assuming ATA is positive definite, what significance will this fact have when
we need to compute the LLT(= LU) decompositon of ATA?

(¢) If m>> n and you are given A arow at atime, how would you form ATA?

(d) Estimate the total number of multiplications needed to form ATA and to
compute the lower triangular matrix L in the factorization ATA = LLT. It suffices
to give the leading term.

43



Theory of Computation

1. Decidability (5 points)

Prove that in languages like Algol and Pascal, it is undecidable whether or
not a variable has been assigned a value before it is used,

2. Grammaré (15 points)

In each of the following three problems, try to give a grammar at the lowest
level in Chomsky's hierarchy (regular, context-free, context-sensitive, recursive).
You necd not prove that your grammar is at the lowest possible level.

(a) [4 points] Suppose we want to describe a path consisting of straight segments
of length 1 inch, each of which is running in a northerly, southerly, easterly, or
westerly direction. Consider the alphabet A = {r,{}, where r means turn right,
| means turn left, followed by a move of 1inch in the new direction. A string
over A specifies a sequence of right and left turns and corresponding moves. Give
a grammar generating all those strings over A that describe paths ending in the
same direction as they start; e.g. [ 7 and | [l ] are elements of this language.

(b) [4 points] Consider the alphabet W = {n, s, &, w}, where the elements denote
a move of 1 inch ina northerly, southerly, easterly, or westerly direction. Give a
grammar over W that decribcs the set of al moves ending in the starting point.
For example, the path

can be described by the stringsne s w, en w s, and several othersfor other starting
points. Also note that ns is a valid path ending in the starting point.

(¢) [7 points] Use t he result of part (b) and specify a grammar for the language
of all closed paths in terms of A = {r,!}, with the meaning of r and [ as in part
@. Each pathshould end in its starting direction, Of course, not all paths in
the language in part (b) have a counterpart in terms of r and {; for example, ns
doesn’t. The path need not be simple; for example, the stringrrrrrrrrisone
legitimate way to specify a square path.

44



3. Primitive Recursion (10 points)

A function over the non-negative integers is primitive recursive if it can be
defined from O (zero), the successor function -1, and the projection functions
Un(zy,. .., X,) =z, by function composition and the following recursion schema:

f(ol Yl y“'pyn)::g(yh“.;yn)
f(x+lyyh...ryn)=h(xyyh'.-;ymf(xyyls--.)yn))

where g and h are primitive recursive. For example, the addition function plus(z, y)
Is primitive recursive since it can be defined as follows:

plus(0, y) =U i(y), plus(z + 1,y)=plus(z, y) + 1
The Ackerman function
a(o, y) =y 1l

a(z +1,0)=a(z, 1)
a(z+1, v +1) =a(s,a(z +1, y))

is known to be not primitive recursive. Prove, however, that for any fixed n the
function an(y) = a(n, y) is primitive recursive.

4. NP-Completeness (10 points)

Prove that the following problem is NP-hard:

Given a context-free grammar over the terminal alphabet {zi,.. ., zn}, does
the language defined by the grammar include a string that contains each letter z;
exactly once?

Hint: Use the fact that the problem of determining the existence of directed
Hamiltonian circuits in a graph is NP-complete.

45



5. Demand paging (20 points)

Consider a program on a virtual machine capable of storing b “pages’ of a
fixed size in its high-speed memory, While the program is running it references a
sequence of pages given by the “page trace”

P1DP2+++Pn.

Suppose S; is the set of b pages in high-speed memory just after p; is referenced; we
need p; € S;. If p; & S;—1, @“ page fault” occurs, some page ¢; in Sj—; is “pulled”
and we have S; = S;—; — {¢;} + {p;}, exchanging p; for g;. It is convenient to
assume that the program starts out with a set S of b completely null pages, and
that ¢; = p,; when there is no page fault.

It is of interest to consider the best possible sequence of page pulls (the sequence
that minimizes the total number of page faults) for a given page trace p1p2.. . Pn,
even though it may be impossible actually to achieve this optimum sequence in
practice because it may require knowing the future page requests pj4-i1... pn @
the time ¢; must be chosen.

(@ [15 points] Thc purpose of this problem is to give a constructive proof that an
optimum strategy is obtained by the following rule: “When p; & S;—1, et g; be an
element of S;—; that does not appear in {p;+1,. . ,,pn}, iIf possible. Otherwise (i.e.,
if all elements of S;—1 occur again), let g; be the element whose first occurrence
in pj41... pn isafter al the other pages of S;—1 have occurred.”

The proof can be obtained by repeatedly applying the following idea: “Given
apage trace py p2. . . p, and acorresponding sequence of page pulls¢; ¢ .. 7. such
that, for some j with p; 5« g;, there is an element ¢ € S;—; and an index & > 7 such
that ¢ does not appear in pj+i.. . pk but ¢; = pk, then there is another sequence of
pagepullsq) q;. . . ¢, such that ¢}...¢j_; =q...¢j—1and ¢, =qand ¢| ¢}...q,
has no more page faults than q1 q2.. . gn."

The required sequence ¢ ¢4 . . . ¢, can be constructed in the following way:
Let m bc as large as possible such that ¢ does not appear in gj+1...¢gm Or in
Pi+1.+Pm. Let rj=g¢;, and for j <i<m let

‘T"'=Ps‘; n=4q, if py=r;_y;
¢;=¢, r=ri—1, otherwise.

Findly if m<nletq, =rm andletg=gform+1<i<n

Prove that S, = S; — {¢} + {r;} for j <i< m and S,=_S; for al ¢:>m.
And prove that the scquence of page pulls ¢} ¢ . .. ¢, leads to no more page faults
thangq ¢ . .. g, doss.

46



(b) [5 points] 0 ne of the page pulling algorithms often used in practice is the so-
called “lcast recently used” rule: If p; & S;—1, the page ¢; that is pulled is a null
page if any null pages are present, otherwise g; is the page whose last occurrence
in py ... p;—; comes before occurrences of all the other pages in S;—;.

Construct a page trace scheme for which this rule leads to about b times as
many page faults as the optimum strategy does.

47



Hardware

Problem 1. (30 points)
Using AND, OR, NOT, and XOR gates,

(@) Design a combinationa circuit V such that 2= 1 if and only if at least two
inputs are equal to 1.

Write the Karnaugh map for this function, and write a logical expression for V.

(b) Design a synchronous sequentia circuit that will have its output become and
remain equal to 1 only after 3 successive disagreements have occurred between z;
and 2. State what assumptions you make about the clocks you use in your design.

Problem 2. (15 points)

(@) State the conditions that determine the occurrence of an overflow when adding
two 2's complement numbers.

(b) Givean example of such an addition using 8-bit numbers.

Problem 3. (15 points)

TTL circuits can have three different output configurations. List each of
them, defining their properties and discussing advantages and disadvantages of
each.

48



Solutions to Spring 1970 Comprahonsive Exam

Algorithms and Data Séructures

1. (a) Clearly fs = |j/h] and fz = jy modh, since ; starts at zero. By Kirchhoff's
law we have fi = f3 4+ 1 and f; = fz + 1. Furthermore we have f; = fj except
that o = f; — 1 when |j/h| = |n/h); similarly f5 = f; except that 5= f; — 1
when j = n.

(b) f =3 4 3|y/h] 4 3(j mod k) + (lj/h] < [n/h]) + (j < n). To maximize
fylet|j/h]=|n/h] —1and j modh = h — 1; except when nmodh =h — 1 let
7 ==n. We can also express thisas j =|(n + 1)/hJh — 1.

(c)h=9= f(h, ], 80)< f(9,80,80) = 51. (Quick was close)

(d) In general the worst case running time is 3|n/h| 4+ 3h — (n mod h £ h- 1).
To minimize g(h) = |n/h] +h, note that when h < +/n we have g(h) < g(h—1),
since n/(h — 1)> n/h 4+ 1; and when h > +/n we have g(h) < g(h + 1), since
n/(h + 1) > n/h — 1. Thus the minimum occurs at |\/n] or [\/n]. The worst
case running time is therefore 81/7 + O( 1).

2. (a) The complete binary tree Cy with 16 leaves. (C; has one node, Cp-1 has
left and right subtree equal to C,.)

(b) If z is a leaf, h(x) = 2d(z) = 0. Otherwise by induction on h(x) we have
h(z) = 1 + max(h(i(z)), h(r(2))) < 2 + min(h{(z)),h(r())) < 2 + min(2d(i(z)),
2d(r(z))) = 2d(z).

(c) T7 where T, is defined recursively as follows: Ty is a single node, T\, has
left subtree T, and right subtree Cj(n—1)/2)-

(d) If the tree has depth d then it must contain Cy, so we have n > 29+1 — 1,
where N is the number of nodes. Thush < 2d < 2(lg(n <+ 1) — 1), SO h is O(log n).
(Note we only needed the fact that h(x) < 2d(z) at the root node.)

3. The algorithm given below is a form of “dynamic programming”.
The idea will be to have one array M0 : ¢] such that M[;] is 0 if no packing
of size j is possible, otherwise M[j] = k means there is at least one packing of

size | that contains the kth object but not objects k 4-1,. . . , n. Furthermore if
M{j] = k then we have 0 3¢ M[j — z] < K, i.e. there is a packing of size j — z
containing only objectsfrom 1,. .., k— 1.

Al. [Initialize.] Set M[j] — O for 1 < < c, and set M[0] « —1 (this is a slight
kludge to indicate that we can achicve the empty packing). Set m « 0.

A2. [Done constructing M?] (At this point the array M has been set up as specified
above, but using only the first m objects.) If m = n, go to step A4.

A3. [Add new object.] Increase m by 1. Then for ¢ = j = z,, (in decreasing order
of j), if M{j]=0and M[j — z,,) 5% 0, set M{j] ~ M. Return to step A2.

kg



A4. [Output the result] Find the largest k in the range 0 < k < ¢ such that
M{k]# 0. Output this k as the size of an optimal packing. Then repeatedly
output M[k] and decrease k by zak}, zero or more times, until k = 0.

The algorithm is “good” because athough the packing problem is NP-complete,
our agorithm solves it using O(nc) time and O(c) storage. (Why have we not
proved that P = NP?)

Artificial Intelligence

1. Satisfactory answers should relate discussion to some specific work in the {fol-
lowing areas:

Vision (shadows, 3d, motion)

Language (understanding, generation, dialogue)

Signal understanding (multiple knowledge sources, changes over time, expec-
tations, bottom-up vs. top-down processing)

I nference/problem solving (search for explanations, blackboard model, syntax
of possible plays, semantics of plausible plays, common sense reasoning, reason-
ing about intentions an d beliefs, inexact reasoning, reasoning with incomplete
information, generalization, analogical reasoning, pattern matching, planning to
provide expectations, focus of attention, distributed problem solving, ill-structured
problems)

(a) Important aspects of the sport:

The number of players, number of rules, complexity of interactions among
players, speed of play, duration of play between pauses, amount of interpretation
of actions the commentator must perform, richness of past history of the sport,
availability of compiled statistics on teams, players, situations — these all make
the problem more or less difficult.

It is important to recognize that commenting involves understanding the ac-
tion and relating it to broader contexts, not just reporting what one sees. Stereo
vision and analysis of motion must be recognized as limiting factors in amost
any sport except snail racing, and a couple of references to vision research would
be appropriate here. Pattern matching is obviously complex. The problem also
requires setting up expectations of future actions, using models of events (and
objects) to aid the interpretation, reasoning by analogy, and generalizing from
past observations.

(b) Information:
(1) Static information. .

rules — it would appear essential to provide the program with complete
knowledge of the rules for legal play of the game. From the commentator’s point
of view, these rules will be accessed in appropriate situations; thus they should

50



bc indexed according to the situations in which they are potentialy relevant;
this suggests that representing them as production rules would be appropriate.
Acquiring this type of knowledge will in most cases be quite straightforward — a
least, until the time comes to actually code the low-level primitives out of which
these are built (e.g. how to test whether the holding was “intentional” or not.)

goals/purposes — The program must be able to relate situations and /or ac-
tions to the player’s goal of winning and subgoals for achieving that. Thus the
program must model the players problem-solving abilities. This can be arbitrarily
sophisticated, or as simple as assuming that they all have a particular weak method
driving their actions (such as means-ends analysis).

models of player’ intentions — Closely tied with the preceding would be
modelling the motivations of the players, in an attempt to relate individual ac-
tions to subgoals. This will of course be almost impossible to obtain (or verify)
dynamically; at best, it can be built up over time for each player, with rules which
medify it under certain circumstances.

strategies — The program must be able to recognize actions as instantiations
of strategies and recognize appropriate and inappropriate uses of a strategy. Meta-
rules have been used to represent strategy rules.

statistical data — complete compilations of past performance of individuals,
teams, team units, leagues.

knowledge of standard shapes and configurations of objects -I.e., the program
must be able to recognize things in the world, common states and arrangements
of players on the field, etc. One might employ a frame-based (schematized) rep
resentation for this knowledge,

model of relative importance of objects, usual behavior, intentions; knowledge
of how to synthesize comments based on highly variable sets of events.

library of one-liners and stories — This is easy to obtain, and will add quite
a bit to the “humanness” of the program's output and to its continuous stream
of reportage.

(2) Dynamic information.

snapshot of a scene with stereo information — just to provide basic infor-
mation to the program on what objects (and players) are close to one another.
Necessary for interpreting what is going on at timet. Such information would
greatly speed up many of the computations the program will have to perform.
An alternative would be to spend even a bit more time, and compute vectors of
velocity for each moving entity in the scene. This would be represented differently,
say using pointers into a frame-structured corpus. While this kind of knowledge
would seem to be trivial to obtain, Al research has revealed it to be a painful,
difficult task after all.

51



actions that have taken place in this game, and the context in which they
occurred — must have a representation of patterns found in individual scenes.

patterns of actions — generalizations on sets of prior actions. (Could very
quickly pass beyond the state of the art of Al, although there is considerable work
on induction.)

(c) Flow of control:
for each time frame from (start of event - 30 min) to (end of event -~ 15 min)
input raw tv signal for brief time frame
find individual objects in the scene
identify each object, using expectations generated in previous time frames
plus strong model of allowable positions for individuals
focus on most interesting parts of scene
relate this scene to previous scenes to determine differences
if no differences and pause is expected then generate blather about objects
or patterns that were recently changed. Comments can include reading
from canned histories and books of statistics. If unable, then say “What
do you think of that, Don?’
determine interesting differences, interesting patterns
find plausible explanations of these
generate comments about the differences/patterns and their explanations,
expecially noting rule infractions, scores, unexpected events — comment
immediately on high interest events.
interpret purpose of changes and patterns with respect to known strategies
and desirable subgoals
generate comments on these
get next time frame

Notice that you can be more specific, since you selected a specific sport in (a),
and supplied a specific set of information sources in (b), whereas we have tried to
remain sport-independent.

(d) Pros and cons of knowledge-based approach:

Understanding requires considerable knowledge of the sport. Published rule
book aone is insufficient for generating text for comments. Expertise about in-
teresting changes and patterns, plausible strategies, etc. is clearly required for
interesting commentary. Only by cleanly separating inferential procedures from
the knowledge that is specific to the sport is there any chance of mapping the
program into another sport.

Whole problem is too open-ended to allow capturing sufficient expertise in a
program.

52



Expect that this approach would have a longer initial start-up cost than a
non-Al one, but would achieve expert-level performance ultimately more quickly,
but would run an order of magnitude or three slower.

(e) Two-year project:

Many good problems — any must be sufficiently constrained to allow the
following:

modestly small data structures,

reasonably complete knowledge base,

.avoiding hard problems that have enmeshed good people for years (e.g. you
don't really intend to implement those auxiliary boxes labelled “natural language
understander”, “speech understander”, “discoverer of patterns’, etc.)

Systems

1. precedence — Advantages: Small tables. Disadvantages. Only parses a small
class of grammars and a small class of languages.

LL — Advantages. Small tables, parses a bigger class of languages than
precedence. Disadvantages: Only parses a small class of languages and it is difficult
to find the (small) LL grammar for a particular LL language.

LR — Advantages: Parses a large class of grammars and a large class of
languages. Disadvantages: Large tables and those tables are hard to generate.

LALR — Advantages: Parses a large class of grammars and a large class of
languages. Disadvantages: The tables, while not as large as LR tables, are hard
to construct.

2. One must generate code for producing values before using the values and one
must generate code for all uses of a value from a particular type of memory cell
before generating code that stores a new value into that cell (or a class containing
that cell in cases like indexed arrays).

3. Aliasing is the situation of having two names for a particular value simul-
taneoudy active. The most common type of alias is an actual parameter that is also
addressable as a more globally named value or two forma parameters that actually
represent the same actual parameter. It is considered bad because it alows the
unwary programmer to produce obscure bugs, it alows the unwary code optimizer
to produce obscure bugs, and it requires the wary optimizer to produce cautious
but slow code. In Pascal, variant records without tags are also a major source of
aliasing. One could eliminate them and put additional requirements on the use
of tags in variant records. One could also change ‘VAR' parameters (reference
parameters) to ‘value-result’ parameters or one could try to construct compilers
that would detect actual aliasing (as opposed to potential aliasing) and issue error

MESSages.

53



4. The simplest scheme involves providing a simple but complete symbeol table to
the debugger and giving the debugger complete value access and change capability
at any point in the control flow as well as the usua manipulations of the control flow
itself. This scheme restricts what the compiler can do in the way of optimizations
such as code motion, strength reduction, storage folding, etc. A more complex
scheme alow6 the compiler to do many of the just mentioned optimizations but
requires that it supply more extensive information in tables to the debugger so
that the debugger can find its way back to variables and points in the control
flow or report that such values are undefined at some point or report that some
points have changed. Still, globa optimizations of several important sorts must
be severly constrained. At the current time, this is not much of a limitation since
global optimizations are relatively rare.

5. Binding time is the time at which a name gets associated with a particular
attribute such as a value or type. For example, with call by value parameters, the
binding of the value of the parameter to the formal name of the parameter occurs
a the time of the corresponding procedure call while a call by name parameter
does not get bound to a vaue until the forma parameter name is actually used.
Another example would be types determined at compile time as in Pascal versus
types determined at run time as in Simula. Early binding usually has the advantage
of efficient implementation and the disadvantage of lack of flexibility while late
binding maintains flexibility and often results in more general and more powerful
programs but with more significant run time overhead.

6. If onc thinks of the assertions t0’ be verified as another version of the program,
then it is easily seen that the aboue proposal is not a proposal to do a verification
system in a different way. In overly smplistic terms, one could say that the
verification problem is the program equivalence problem.

7. <statement> := <matched statement> |<unmatched statement>
<matched statement> ::= <assignment> | if <expression> then
<matched statement> else <matched statement>
<unmatched statement> == if <expression> then <statement> | if

<expression> then <matched statement> else <unmatched statement>

8. By the explicit sending and receiving of messages indicating the need for or
the realization of synchronizing conditions. No other operation6 are needed.

9. Activation record retention means the retaining of activation records for in-
stances of a procedure in a non-stack fashion. Thus we can think of all storage,
including activation records, as coming from a heap and having no stack storage
for activation records at all. Thisis a convenient way to organize activation records
in procedure oriented operating system based on monitors because process forks

Sk



can be implemented simply as the creation of a new chain of activation records
in the heap and monitors can queue and dequeue these activation record chains
(processes) in a nearly obvious and straightforward fashion.

Numerical Analysis

1. (8 The method of successive substitutions has the general form z(¢+1) ;=
o(z®). A necessary condition for convergence to aroot a is that |¢/(a)| < 1. Here
we have

p(z) =sinhz—3, ¢/(z) =coshz > 1,

so the suggested method cannot converge.

(b) There are an infinite number of ways of rewriting the given equation in
the form z := (z) which will lead to a convergent method. One obvious way is
x :==sinh ™! (x + 3), for which

1
TF G+

¢lle)y=
Thisis < 1for al x, and in the vicinity of the root a = 2.38534... it is about
0.2. A better way to solve this equation would be by Newton’s method,

D) o g 7k} — sinh z(8 4 3
' 1 — cosh z(*)

which might also be considered aform of successive substitution.

2. (a) To find the clenge in ¢ when the data is subject to small changes we first
compute

8(cos p) v — wTvw/(ul + uf)  uplviuz — wivy)
u llullz [v]l2 llullz  3vll2

Now observe that vyu; — ujv; =t||d| |Vl|2 sine. Then, using the chain rule for
differentiation, we get

8o _ —1 dlcose) —u

duy sing du  |lufla?

Since the coordinates occur in complete symmetry similar formulas for the other
derivatives follow immediately. If wc know bounds for the relative perturbations

55



in the data, |Au;| < §|uy| etc., we get for the change in ¢ the approximate bound

|urug| lvlwl)
ael < (HUII22 t R RS ®

This shows that the quantity ¢ is well-conditioned as a function of the coordinates.

(b) If the formula in (@) is used to compute ¢ numerically, rounding errors will
be introduced. If floating-point computation with a relative precision of ¢ is used
then we have

|7e(uTv) — uTv] < (jurw| + |ugzl)2¢ <|lullallvllz 2¢ .
This leads to a relative error in cosp bounded by 2¢, and

|A(cos )| < 2¢

A - .
14~ Tl = [oine]

Thus if @ is small, then rounding errors can cause perturbations in ¢ which are
large in absolute value. (It might even happen that the computed cos becomes
larger than 1!)

(c) The important difference is that here we compute ¢ from

Y=2arctanr, 0<r<lIl.

Rounding errors will occur in the computation of a and A, but these are not
magnified since if 0 < ¥ < n/2 then

1
1+r2Sl

Note that the algorithm given here applies to vectors of arbitrary dimension. For
vectors in the plane there are ssimpler algorithms which are stable.

3. (a) The elements in the matrix ATA are

( arctan r) =

dr

ATA Z Q3kQgy

If |; — k| = w it follows from the properties of A that all terms in this sum are
zero and therefore
(ATA)kJ. #0 = |j—kl<w.

55



According to the general definition of band width given, it follows that the band
width of ATA is (at most) 2w — 1. (The band width of a symmetrix matrix is
more Often defined as the maximum number of non-zero elements within the upper
triangle in any row. With this definition the band width of ATA would be w.)

(b) For any n-vector z we have zT(ATA)z = (Az)T(Az) = ||Az||2. This must
be = 0, with equality only if z= 0or if Aissingular. If Ais positive definite, then
the LLT decomposition can be computed stably by a form of Gaussian elimination
without pivoting. Such a decomposition is called a Cholesky decomposition. This
means that the band structure of ATA will not be destroyed by the elimination
process.

(c) Begin by setting ATA := 0. As the i-th row of A is made available, compute
each of the quantities

aijgik, J<k

where j and k are confined to the nonzero band for row 3, and add each such
product to (ATA); and (ATA)k;. (In practice, only the upper or lower triangular
half of ATA need be maintained, because of symmetry.)

(d) Using the procedure described in (c), we compute ATA in approximately
mw? /2 multiplications. To compute the LLT decomposition by Gaussian elimina-
tion takes approximately nw?/2 multiplications if w &« n, since no pivoting is
required as mentioned in (b). In contrast, if Ais adense matrix (or if you treat it
as such), these numbers become mn?/2 and n3/8.

Theory of Computation

1. Let p; be an arbitrary Algol program, not containing the variable x. Consider
the program p; = begin integer X, y; p1; ¥y « X; end. Clearly, X is used without
being assigned a value if and only if the program p; terminates.

2. (a) Have productions: S — rR; | IR3 | ¢, Ry — rRa | IS, Ry — rR3 | IR,
Rj3— rS|IRy. Note thisisa regular grammar.

(b) The language contains all strings over {n,s, ¢, w} such that the number
of n’sis equal to the number to s's and the number of w’s equal to that of €'s.
The nonempty strings are generated by the context-sensitive grammar with start
symbol Z and productions Z — NS | EW | NSZ | EWZ, XY — YX for al X
andYin{N, SE, W}, andE—=¢e,N—=n,S—=s, W — w.

(c) We may assume without loss of generality that the path begins and ends
going north. Replace the last four productions of (b) by NE — rE, NW — W,
NE—+rE’|rl NW-—>1W|lr,ES—>rS EN = IN,SW — rW |rr,Se — IE | U,
wN — rN, WS — IS.

Note: The languages in (b) and (c) are not context-free, which can be proved by
considering the intersection of the language with an appropriate regular expression.

57



However, this is beyond the scope of the problem.
3. For fixed n we can define n + 1 functions a;, 0 <: <n as follows:

aoly)=y+ 1 (the successor function);
a;i+1(0)=a, 1)=0414+ ...+ 1(repeated a;(1) times);
i1y + 1) = a; Uiy, ai+1(y)))-

We can show by induction that a;(y) = a(3, Y); furthermore all a; are primitive
recursive.

4. We can reduce the directed Hamiltonian circuit problem to the stated problem
as follows. Given a directed graph, consider the vertices as the states of a finite
automaton and the (directed) edges as transitions between the states. Associate
with each vertex a distinct terminal symbol, and label each edge entering that
vertex with this symbol. Choose any vertex as the start vertex, and make that
start vertex the only final State,

The resulting finite automaton accepts a string that contains each terminal
symbol exactly once if and only if the original graph has a directed Hamiltonian
circuit. Because of the correspondence between finite automata and regular gram-
mars, we have in fact shown that the stated problem is NP-hard even for regular
grammars. Moreover, it is in NP (and thus NP-complete) since we can nondeter-
ministically check all n! strings to see if they are in the language.

5. (a) In the construction of the sequence ¢| ... ¢, for j < i < m, consider the
case p; = r;—;. Since p; &€ S;_, we save a page fault here.

We lose a page fault at time m 4 1iff pm+1 = (Q, but we always gain at
least one page fault the first time ¢; = py since rx—) = ¢;. If pm+1==q We have
m <+ 1> K, so there is never a net loss.

(b) The periodic page trace ajas.. .ap+1a18). . .Gp414133. . . causes page faults
every time with LRU, but only every bth time with our optimal strategy (after
the first period). Incidentally, such worst-case behavior isnot so uncommon,; it
occurs during long iterations.

58



Hardware
1.(a) Thetiebb fombinations and Karnaugh map are shown below.

X|X2X3Z
o| v}l ofjo .X,X2
AN oo o i g
ofi1lolo XSOOOIO
| I O lo'Jll
EREEER
tjof 1|1t
!1{]oj] Q10

Y

A logic expression for this circuit is z = zjz; + mx3 + z37). A circuit for V is

shown below. |
X —
Xz — )
/‘ZL_‘ !
X3— 3“3)“ Z
x 3 - F
L -

(b) A state diagram for the desired circuit is

INITIAL
STATE

where e = z; Pz (P denotes exclusive-or). This circuit will be designed for clocked
(synchronous) pulse-mode operation. Thus, it is assumed that each clock pulse
is “long enough to cause the appropriate flip-flops to change state”. It is also
assumed that each clock pulse is “short enough so that it is no longer present at
the circuits which generate the flip-flop input signals when the change in flip-flop
outputs has propagated to the input circuitry” (from p. 205 of Introduction to the
Theory of Switching Circuits by E. J. McCluskey). Furthermore, it is assumed
that the signals z;, =3, z3, 2, and e do not change while the clock is active (c = 1).

59



The combined state and output table is shown on the left below, where T is
the level-output of the sequential circuit. Since there are four states, at least2
internal variables are required. Let the state assignments be A = Yiy5 B
C = yiy3, and D = y1yh. Note that T = Yi1ys, since the output 1si only wixen
the circuit is in state D,

The transition table is shown on the right below,

¢ = C=1
5 o o, e yiya C<0 o ¢ o
wital = A VA0 T®),018, o A-o0 |00l ool o]
state B ®ofiA0lc, O B-ol |olfoo]il] ©
¢ [0.0}|Aa.01D,° c-tl [Vt]joefio] O
LRONEIDONION D-1010fjte|jo] |
ST Y. T

Using set-reset flip-flops, the encoded excitation table is

C:=1
V2 €0 o !
oo |r,vr jjr,r r‘S
ol {r.s Ir,R|S,s

N

tiiss [R,R]s R
|0 5 sir.glr
SRy 5 SRe

By inspection of the excitation table,

Sy = ceyy, Ry == cclyp, Sy = ccy'l, and Ry = c(d + Y1)
To implement the initial condition, the reset inputs are changed by ORing in an
initialization pulse INIT. Thus R;=céya + NT, and Ry = c(¢' + y1) + INIT.

The INIT pulse isassumed to be applied before circuit use begins.
The entire circuit is shown at the top of the next page.

60



L.
L e
Y3 —

A

SV
R,AY. j :

Dz;m
|

\
s

1\

(

{
—ri
%U

1 [

152 Vs

X
/]

Rz Y2

C INIT
(clock)

2. (a) When adding two 2's complement numbers, overflow occurs il and only if
the signs of the inputs are the same, and the sign of the output is not equal to

the sign of the inputs. Since the sign of a 2's complement number is the most
significant bit (MSB), we have

overflow = MSB(A)MSB(B)MSB(S)' 4+ MSB(A)'MSB(B)'MSB(S)

where S is the sum of A and B.
Overflow can also be detected as the exclusive-or of carry-in with carry-out
at the most significant bit of the adder circuit.

(b) O1111111

--00000001
1000C000

61



ADVANTAGES

DISADVANTACES

TTL outruT | SimpPLIFIED
cCIRCWIT
Ycc
Standavy] - .
ouT Slmf)lf— cannot be used
_ Por data busses
VCC.
Open Coflector
P , f con be used external Fu”uF
- ouT for data busses; | resistor reguired;
“wired-and” passive Pu”ulb

!:9:.:‘! -ﬁlhf"};nﬂ 'a-f
oy A

it e
ou{Pufs; also

inferpaci‘nj .

useful for cmaloj )

resuldc in |onaer
risefime and poor
Lan- out c:aPaﬁili‘f/.

Three - State l
(1,0, hi-impedarce

Vcc

ouT]

well suited for
data busses

(L»\‘j}, - imr.edan c€>
state

extra 'zr\f)uf ‘n

be cause of active
Ful[u‘D and third

needed for enable
Punchion ;. contl
foilure at enalrles
con resuld in amﬁ?guaus
out f"‘+ £ Awo Ou'ffurfs

62

“ g?ﬁkf’ "




SPRING 1979 PROGRAMM NG PRQJECT:  CODE GENERATI ON AND CPTI M ZATI ON

Due: 12:00 p.m, Tuesday, April 10, 1979
Pol ya 254

Qutline:

Let Mbe a sinple conputer that perforns arithnetic operations on
integers and has a menory addressed by positive integers. M can perform
only register-register arithnetic operations, and has no junp instructions,
indexing or indirect addressing. The goal is to wite a sinple code
generator named COP which generates efficient code for M.

| nput_to OCP:

The input to COP consists of triples. Each triple consists of an operator
and two argunents. Triples are numbered consecutively from 1 ; the n-th

triple is said to have triple nunber Tn . The result of a triple is-a nunber,
which may be referred to 1n subsequent Triples by using its triple nunber as an

argunent .
Here are the operators available in triples:

Qper at or Resul t

t a.rgl + ar92
arg, - arg2
* arg, * arg2
/ arg, / arg, (integer division)

arg, with side effect of arg, := arg, .

Each argunent, arg, Of arg, nmay be an integer constant, a nenory address

M (with n intherange 0 -99), or the triple nunber Ta of a previous
triple.

For example, the following triples have the sane effect as the statenent
X := X*¥Y + X¥Y + 3 ; given that X and Y are allocated nenory | ocations
0 and 1:

Oper at or arg, arg,
1 * AO A
2 * A0 AL
3 + T1 T2
L + T3 3
5 = T4 A0

Qut put of COP:

The output of COP is a sequence of instructions for M. M has four
general registers RO, R1L, R2, R3 and two hundred nmenory |ocations (for
data) nunbered 0 . ..199 . Below r and s denote registers, m a nenory
address. Read C(x) as "the contents of x ". M has the follow ng
i nstructions:

63



LQAD r,m load register r with C(m

LOADL r;k | oad register r. with the value k
STORE r,m store C(r) into menory location m
ADD Ty s put C(r)+C(s) into register r
SUB r, s put C(r)-C(s) into register r
MLLT r, s put C(r)%s) into register r
DV r, s put c(r)/c(s) into register r

For exanple, the triples could be optimzed into:

| NSTRUCTI ON COMMENT
LOAD 0,0 triple 1
LOAD R1,1 triple 1
MULT RO,R1 triple 1
ADD RO,RO triple 3
LOADL RL,3 triple 4
ADD RO,R1 triple 4
STORE RO O triple 5

(bj ecti ve:

Assume that ADD, SUB, MILT, DIV AND LOADL each take one unit of tine
to execute and that LOAD and STORE each take two units. Your optim zer
should try to mninize the tine required to run the output code, but the
optim zer should be efficient enough to be practical in a conpiler and
shoul d al ways generate correct code.

Met hod:
Two techniques you can try are:

(1) Common subexpression elimnation
(e.g. (x¥y+z)+(X*y+z) should lead to only one conputation of
(X*Y+Z ).

(2) Constant folding
(e.g. X+1+2 should be converted at conpile time to X+3 ).

Try to make efficient use of M's registers. Your code generator should
be prepared for expressions conplex enough to require storing tenporary results
in menory, using addresses in the range 100 ... 199 (renenber, 0 . . . 99
are reserved for wvariables).

Possi bl e al gorithms are sketched in sho and Ullman, Principles of Conpiler
Design (1977 ), sections 12.,3-12.4 and 15.4-15.6, and Gies, Conpiler Construction

for Digital Conputers (1971), sections 17.2 and 18.1. Both books are on reserve
in the Math. Sciences Library. However a fully satisfactory program can be
witten without referring to books at all.

Do not try to use unusually sophisticated optimizations (e.g., avoid
sections 12.5 and 15.7 of Aho and Ullman). Attenpt only what you know you
can finish on time. To get a feel for the problem you might begin by witing

a code generator that performs no optimization. If you can't get your
optimzer to work, but do get a code generator working, then turn it in.

64



Docurent at i on.

It is not sufficient that your program work; the graders nust be able
to see that it works. So you nust document your program and its output.
Expl ain which al gorithns you used and give references; outline the general
| ayout of the program describe how to interpret its output. In the program
itself, use descriptive variable names; use proper indentation; insert
comment s where appropriate.

To make the generated code readable, it should include such comments
as "store in tenporary variable" or "triple n" (i.e., COP should put these
comments in its output). Also COP should print the number of time units
required to execute the code it generates. If your optinizer produces an
optimzed set of triples (rather than going directly to assenbly code), it
should print these.

Test data for your programw |l be given out in two sets. The first
set is attached here. The second set will be available after 9:00 a.m on
Monday, 9 April, in Polya 254  Turn in your source program associated
docunentation and its output fromall the test data,

Questi ons:

If you have questions about the problem (besides how to solve it!),
cont act

Larry Paul son LPe SUAl Lg7-4971 227-110k

or
Lloyd Trefethen INT@ SUAI L97-14368 325-539%

65



© 00 ~N oo o1 B w PP

N DN DN NN NN PR PR R R R R e
©® N o O N W NP o ©o o N o ok~ wbdhP oo

*

+ 4+~

* 4+ S~ *

+

+

Al

T1
T4
T5

T/
T8

A2
T10

T12
T14

T15
T17
A4
A3
Al
T20
T19
A8
Al10
T24
T23
T27

66

A2
A3

T3
T2

T6

Al
Al
A3
T
Al
T13

Al
T16
A2
AS
A2
A2
T21
T22
A9
All
T25
T26
A3



ALL

Al3

31

<

32
33

A2

Al6
T32
T33
A2

A5
T30
T31
T34

34
35
36
37

N < N \O

T29

A7
T2

38
39
40

Al

AlO

T4

A9
T8

A2

A>

10

LY

41

A2

L2

T10

Al3

A6

43

A4

13
14
15
16
17
18
19
20
21

Th2
A8

T40
AT

Ly

T12
Al6

45

Al>

T44

T38

46

T14
Tl

T41
A9

T39

A8

47

T3

48

T16
>

TL5

Th3

AlO

k9
50
51

All

Al

T4O
T50

TLT
T48
T35

T1ll

A3

T9
A2

52
53
54
55

22
23

51

T15
T22

T13

152

TL6
53

T20
T17

ek
25

T19

A>3

TS4

56
o7
58
59
60

26
27
28
29
30

T23

T21
2L
T25

T26
T27

T58
A5

T57

759

728

67



REMARKS ON THE GRADING OF THE PROGRAMM NG PROJECT

The programs we received varied greatly in sophistication and in the
met hods of optimization enployed. Mst people succgeded in generating
correct code for "COP" and perforned at |east one kind of optimzation,
however

G ading came down to three broad areas:

(1) Code Generating and Optinizing Algorithms:  Many people inplenented
DAGs (directed acyclic graphs) or a related technique; a few more did not.
The majority perfornmed sone sort of optimzing on the triples thenselves
bef ore generating code, often including a reordering of the triples.
Reordering could have a dramatic effect on the effjcienc%.of code generated
for the second assigned input set, but we deenphasized this somewhat and

wei ghed also less dramatic forms of optimzation, such as constant folding
and common subexpression elimnation.

Typical "scores" for masters passes were 70/230 COP tine units for
the first/second input set, and for Ph.D. passes 62/185 time units. However

these nunbers in general counted less than you may have expected in determning
your performance

(2) Programming Style and Efficiency: The followi ng inelegancies
appeared too often

- Use of obscure nunbers like "4 where a macro |ike "MULTIPLY"
woul d have been nuch clearer.

Unnecessary string operations.

Duplication or near-duplication of code.

Lack of division of major tasks into smaller procedures.
Lack of conments in code.

Inefficient use of arrays where linked structures would have been
nore appropriate, and/or unnecessary linear searches where hashing
or a better data representation coul d have saved tinme. It's all
right to cut corners on a thing like hashing, but if you do, you
shoul d nmention in your docunentation that there is a better
alternative

some of these conplaints may be controversial. Carity, however, is
a nust, and too many of the prograns were hard to read.

(3) Docunentati on: This was the area nmost often di sappointing

Providing good documentation is absolutely essential to doing well on the
progranmng project. This means

- Describe your programfairly conpletely. (Say, at least four pages.)

- Isolate your central data structures and the flow of your program
so that the readers don't have to figure them out.

- Docunent ation shoul d be organized, not just five pages of text.
68




- Mention nore efficient alternatives that you have chosen not to
inplement. If you think that constant folding is useless in a
=eal conpiler, then you nust say so, so that we know why you
didn't inplenent it.

In general, too many people seened to have left tidying up to the
program and docurmenting it to an hour or two at the end. An additiona
two hours on such "cosnetics" would have given several. such people a
hi gher grade. W are not just being fussy here -- the programm ng project
ains to show that you can produce efficient programs in an environnment
where they have to be understood and nodified by other people.

SAVPLE PROGRAM

As a sanple solution we have duplicated one of the best progranms that
was turned in, that of Magic Nunber 14502. This person di d use DAGs, and
got excellent results: 55 and 133 COP time units, respectively, for the
two input data sets

Here are some strengths of this program

- Excellent optinmization techniques, including conmon subexpression
elinination, reordering of triples, good allocation of registers
based on next use information, and detection of comutativity.

- Clear programmng style in nost respects, including use of nmacros
for integer paraneters, extensive commenting within the code, and

clear structuring of each procedure.
- Fairly clear documentation up front.

Here are some weaknesses:

- Asmall bug in the treatment of assignment statenments made the
first line of code for input set 2 appear before other references
to A5 -- an error. #4502 noticed this error at the last mnute
and commented on it.

- String variables are used nore than necessary.

- The programis put together as a sequence of blocks rather than as
a collection of procedures called by a small segnent of main
program  This makes the program | ess readable globally than it
iIs locally

The sanple programwill not be available for several days, as it is being
reproduced at SEL Publications.

69






Wnter 1979/80 COVPREHENSI VE EXAM NATI ON
ALGORITHMS AND DATA STRUCTURES

Problem1. (10 points).

Wite an algorithmin pidgin algol which takes as inputs two sorted
arrays x <x <. . . <xn and Yy S Vg eee ¥, andanunber s. The
output will be a pair (i,) such that xi+fv. = or a statement that

J
no such paire exists. Your algorithm should run in Q'n) tine.

Problem2. (20 points),
Consider a rooted tree. Define the weight of a node x to be the

number of nodes in the subtree rooted at X .  Let n be the wei ght of
the root. (N t: n is the total nunber of nodes in the tree.) Consider
an edge between a node v and a child of that node, w . call the edge

"good" if 2x (weight of w) < weight of v and "bad" otherwi se.

bad edge

whw\h
]

good edge

(1) (5 points). Prove that at nost one of the edges froma node v
to its children is bad.

(2) (5 points). Prove that the path fromany leaf to the root contains
at nost IOg2 n good edges.
(3) (10 points). The | east common ancestor of a pair of nodes x,y

is defined to be the node of greatest distance from the root which
is on both the path fromx to the root and the path fromy to
the root.

71



ATGORITHMS AND DATA STRUCTURES

Find an al gorithm which takes as input two nodes x and y and
finds their |east comon ancestor in tine 0(log n) . Describe your
algorithmin English. In order to do this, your algorithmwll have
to have some representation of the tree and/or some pre-conputed
information about the tree. These two together are ealled the data
structure for the tree. Specify the exact data structure your
al gorithm assunmes has been given it about the tree. The data structure
shoul d only use 0(n) words of nenory.

Hnt: (1) above inplies that a set of connected bad edges nust be a
linear sequence. A sequence of bad edges is called a bad path. Let
bad paths and good edges play a role in your data structure and

al gorithm

. Problem 3. Sorting by Flipping. (15 points),
Gven a sequence that is a pernutation of the numbers 1 through n ,

a flip consists of selecting a set of contiguous elements at the left end
of the sequence and reversing their order.

Example: Gven 346 98 2 175, we can flip the first four elenents
to get

9 6 4+ 3 8 2 1 7 5.,

(a) (5 points). Prove that any pernutation of length n can be arranged
into sorted order in at nost 2n-2 flips.

(b) (10 points). Prove that, for every n , at least n-I flips are
necessary to sort in the worst case.

Probl em 4. (15 points).

An undirected graph is called marked if every edge has either a +
or a - sign. A marked graph is balanced if the product of signs around
every cycle is positive (i.e., there are an even nunber of - signs on
every cycle). Gve a linear-tine test for balance. Your algorithm can
be specified in English but you nust give an argunent why the programis
correct and why it requires only linear tinme.

72



ARTI FI CI AL | NTELLI GENCE

Problem 1. (10 points).

(a) What are the three classes of theoremin the PLANNER |anguage?
Describe them briefly, indicating how they are invoked.

(b) To which class or classes is MYCIN's approach nost simlar?

(c) Same question but with respect to HEARSAY-II.

Problem 2. (10 points).

The followi ng constants, function synbols, and relations can be used
for encoding facts about chess as statenents in predicate cal culus. They
will be used for both this problem and Problem 3.

EMPTY(square) -- there is no piece on the square

ON(piece, square) -- the indicated piece is on the indicated square
WHITE (piece) -- the piece is white

BLACK(piece) -- the piece is black

ROW(square, integer) -- the square is in the row indicated
COL(square, integer) -- the square is in the colum indicated
ISA(object, set) -- the object is a nenber of the indicated set
SUBSET(setl, set2) -- setl is a subset of set2

<, <53>, >, = + 5 - 51,2,3,... ~-- their usual interpretations

SQUARE, PIECE, PAWN, ROCK, KNI GHT, BISHOP, QUEEN, KING
WK, wQ, VB-1, wB-2, WN-1, WN-2, WR-1, WR-3, WP-1,
BK, BQ BB-1, BB-2, BN-1, BN-2, BR1, BR-2, BP-I, . . . .

all with the obvious interpretations.

73



ARTTIFICIAL | NTELLI GENCE

using this vocabul ary, encode the location of the black king in
the followng board position as a fornula in the predicate calculus.

8

7

6 BK

> BP

L WP | WH
3 WK

2

1

123 45 67 8

(b) Wite down the predicate calculus statenent asserting that only one
pi ece may be on a square at a time and that a piece may be on only
one square.

(e) Wite down the conditions under which a white P nay be pronoted
to queen

You may ignore the possibility of king in check

Problem 3. (10 points)

In his thesis and textbook, Wnston describes a program able to learn
concepts from sequences of exanples and near m sses.

(a) Is it possible to teach Wnston's programthe rule about queening
pawns? |f so, present a training sequence and indicate what each
exanpl e or near mss teaches and what assunptions are necessary.
If not, why not?

(b) Same question for castling.

74



ARTI FI G AL | NTELLI GENCE

Probl em 4, (10 points).
The following i s the Huffman-Clowes | abel set for |abeling line
drawi ngs (taken from Wnston).

AV NG A & A S YV S U
L3 Ih 5 6

Y ry vy
T T
DA

(a) Using this |abel set, produce a |abeling of the follow ng draw ng.

C

(b) Suppose waltz's constraint propagation algorithm were used on the
example (still wth the Huffman-Clowes | abel set) and that new nodes
were considered in the al phabetic order shown. Wwhat would be the
| abel sets for each of the nodes Mediately before H is considered?
How about immediately before | ? (You may assune that segnents
AB, BC, CD, DE, and EA are known to be boundaries.)

75



ARTI FI G AL | NTELLI GENCE

Problem 5. (10 points).

The following recursive transition network for noun groups is taken
from Wnston's book.

adjective

determiner
St L

Using the chess domain, produce an exanple of each of the follow ng,

PREPG

(you need not restrict yourself to the vocabul ary of Problens 2 and 3.)

(a) a noun phrase that exercises all the arcs in the network.
(b) & syntactically legal phrase not accepted by the network.

(c) a syntactically illegal phrase accepted by the network.

(&) a syntactically unanbi guous noun phrase that is semantically
anbi guous in the-board position of Problem 2.

(e) a syntactieally anbi guous noun phrase that is semantically unambiguous
in the board position of Problem 2,

Probl em 6. (10 points).

(a) What's the difference between the branch and bound search nethod and
the A* algorithn?

(b)  Wich of the follow ng nethods would be nost suitable for trying to
find the combination to a safe: branch and bound, hillclimbing,
depth-first search?

(c) Is an alpha-beta search in a11 cases nore efficient than a full
minimax search? |f so, why? If not, show a counterexanple.

(d) Suppose a one-armed robot were trying to adjust the contrast and
brightness controls on his Tv. Using only hillelimbing, i S he
guaranteed to find the optinmal picture? Explain very briefly.

Problem 7. (0 points).

What are two major goals of Al research?

76



HARDWARE

Problem 1. (15 points).

Suppose we want a conponent to be attached to a CPU which will be
used to conpute reciprocals. The floating point nunbers used by our CPU
are normalized with an octal base. That is, the format |ooks |ike:

sign exponent mantissa
- - ~— o\ —~ _
1 bit 5 bits 18 bits

where the nmantissa has an octal point to its left, and the value represented

is
8exponent

sign x x mantissa .

(a) (3 points). Wat range of nunbers can be represented if the exponent
is 0 and the sign is positive?

The reciprocal machine takes as input some nunber (to be determ ned
later) of the leading bits of the mantissa. Ituses these bits as an
address into a ROM  The word stored at that location in the ROMis a
fixed point binary nunber which is within 2T of the reci procal of the
input, i.e., it has 6 bits to the right of the binary point.

(b) (8 points). What is the mininmum nunber of bits of the nmantissa that
nmust be used so that the output of the ROMis within 2'6 of the
exact reciprocal of the original nmantissa?

(c) (4 points). How many words are there in the table?

Problem 2.  Sequential Circuit Design. (20 points)

Design a 5 vit serial to parallel converter which includes a generated
parity bit output and a data available output. The parity bit is to be a
one if there are an odd nunber of ones in the received 5 bits and a zero
if there are an even nunber of ones. The data available line should be a
one if the parallel output lines hold valid data, otherwi se it should be

a zero.

The inputs to your circuit will be a serial input line, a clock line
which has a clock pulse in the mddle of each data bit in the serial input
line, and a reset line which sets up the circuit so that the next 5 bits
received are the ones that will be converted to parallel

77



The outputs are the 5 parallel output lines, one line for the
generated parity bit, and one line for the data available signal

The circuit should use AND, OR, NOT, and XOR gates as well as"
D flip flops which have the set, reset, clock, and D lines as inputs
and the Qand Q outputs available. The set, reset,
are all negative edge triggered.

and cl ock lines

The circuit should be able to run continuously, i.e., do not assune
a manual reset before each 5 bits.

Probl em 3.(13 points).

Suppose a CPU has &4 nmenmory nodul es which are interleaved together in
order to provide fast access for the CPU.  Assume that the CPU decodes one

instruction per internal cycle and that the following information is true
about it:

(1) internal cycle = 100ns

(2) 0.62 instruction nenory fetches/instruction

(3) 0.78 data nenory fetches/instruction

(4) singe instruction interpretation. Note; each interval in the
following time [ine represents one internal processor cycle. The

time interval for the menory fetches is given bel ow.

k— 1 fetch—>{¢-Decode =¥{€Address Generate >{é€D fetch—)l(——‘Execute —
t - [| [ 1 o [dd [l { Jl

L) JI ] ] ) T -J [} 1§

(5) Conbined interleaved menory has an access time =580 ns; cycle

time = 100 ns. Note : the cPu is pipelined and creates menory
requests by anticipation, therefore it does not wait for nmenory to
respond before issuing the next request. If the CPU were to wait

for menory to respond to each request it would take 580 ns, but
in pipelined operation words come in every 100 ns from menory.

(a) (3 points). The request rate to menory (maximun is MAPS
(MITion Accesses per Second.

78



(b) (10 points). The peak performance of the CPU is

M PS.
(MIlion Instructions per Second.)

[f BC (Branch on Condition)
occurs with frequency 0.32, and no "go-ahead-on-branch" strategy

Is used by the address anticipation nechanism the resultant
CPU performance wll be M PS.

(Pl ease show all work.)

Problem5. (12 points).

(2) (3 points). Explain the operation of a cache briefly.

(b) (3 points). Explain the advantages and disadvantages between
a hard-wired CPU and a m cro-coded CPU.

(c) (6 points). What are some advantages and di sadvantages of the
following logic famlies.

(1) (2 points). TTL
(2) (2 points). CMS
(3) (2 points). NMOS

79




NUMERICAL ANALYSI S

Problem 1. (15 points).
one of the quantities which appears in the error bounds for Gaussian
Elimination is the growth factor. For factoring an nxn matrix

A= {aij}i,j=l,n s this factor is defined as
max lagg) |
R i
G 1}32,]5'
1,5 M
wher e a.g{) is the element in the (i,j) -th location at the k-th step

of the elimnation process.
Consi der the problem of factoring a tridiagonal matrix of the form
~ -~

Show that the follow ng results hold:

(a) If partial pivoting is not used, G can be aribtrarily [arge.
(b) For the special case when A is also diagonally domnant, ¢ < 2,
i ndependent of n , even if partial pivoting is not used.

Problem 2. (15 points). N
Consider the following two algorithms for conputing > . .

=1
(1) The usual sunmation algorithm ;
S := 0
for j =1,2,...,N do
S = S*X.

80



NUMERI CAL  ANALYSI S

(2) The pairwise summation al gorithm
Define S(i,i) := X for i =1,2,. .4N

S(i.5) := s(i, ’_% )+ s( Li‘; +1,3) for i < |

N

z Xy by applying the above definitions. For
j=1

8 the pairwise algorithm conputes

Compute S(1,N) =
example, With N =
[(x1+x2) + (’%““xh)] + [(x5+x6) * (x7+x8)]
Assume that the computer arithnetic is such that
fz(xl+ xe) = x1(1+ el) + x2(1+ 62)
with
|e1|<u for i=1,2.

(a) Show that if s, = > Xy I S computed using the usual summation
j=1
algorithm then

(s xj(1+ej)

1) =

1" M=

j=1
with
\sj\< Nu + O(u®)

(b) For the special case when Nis a power of 2 , showthat if
N

8, = '?l x, 1S conputed using the pairwise algorithm then
- N
f!(Sg) = jglxj(lu J_)

with
]7J.l < ulog, N+ O(ug) .

Problem 3. (15 points).
Suppose that Newton's method is being used to generate a sequence of

appr oxi mat i ons X5%55... t0 @ zero x .- of a snooth function f(x) given
an initial "guess" X, - -

81




NUVERI CAL ANATYSIS

(a) Shlow thalt -y = -f(x,)/t(g,) for x, <€ <x or x <g <xt.
Using this relation, obtain an estimate of |x*-xn| in terns of
|Xp4q - %,| . 1sthe quantity |x .. -x | usually a good error
estimator to determne the termnation of a Newton iteration?

(b)  suppose that we obtain the follow ng behavior of the differences

X ., =% | and that the estinate established in (a) above is valid.
ntl “n
Set
P o - VA L

n |X‘n+l-xnl rn
0 .108 -
1 075 .692
2 .052 .690
3 .035 .681
4 .02k 675
) .016 671
6 .011 .669
7 .007 667
8 .005 667

Wiat is the apparent order of convergence? Wat is the apparent rate
of convergence? Recall that if |x . -x.|/ |xn-x*|P <C.then Cis
called the rate of convergence (or asynptotic error constant) and pis
the order of convergence. Gve a plausible explanation of this behavior
assuming that f is infinitely differentiable. How m ght you increase
the order and/or rate of convergence while still using Newton iteration?

Probl em 4, (15 points).

Let f: R- R be auniformy Lipschitz continuous function with
Lipschitz constant K (i.e. . |£(x)-f(y)|<K|x-y|forallx and y ).
Define x = £(x ;) for n >0 with Xo given as data.  Suppose we
compute y, = £(y, ,)+e for n >0 with y  given. ¢, represents
an error introduced at the n-th step and Xy-¥, represents an intial error

in measurenent, etc. Show that

lxn-yn‘ < Knlxo-yo| * mJa.x |A€J' | ra

Kn-l_’
if K41.

82



SYSTEMS

Problem 1. Conputer Language Syntax. (10 points).

In some |anguages (FORTRAN, PL/1) exponentiation (+ or **) is right
associative. A unary mnus has |ower precedence (binds less tightly) than
exponentiation. Qther operations {+-, *J /,), ( } bind as expected.

(a) (3 points). Gve an exanple of the effect of right association with
an exanpl e.
(b) (7 points). Wite in ByF the syntax rules for an expression EXPR for

all the operators nmentioned above beginning with the synbol (identifier)

Problem 2. Paging. (15 points).

(@) (5 points). Describe the difference between a demand paging al gorithm
(DPA) that selects the least recently used page in the system for
removal and the working set algorithm (WBA).

(b) (5 points). What is needed to nmake DPA work well in a multi-user
syst enf

(c) (5 points). What is needed to nmake WA work well in a multi-user
syst enf

Problem 3. Cooperating Processes. (15 points).

Mnitors, as defined by Brinch-Hansen are available in the conputing
systemyou are using.

Use such nmonitors to control nessage buffering among independently schedul ed
processes.  Sketch the using prograns, and wite the code of the monitor
prototype itself in sufficient detail to allow inplenentation wthout anbiguity.

Probl em 4. Conputer Languages. (10 points).

A criterion in the design of the PASCAL |anguage was the desire to
avoid structures that cannot be fully conpiled prior to execution.

(a) (5 points). Wiy is this a desirable goal ?

(b) (5 points). What are sone of the liabilities of this design?

83



SYSTEMS

Problem 5.  Language System (10 points).

PASCAT language Systens store NEw records into an area called the
heap. List sone (3) alternatives for managenent of the heap and nention
succinctly problens to be considered with the [isted alternatives.

84



THEORY OF COMPUTATION

Problem 1. Logic. (12 points).

Consider the follow ng proof system for implicational propositional
| ogi c.
AXIOM SCHEMES: t PO P
(FoP)2Q) >q
(P> >R) > (P> (Q>R))
INFERENCE RULE: +F+ P

-~

FPDQ
Q (MODUS PONENS)
(a) (4 points). Find a truth function interpretation of "= for which

t he above axions and rul es are sound, but which differs fromthe
standard truth-function interpretation of "o,

(b) (4 points). Exhibit a fornula with "s™ as its only connective
which is valid for the standard interpretation of ">, but not for
the interpretation given as the answer to part (a).

(c) (4 points). Show that the formula given as the answer to part (b)
is not provable in the above proof system (thereby show ng the
i nconpl eteness of the system for implicational propositional |ogic).
Be precise!

Problem 2. Automata and Languages. (12 points).

I's the set of decimal representations of positive integers (read from
left to right) divisible
(@) by 2  [2 points]

(®) by 3 (3 points]
(¢) by 7 [7 points]

a regular set? Gve argunents (but not necessarily machines or grammars)
for your answers.

85



THEORY OF COMPUTATION

Problem3. Program Verification. (12 points).

Consi der the follow ng flowchart program

INPUT n,m

i1ie«0; jJe-1l; ae~1l;be«1

3}\

if i = OAJ = O then HALT

T 3] >% then a - -2
if |§| >m then b ~ b
i +i +a

J~-Jtb

PRINT(i): PRINT(j)

I

Supply an inductive assertion for point A which is sufficient to
denonstrate that the program does not terminate (regardless of the values
of n,m ) -- that is, an inductive assertion which inplies that
ifdovif£go.

Probl em 4. NP-completeness. (12 points).

Let RyRyseeesRy be a list of rectangles with positive integer |ength
sides.  Show that the follow ng problem can be solved in non-determnistic
pol ynom al tine.

"Deci de whet her rectangles R, ... R, can be pl aced inside R, in
such a way that

(1) No two R, R. i43, 1,3 >0 overlap, and

-J’
(2) e sides of the R, are parallel to the sides of Ry "
(The rectangles are given by pairs of integers (igp &) » (Lprdgd o0 o Gp i,

in binary notation, where are the lengths of the sides of Ry )

ik 5 jk

86



THECRY OF COWPUTATI ON

Problem 5. Decidability. (12 points).

(@) (6 points). Show that there exists a function f on the natural
numbers which grows faster than any recursive function. That is, we
want a function f: N - N such that for all recursive g: N- N,
Eny(m > n) (f(m) > gm)) .

(b) (6 points). Show that there exists an infinite set of natural nunbers
which has no infinite recursive subsets. (You may use the result of
part (a) whether or not you were able to prove it.)

87



SOLUTIONS to Al gorithns and Data Structures

Probl em 1.
-1
j =nj
whi | e xi+yjyéSandi <nandj >1do
i f xi+yj >Sthen j«~j-I
else i «~ i+l;
i f xi+yj := S then print (i,3);
el se print ("no such i and j")

This works because if there is a pair (iO,jO) such that X +,«5. =S
then the variables i and j in the above algorithm have the o "0
property that i <ijand | >, . This is easily proved by induction.
Since either i increases or j decreases at each iteration we know
that within 2n iterations i = iy and j =3, .

If there is no such pair (io,jo) , then the test Xi+xj £Swll
al ways be satisfied, and the loop will termnate when i =ntl or j =0 ,
and the correct statement will be printed. This also happens in at nost
2n iterations.

Probl em 2.

(1) Suppose two children vy and v, had bad edges to their

parent V . Because these edges are bad, we know that

2x (weight of v.)> weight of V

1)
2x (weight of V2) > wei ght of V.

Adding these equations we get
wei ght of vt wei ght of v, > wei ght of V .

But this is inpossible since the weight of a node is at |east the sum of
the weight of its children.

(2) Consider a traversal up the tree fromany leaf to the root. Each
time we traverse a good edge the weight of the node we are at at |east
doubles. When we traverse a bad edge the weight cannot decrease. Since
the |eaves have unit weight, the nunber of time the weight can double is
at nost log, n . Therefore there are at nost log, N good edges al ong
any path.

83



SOLUTIONS to Algorithms and Data Structures

(3) W distinguish two types of nodes. Type 1: those that are at
the root of a bad path (or not on a bad path at a11), and Type 2. those
that are inside a bad path. Aeach type 1 node we sinple store the fact
that it is a'type 1 node, and a pointer to its parent. At each type 2 node
we store (1) a pointer to the root of the bad path and (2) a level
nunber which tells the distance fromthe node to the root of the bad path.

The algorithm traverses to the root from node x and node y '
following the pointers described in the previous paragraph. The sequence
of nodes traversed are stored in two stacks. At the end, the top of
both stacks contain the root of the tree. W now pop both stacks in
unison until they show a different top element. |f either of these
el ements are type 1, then select the parent of that one. [|f both of
themare type 2, then select the one with a | ower |evel nunmber. The
node selected is the |east common ancestor of x and y .  The running
time is 0O(log n) since there are onlylog2 n good edges al ong any
path to the root.

Probl em 3.

(a) W arrange themin correct order from right to left, first
putting n in place, then n-1 .. then 2 . Eement 1 will then
automatically be in place. To get j in place, we first flip it to
the left, then flip it to its proper position. The total nunber of
flips needed is thus 2(n-1) .

(b) In the permutation 12 3. ..n the nunber of adjacent elenents

that differ by one is n-I . In the pernutation
1l4+1 i-1 .
2 468... (n -3 _5) 135 ...(n -5t 5) there are no adjacent

elements differing by one for n >4. Each flip can change the

adj acency at only one place, therefore each flip can change the number
of adjacent elements differing by one by at nost one, and n-1 flips
are needed to go between the two permutations given above. Q.=.D.

89



SCOLUTIONS to Algorithms and Data Structures

Pr obl em 4.

Choose a set of edges which are a spanning tree of the graph. Label
the vertices of the spanning tree with 1's and O's such that the root
is labelled 0 , and opposite ends of a spanning edge are labelled the
sane if the edge is + and different if the edge is - . This can be
done in linear time with depth-first or breadth-first search. Now check,
that each edge not in the spanning tree has the correct sign property,
i.e., that opposite ends of a + edge are |abeled the same and opposite
ends of a - edge are labeled differently. The graph is balanced iff
each edge has the correct sign property.

Proof : Consi der a bal anced graph. Any edge not in the spanning
tree of the graph nust have the correct sign property since the cycle
formed by the edge and the spanning tree has an even nunber of -  edges.
To show the converse, note that in a graph with the correct sign property
each cycle nust have an even nunber of transitions froml to O or
0 to 1 because it starts and ends with the same |abel. Each such
transition corresponds to a - edge, thus the nunber of - edges
around any cycle must be even. QED

90



SOLUTIONS to Artificial Intelligence

Probl em 1.

(a) The three types of PLANNER theorens are consequent theorens
(THCONSE or |F-NEEDED) and two types of antecedent theorens (THANTE or
| F- ADDED and THERASING or |F-REMOVED). All are invoked by pattern
matching. An | F-NEEDED method is invoked in backward chaining when
its pattern matches a subgoal. An |F-ADDED nethod is invoked whenever
its pattern matches an assertion placed in the data base. An |F-REMOVED
method is invoked whenever its pattern matches an assertion removed from
the data base. ‘

(b) mycIn's backward chaining nmost closely resenbl es |F-NEEDED
net hods.

(c) HEARSAY-I1's know edge sources most closely resenble |F-ADDED
met hods (and possibly |F-NEEDED and | F- REMOVED).

Problem 2.
A variety of fornulations are acceptable due to axioms about the
relations involved. The following are just sanples.

(a) ¥x ON(BK,x) A ROW(x,6) A §OL(x,5)
(b) Vp¥g¥s ON(p,s) A ON(g,s) = p = Q A VPYysyt ON(pys) A ON(pst)= s = t

(c) P e PAWN
A \WH TE( P)
A s ON(P,s) A ROW(s,T)
A @sHcdt ON(P,s) A COL(s,c) A ROW(t,8) A COL(t,c) A EMPTY(t)

Probl em 3.

(a) WP-1 on A7
example  WP-1 on B7 teaches col utm uni nport ant
exanple  WP-2 on A7 teaches P = WP-1 unnecessary
near mss WB-1 on A7 teaches P ¢ PAWN necessary
near mss BP-1 on A7 teaches W4 TE (P) necessary
near m ss wp-1 on B6 teaches RONT necessary
near mss W-1 on A7
BR-1 on A8 teaches EMPTY destination necessary
(b) No, because there's no way to encode the constraint that the king and
rook nmust not have noved. Another exanple would be the en passant

91



SOLUTIONS to Artificial Intelligence

Probl em 4.
(a)
(v) before H before |
A L1 Ll
B A A
C il L1
D A A
E 1 Ll
F A2, A3 A3
G A2, A3 A3
H F1
Problem 5.
(a) The bishop beside the white pawn.
(b) The king pawn (noun nodifiers not handl ed).
(c) Those pawn (number msnatch).
(d) The pawn (which pawn?)
(e) The pawn on the square next to the king (attachnment of the second
prepositional phrase).
Problem 6.

(a) The Branch and Bound nethod does not use heuristic information.

(b) Depth-first search is the only nethod applicable.

(C) a-g search is not always nore efficient than exhaustive minimax,
t hough it's never worse. Consider the fol | owi ng exanple.




SOLUTIONS to Artificial Intelligence

(d) No, the robot is not guaranteed to get the optimal result, since
he may arrive at a ridge or foothill in picture quality space from

whi ch any adjustment degrades the picture.

Probl em 7.

Cognitive Sinulation and Machine Intelligence.

93



SCLUTI ONS to Hardware

Probl em 1.

(a) This question asks for the range of values that the mantissa can
take. If all the bits of the mantissa are O then O is represented.

If there is at least one 1 in the mantissa then the range nust be

1/8 < range <1 .

(v)

W want to find out how close b and b-2™" have to be so that
I/b and 1/(b-2"%) are within 2© of each other

The number of bits that b and b-2"" agree is the nunber of
bits needed from the mantissa in order to [ookup the reciprocal to an

accuracy of i

1 1. 6

b po™
Sb+ 2P 4 b o< 2 om? o)
S Rt
ignore this term too small
The nmost critical value of b is 1/8, since that is where the reciprocal
function has its greatest effect.

2 < 2782732

-n 12

2 < 2

or that n > 12 so use n =13 bhits.

13

(¢) There are 2 words in the table since one nust use 13 bits

to | ookup the answer.
oL



SCLUTI ONS to Har dwar e

Probl em 2.
_LRESET
£ z S S——
RESET RESET RESET RESET
D
set
CK
(<4
CLOCK
CK Q -4 CK
SERTAL B
INPUT D D
|
-
PARITY BIT ~— /
5 parallel output lines
DATA
AVAI LABLE
LI NE

The bottom row of D-FF's shift in the serial data, one bit for every
clock pulse received. The top row of D-FF's act as a 5 bit circular shift
register with one "1" cycling around along with ¥ "0 "'s, \Wen the "1"
reaches the last D-FF 5 clock pul ses have gone by so that the bottomD-FF's
nust have shifted in 5 data bits.

The first D-FF on the top rowis set to a "1" by RESET (all the rest
of the top rowis set to " 0" by RESET) and it "injects" that "1" into the
circular shift register on the next clock pul se.

95




SCLUTI ONS to Hardware

Probl em 3.
(a) The request rate to nenory is

(0.62 instr menmory fetch/instr + 0.78 data nenory fetches/instr)
* 10 mllion instr/second (CPU decodes 1 instr per internal cycle
= 100 ns))

+ 0.78) x lO7 = llelO6 fetches/sec = 14 MAPS

(b) Peak performance is 100 ns/instruction loxlo6 instr/sec

= 10 MIPS
Addr ess
j | F mDecode“_Genegate , DF 1execute T
580n loons | 200ns  580ms " 200ns |
f ro |
{1 &— B8%ms -

normally the next but on a BC the BC

pi pelined instruction instruction nust wait

shoul d be decoded here until the condition codes

are set by the previous

instruction (i.e., wait

until execution is done).
.. The B¢ instruction causes a |loss of 880ns conpared to norma

pi pel i ning operation.

The "average" instruction tinme is
0.68 x 100ns (normal) + 0.32 x 980ns (BC instr)
~ 38gns/instr ~2.6 MPS

Probl em 4.
(a) The cache is a high speed nenory between the CPU and main nenory. [t
uses some algorithmto try to contain words of menory which it anticipates
the CPU will ask for, thereby providing faster access to those words
than main menory can achieve
(b) A hard-wired CPU is generally faster but it is nmore conplex to build and
once built, its operation cannot changed.
A nmicro-coded CPU is slower, is generally sinpler to design and build
and has the flexibility of changing its instruction set by changing
the mcro-code it contains.

96



SOLUTIONS t o Har dwar e

(c) TTL -- high power, fairly fast logic. |s the standard for SSI
and MsI chips.
CMXS --  very low power, rather slow, with very high noise inmunity.
NMOS -- | ow power, noderately fast. Mstly used in LSl chips.

37



SOLUTIONS to Nunerical Analysis

Probl em 1.

(a) Consider the 2x2 exanple

E .
A = wWth 0 <e<<1
1

with no partial pivoting we get

1
NEOR I
0 -1/e

The growth factor is 1/e which can be arbitrarily large. This exanple
can be easily extended to the nxn case.

(b) Wth no pivoting, after the k-th step of the elimnation, A has
becone

& P
52 62
(k) _ -
A = el Pkl
ez Pke2 Pke2
Cn an
Let @ = max{|a, |, s [ ey 13 Applying the next step of the elinination
gi ves !
Perp = e
ck+2 5
qerp = o T3 K+l
ksl
Gearly |b .| <@ . Suppose inductively that
(1.1) lerenl < 13|
Then
(1.2) \ak+2\‘\5k+]_\§ ol < P N L

98



SCLUTIONS to Nunerical Analysis

Hence l";k+2| < 2@ and so G< 2, provided we can show that (1.1)
eontinues to hold, i.e,, that

Ick+3‘ S \5,k+2\
From the diagonal dom nance of A, we know t hat

|ck+5 | + lbk+ll fla'k+2| .

SO
l Cx+3 l < l 84 l - |bk+]_ l )
< el from (1.2)
Probl em 2.
n n
(a) Let 8y = 2 X and suppose that
j=1
N-ly o Nzl + i th o(w®
fz(s‘l y = S5 xj(l aj-) Wi t |aJ.| < (N=l)u + O(u™) .
N N-1 .
Then fz(sl) = JEjlxj(1+ocJ.) (1+ el) + xN(l+ e2) with |ei| <u for
i=1,2. SO
N N-1
£2(sy) = ;El Xj(l+aj+€l+aj€1) + x(l+ey)
Let
BJ. = ocj et otjel for j =1,2,...,N-1
Py =
Then N
N
f(sy) = T xy(L+ 8y
j=1
and

lle < \O‘J‘\ + ‘Ell + \O.’J.ell
< (N=-Lu + u + O(ug) = Nu + o(ug)

for j =1,2,...,N-1 and
\aNl <u < Nu

whi ch conpletes the proof by induction.

99



SOLUTIONS to Nunerical Analysis

k k
k 2 =k 2
(b) Let s, = Loxs, S;= L Xy and suppose that
j=119 J=127+j
k 2"
fz(sz) = 2 x.(1+a))
jo1 9 J
~k 2k
£2(3) = D ox, (1ra, )
jJ=1 2%] 2 +]
with |ai| < ku + O(u2) for i = 1,2,...,2kJrl . Then
o o
k+1
fi(s, ) = b x.(l+ozj) (1+e) + 2 X (1+a, ) (l+e2)
j=1 9 j=1 2] 2543
with ¢, K u . Let
_ ‘ . k
73’ = aj + e +ozjel for | =1,25...,2
: k k+1
. o= o, + + for = 2°+1,...,2
7J 3 €2 JEQ J y) )
Then JE+
+
sz(slzi l) = Z x.(1+7.)
j=1 4 J
and
|7J.|<ku +u o+ o(ud)
= (k+l)u + o(ue) .
Probl em 3.

a) It follows fromthe nean val ue theoremthat

f(x,) - f(xn) '
Xy - X, =1 (§n>

*

for g e [min x,x ,max(x,x )] . Since £(x,) = 0 we have

(3.1) X - x = - f£(x) /(g
i f f'(gn) #0 . Uing Newton's nethod the (a+tl) -st iterate is given by

Xy = X - f(xn)/f' (xn)

and consequent |y

100



SCOLUTIONS to Nunerical Analysis

X

(3 .2) X L= e /e (=) |

n+l
Since g is between x, and x, and x -~ x, , we can expect £'(x)
to be a good approximation of f'(gn) . From(3.1) and (3.2) we obtain

eyl = G/ T )| R R/ ) | e Py -y

Thus [x.-x | is usually a good error estinate to use as a termination
criteria for a Newton iteration.

(b) Wilizing the estimate of (a) above and the table of values
of r, We see that p =1 and c~ 2/3 . Since Newton's method converges
linearly to nultiple roots with asynptotic error constant (AEC) (m-1)/m
for roots of multiplicity m, it is reasonable to conjecture that our
iterates are converging to aroot of multiplicity 3  ((3-1)/3 = 2/3 ).
If this is the case and we replace f(x) = 0 by £'(x) = 0 we would
improve the AEC, it would becone 1/2, but the order p will still be
one. Using f"(x) = 0 the root becames sinple and the convergence
quadratic, p = 2 .

Probl em 4.
V¢ have
Ip = f<yn-l> * %
= (£, p) *en ) T g
— f(n)(yo) + f(n-l)(el) +.%a + f(en-l) + e
where £(B) _f o f L. o f (n occurrences of f) and
X = @)
Consequent | y,
n-| .
P ARIECS -f“(yo>g+02|f(3><en_j>|
J=

and using Lipschitz continuity

n-1 .
@ o orol + Iyl T

IN

K |y =751 + m?x |ej|Kn'lﬁ:l—

101



SOLUTIONS SYSTEMS

Computer Lanquage Syntax

3

la. [4%%2%%3 = 4% - 65536 rather than (42)° = 4096]

Ib. <expr> = <expr> + <term> ]<expr> - <term> ] <term>
<term> ::= <term> * <factor> |<term>| <factor> |<factor>
<factor> ::= <unsfact>|- <unsfact>; don"t recurse here!
<unsfact> ::= <base> t+ <exp>| <base>
<base> ::= (<expr>) | <identifie~>
<exp> ::= <factor>; or less fancy:
<exp> ::= <unsfact>

Pagin

2a. DPA selects pages from the entire real space for removal, WSA manages pages
for individual user spaces.

2b. Control over total page demand to assure that the residence time of a page
is sufficient to allow its use, relative to its acquisition cost.

2c. Good estimates of WS's and control over number of users to keep aggregate
memory demand for WS's within real bounds. WS is determined by a time
window

Cooperating Processes

3. User ui : FOR EVER

BEGIN
uk = AWAIT (ui,mess);
process;
SEND (ui, uj, mess)
END

Bufferhandler : MONITOR
DECLARE bufferspace, source list, dest list, bufferpointers, state;
PROCESS SEND (ul,u2,m);
bp := acquirebuffer; if bp = null {put ul to sleep; exit);
complete:send sourcelist (bp) := ul; destlist (bp) := u2;
bufferspace (bp) := m;
Wakeup (u2); wakeup waiting u processes;
Return
END SEND:

PROCESS AWAIT (u,m)
op := locate buffer-for (u); if none {put u to sleep; exit};
m := bufferspace (op);
dest := sourcelist (op);

wasbusy := release-space (op); + IF wasbusy complete;
return (dest)
end AWAIT;

102



Solutions Systems

Cooperating Processes (continued)

INTERNAL PROCESS ACQUIREBUFFER;
If full Estate := busy, return (null)};
else find bp;
return (bp)
END ACQUIRE-BUFFER ;

INTERNAL PROCESS RELEASESPACE (p)
Mark p free;
state := not busy;
return (pstate)
END RELEASE SPACE

Initialize: Set bufferpointers, state

END buffer handler .

Computer Lanquages

4a. Little support code at run-time is required, and execution can be
more efficient. The former, in-turn, reduces machine size requirements
and improves compiler consistency and portability.

4b. Parameters are inflexible, strings are primitive, arrays cannot be
adjusted, Ffile access is limited, garbage is not being collected.

'Language System

5 1. Heap just grows with every NEW statement.
Problem: can run out of space, unsuitable for major systems.

ii. Heap is managed as stack, a DISPOSE function allows popping of the stack.
Problem: User has to understand and use the mechanism correctly, can
loose records he is still using.

iii.. Records are linked back to all of their references, dispose checks
all or selected records for safe removal. Heap space contains a free
list or is compressed as nheeded.

Problem:  complex mechanism, difficulty in releasing unused circular
ring structures.

iv. Garbage Collection is applied to the heap.
Problem: Pointers and record boundaries have to be recognizable,
imposes constraints on code generation and requires extra space. The
lack of a single structure root in PASCAL records makes circular
structures hard to collect. Compression is very difficult.

103



SOLUTIONS to Theory of Conputation

Probl em 1.

(a) | T F (i.e., the standard interpretation of "=").
T T F
F FT

(v) P> (P oPF).

(c) Since the axioms and rules are sound for the nonstandard interpretation
for "o it follows by induction on the length of proofs that every
formula provable in the given systemis valid for the nonstandard
interpretation. P> (P>P)is not valid for the nonstandard
interpretation (take P = F ), and therefore is not -provable,

Problem 2.

The set S, of decimal representations of positive integers divisible
by any positive integer k is regular. Proof: S IS recognized by the
foll ow ng automaton, R, - By has k states Qyreeer G 1 - There is a
transition fram state q; to state a5 3 | abeled n iff ((i%10)+n) nod k = |
qy is theinitial state, and the only accepting state. (At each stage,

R, isin state i iff the part of the nunber read so far is equal

modulo k to i .)

Probl em 3.
"i+j is odd, and ja, =1, and |p| =1."

Probl em k.
The problemis in wp, since, if Rl' . Rn can be placed into R,

without overlap, then the R; can be placed in Ry w thout overlap in such
a way that the coordinates of the lower left hand corners of all of the R,
are integers. This is shown as follows. Suppose that there is a |egal

pl acement of the li{ in Ry - Consider the leftnost block whose horizontal
coordinate is not an integer. This block can be noved over, wthout overlap,
to a position with integer horizontal coordinate. Repeat until all blocks

have integer horizontal coordinates. Do the same for vertical coordinates.

104



SCLUTIONS to Theory of Computation

To determ ne whether there is a legal placenent of the Ry in R, in
nondet erministic polynomial time, guess orientations. and integer coordinates
for the blocks. Overlap can then be checked in polynomal tine.

Probl em 5.

(a) Let €yr8yreee be an enuneration of the recursive functions.
Take

f(n)

n

max (8i(n)) + 1
i<n

Then, for each n, ¥(m > n) (£f(m) > g (m))
(b) S ={n|a@(f(i) = n)} has the desired property. Suppose Rc S
is recursive and infinite. Define g(n) = the n-th nmenber of R when R

is listed in increasing order. Then g(n) is a recursive function, but,
g grows nore rapidly than f . Contradiction.

105



Winter 198¢ - Comprehensive Programming Proj ect
Display of Mathematical Expressions

The goal of this problem is a program that takes as argument
a list structure representation of a mathematical expression in prefix
form and prints it in standard two-dimensional format. For example,
the expression

(plus (expt x 2) (times 2 X y) (expt y 2) )
should be displayed as

2 2
X +2XY+Y

The problem is made more difficult by the possibility that the
expression cannot fit on a single line. It is okay to “break™ an expression
across lines before sum and product operators, provided those operators are
not embedded within exponential expressions or quotients. Consider, for
example, the following expression.

2 3 4
OMEGATIME  MEGA TIME MEGA TIME QMEGA TIME
14— + e - __
2 6 24 12¢

5 6 7 8

MEGA TIME CNEGA TIME MEGA TIME CNEGA TIME

+ W - P-4 e +mM--M--- 4 -

128 51348 46322 362886:

Obviously, such expressions can be broken at a variety of places. Your
program should choose a display format that minimizes the total number of
breaks subject to the constraint that at least half of every line is
utilized (whenever the expression is more than a half line long).

In your implementation you may use Interlisp, Maclisp, AlgolWw,
Pascal, or Sail. Your efforts will be graded according to the criteria
ot correctness, clarity,efticiency, and documentation.

Inputting EXxpressions

Expressions are built from integers and alphanumeric identitiers
that begin with alphabetic characters. You need consider only four

operators, viz. addition (plus), multiplication (times), division (quot),
ana exponentiation (expt) .

Expressions should be represented in LISP-like list format. For

example, the tirst expression above would have the following box and
poilnter structure.

106



;
T T T oy ~—
[eimes] —4 2 e [T Y

| expt; . | Jox T ——;4 2

'

Write functions ADD, MUL, DIV, and PCW that take expressions
as arguments and produce the corresponding list structure. For example,
to create the above expression, one would write the following (in LISP) .

(ADD (POW 'X 2) (MUL 2 'X 'Y) (POW 'Y 2))

While DIV and POW are inherently binary operators, you may wish
to write ADD and MUL as n-ary functions. In some languages, it is not
possible to define subroutines with an arbitrary number of arguments. If you
select one of these languages, you may write several series of functions
(ADD2, MUL2, ADD3, MUL3, ...) that take the number of arguments indicated
in the name. For example, the PASCAL version of the above expression
would be as follows.

ADD3 (POW ("X", "2") ’ MUL3 ("2"’ “X"’ "Y") , P(JN("Y“,"Z"))
Display Format

Displaying expressions tastefully is an art with a large number
of conventions. For the purposes of this problem, your program need
use only the following rules.

1. Sums should be displayed with an infix *+ ". (That's space, plus,
space.)

2. Products should be displayed with an infix space or "=*".

3. Quotients should be displayed as numerator over denominator, with
the quotient bar made of dashes occupying the line between the two.
The numerator and denominator should be centered within the quotient.

4. Exponential expressions should be displayed with raised exponents,
in which the lowest line of the exponent is one above the highest
line of the base (with the exception noted below) .

5. Parentheses should be inserted where necessary to avoid ambiguity, e .g .

A A 2 2 2 X X X
. (=) A+B (A + B) X X))
B B

- Note that after a closing parentheses, an exponent is lowered to the
line above the parentheses. Obviously, these are not the only cases
of ambiguity.

107




Breaking Lines

The constraints on breaking expressions across lines are as given
in the introduction. One good approach is to put as much on a line as
will fit, then go on to the next line. Unfortunately, this will sometimes
fail to satisfy the half-line requirement, as in the following example.

22 3.3 44 55 6 6
CMEGA T  CMEGAT CMEGAT CMEGA T CMEGA T MEGA T
- -+ + - - - - —— = - - -
R R R R R R
22
OMEGA T + QMEGA T
+ -
2
R
22 33 4 4 55

MEGAT + (MEGAT + OMEGAT + O(MEGA T + (MEGA T
b — .

R

In such situations it is necessary to try a different set of breakpoints.
Just taking a tragment trom the previous line will sometimes work, but the

etrect may propagate. In general, a combinatorial search is required. In
implementing an efficient search, you may find dynamic programming techniques

helpful.

There are some expressions for which no display can be generated that
satisfies the given constraints. If the half line constraint cannot be
satisfied, your program should choose a set of breakpoints that minimizes
the total number of lines. If the input contains a fragment that does not
fit on a single line and cannot be broken (e.g. a quotient), you may have your
program do whatever you wish (e.g. print an error message, write quotients
in infix form (A/B) with a breakpoint at the slash, etc.).

Hints
0 You should structure your program into three distinct parts:

1. a “dimensioning” subroutine, which determines the size of
subexpressions and makes a list of possible breakpoints

2. a program that decides which breakpoints to use
3. a program that prints the expression on the terminal
The graders will 1ook for these three subparts in exemining your work.

0 This is ¢ “data structure intensive” groject. Choose good data
structures and document their significance carefully.

0 To facilitate testing your program, use a global parameter called
LINELENGTH whose value determines how wide an expression may be.

108



Test Data
Test data for your program will be given in two sets. The
tirst set is attached here. The second set will be available after

9:2v a.m. on Monday, January 21, in Jacks 2¢6. Turn in your source
program, associated documentation, and the output from all the test data.

Questions

If you have questions about the problem, you may contact

Rod Brooks RODESAIL 49/-1604 856-0979

or

Mike Genesereth GENESERETH@SUMEX  497-37/28

109



Winter 198¢ - Comprehensive Programming Project
Test Data |

1. (SETQ LINELENGTH 40.)
(DISPLAY (DIV (POW (aDb (POW 'X 2) 1) 2) 2))

2 2
(X + 1)

2

2. (DISPLAY (POW "X (POW "X 'X)))

3. (DISPLAY (POW (POW "X 'X) X))

X X
x )

4. (DISPLAY (POW 'E (DIV 'OMEGA 2)))

5. (DISPLAY (ADD (PCW 'BASE'EX1)
(POW 'BASE 'EX2)
(POW 'BASE 'EX3)
(POW 'BASE 'EX4)
(Pow 'BASE 'EXPONENT100)
(POW 'BASE 'EXPONENT20¢)
(POW 'BASE 'EXPONENT2£0)

(POW 'BIGBASESYMBCL 'SUPERBIGEXPUNENT)))

i
i EX1 EX2 EX3
1 BASE + BASE + BASE

EX4 EXPONENT100
| + BASE + BASE

EXPCNENT 20¢ EXPONENT 28¢
i + BASE + BASE

\ SUPERBIGEXPONENT
| + SUPERBIGBASESYMBCL

110



Winter 19sv- Comprehensive Programming Project

Test Data Il

l. (SETQ LINELENGTH 494.)
(DISPLAY (POW (DIV (ADD (PUW 'X 4) (PUW 'X 3) (PUW 'X 2))
2

2))

2. (DISPLAY (DIV 'A (DIV 'B 'Q)))

A

B
=)
C

3. (DISPLAY (ADD 'A (ADD 'B 'C) 'D))

A+ B+C) +D

4. (DISPLAY (ADD (POW 'SUPERBIGBASESYMBOL ' SUPERBIGEXPONENT )

(POW 'BASE 'EXPONENT3(¢)

(POW 'BASE 'EXPONENT200)

(PCW 'BASE 'EXPCNENT1u¥)

(POW 'BASE 'Ex4)

(POW 'BASE 'EXJ)

(POW 'BASE 'EX2)

(POW 'BASE 'EX1)))

SUPERBIGEXPONENT
SUPERBIGBASESYMBOL

EXPONENT 309 EXPONENT200
+ BASE + BASE

EXPONENT100 EX4
+ BASE + BASE

EX3 EX2 EX1
+ BASE + BASE + BASE

111



5. (DISPLAY (ADD (POW 'BASE 'EXPONENT1)
(POW 'BASE 'EXPL)
(POW 'BASE 'EXP2)
(POW 'BASE 'EXP3)
(PoW 'BASESYMBOL 'EXPONENTSYMBOL)
(POW 'BASE 'El) (POW 'BASE 'E2) (POW 'BASE 'E3)
(POW 'BASE 'EXPONENT2)
(POW 'SUPERBIGBASESYMBOL 'SUPERBIGEXPGNENT)))

EXPONENT1 EXP1l
BASE + BASE

EXP2 EXP3
+ BASE + BASE

EXPONENTSYMBOL El
+ BASESYMBOL + BASE

E2 E3 EXPONENT?2
+ BASE +BASE  + BASE

SUPERBIGEXPONENT
+ SUPERBIGBASESYMBOL |

6. (DISPLAY (DIV (ADD (POW 'E (TIMES 2 'QYEGA))
(POW 'E (TIMES 3 'OMEGA))
(POW 'E (TIMES 4 'QMEGA))
(POW 'E (TIMES 5 'OMEGA)))

2))

| ERROR - Expression too wide

7. (DISPLAY (pow (ADD (pcw 'E (TIMES 2 'QUEGA) )
(POW 'E (rIMES 3 'OMEGA))
(POW 'E (TIMES 4 'CMEGA))
(POW 'E (TIMES 5 'OMEGA)))

2))

| ERRCR - Expression too wide 1

8. (DISPLAY (POW 'E
(ADD (POW 'E (TIMES 2 'OMEGA))
(POW 'E (TMES 2 'MEGA))
(POW 'E (TIMES 4 'CMEGA) )
(PoW 'E (TIMES 5 'QMEGA)))))

| ERROR- Expression too wide

112



Spring 1979/80 Conprehensive Exam nation
Anal ysis of Algorithns
Problem 1. [18 points]
Consider a set of n disjoint |ine segments |ying parallel to the
x-axis. \Wien one stands at (0,-=) and looks toward the segments; sone

of them may not be seen. For exanple, segnents I and I5 cannot be
seen in Figure 1 (11 hides behind IEUI%) .

Y
N I L
I,
r——) .T.
—_— h‘
I3
;. X

@ observer at (0, -w)

(a) [6] Gve an algorithmthat, for any input set of segments

S . {(al’bl;yl) ) (32:b2§3’2) P (an’bn;yn)} » canputes the subset

s'c S of those segnents that cannot be seen. Note the triplet
(ai,bi;yi) represents the |ine segment connecting the points
(ai’yi) and (bl’yi)

(b) [6] Gve an algorithmthat runs in time O(n log n) .

(¢) [6] Suppose the segnents do not necessarily lie parallel to the x-axis,
Gve an Qn log n) -time algorithmfor computing the hidden |ine segnents.

(See Figure 2.)

Fi gure2

113



Anal ysis of A gorithms Magi ¢ Number

Probl em 2. [18 points]

Let A =2a2a...a and B = by by ... b be two binary strings
of length n . A conposition of A and Bis a string of length 2n
obtained by nerging A, B in any manner. For exanpl e 011001 is

a conposition of 010 and 101 (the underlined part is 010 and the
rest is 101 ).

(a) [12] Gve a polynonial-tine algorithmthat deternines if cis a
conposition of A and B, given the input strings A, B and ¢ .
(v) [6] Make your algorithm run in tine O(nZ) ,

Problem 3. [24 points]

One of the nore bizarre proposed solutions to |ast fall's 'bicycle
crisis" was to have a row of n '"sheds", nunbered 1,2,...,n , each of
which could hold one bicycle. Sheds have closed doors, and you cannot
see into one without (tenporarily) opening its door. These woul d be shared
by m> n people, no more than n of which would be at work at one tine.
Wien arriving at work on your bicycle, you woul d open shed doors according
to some agreed-upon strategy, eventually finding an enpty shed (not necessarily
the first enpty one encountered), placing your-bicycle there, and closing
t he door.

On leaving work, you would open doors until you found your bicycle
(which need not be in the shed you left it in); possibly you would rearrange
sone other bicycles, and then you woul d | eave.

Formal |y, an algorithm consists of a sequence of one or nore steps.
A step consists of the follow ng operations for sone i

(1) Open the door of shed i

(2) If you have a bicycle with you, and shed i is enpty, you may place
that bicycle in shed i

(3) 1f you have a bicycle with you, and shed i has a bicycle, you may
exchange bicycles.

(4) 1f you have no bicycle, and shed i has a bicycle, you may take
that bicycle from the shed.

(5) dose the door to shed i

114



Analysis of Al gorithms Magi ¢ Nunber

In operations (2),(3), and (L), the decision whether to manipul ate
bi cycl es can depend only on whether the bicycle you hold is your own, or
whet her the bicycle you see in the shed is your own, i.e., you can recognize
your own bicycle, but cannot distinguish others.

A poor strategy we could follow is for each person, on arriving, to
exam ne all sheds 1,2,...,n until an enpty one is found, place his
bicycle there, and renenber the nunber of the shed used, Then, on |eaving,
since no one ever noves bicycles, sinply go to that shed and renove the
bicycle. This nmethod requires Q(n) steps on arrival and (1) steps
on | eaving.

The problemis to devise another strategy, to be followed by all
users of the sheds, that requires only o(«/r-l) steps on arriving and
leaving. An informal description of how to choose the sheds i on which
steps are perforned, together wth how the decisions of operations (2)-(k4)
of these steps are nmade, will be acceptable.

115



Artificial Intelligence Magi ¢ Nunber

Problem 1. [10 points]
Answer the follow ng questions.

(a) [2] What is the advantage of a semantic network over the "record-oriented"
representations described in data base managenent research in which each
row represents an entity and each colum represents an attribute, i.e.,
essentially tables.

(b) [2] What is the difference between backward chai ning and Gps?

(c) [3] What is neta-planning? State at |east two meta-planning heuristics.

(d) [3] Draw a small (and-or) search tree with branching factor of 2
and depth 4 . Assign values to the |eaf nodes so that the -
search algorithm searches as little as possible.

Problem 2. [10 points] Predicate Calcul us.

(a) Encode the follow ng sentences as fornulas in the predicate cal cul us.
(1) [2] "The postman's brown hat is at the cleaner's."
(2) [2] "Everybody |oves sonebody." (2 neanings)
(3) [2] T"Mere are 23 postmen in Palo Alto."

(b) Find the nost general unifier for the follow ng sets of formlas,
where lower case letters signify variables.
(1) (2} P(u,v,4) , P(£(x),w,x) , P(£(y),2,2)
(2) [2] P(f(x),x) , P(z,£(z))

Problem 3. [20 points]

One aspect of quizmanship is selecting a problemto work on next. On
many exans you are instructed to look over the problems before starting in
order to help in making this judgnent. As ah exanple, consider how one
mght formulate a plan for taking the conprehensive, i.e., determning which
order to work on the problens. You may assune that students are given point
val ues for each problemand are told there will be no partial credit.

(a) [5] Arthur, a Master's student, nust maximze his overall score and
realizes that choosing the optimal subset of problems to work on is a
bin packing problem Mreover, he is not sure he can accurately guess
how | ong each problemwi |l take; and so he decides to use hillclinbing
to search the tree of possible orderings. Wat sinple measure shoul d
he use in conducting this search? Is the resulting plan optinmal?

116



Artificial Intelligence Magi ¢ Number

(b) {5] Beatrice is a Ph.D. candidate and nust denobnstrate minimal
conpetency of (let's say) 20 points in each area. she decides to use
a two phase approach. In the first stage, she strives for 20 poi nt's
in each area using mniml tine;, then she tries to maxim ze her
overal | score. \hat formal search method should she use in the first
stage and what are the relevant cost and/or heuristic functions?

(c) [5]1 Carleton has already passed the examand is taking it again
for the fun of it. He boasts that he can al ways predict precisely
how long it will take himto solve a problemand conplains that
Beatrice's two-phase strategy is non-optimal. Is he right? If so,
why? If not, show a counterexanpl e.

(a) [5] Suppose we wanted to build a robot able to decide what strategy
to use. What know edge would the robot have to have?

Probl em 4 [20 poi nt s]

A particular conputer inplenmentation of the Blocks Wrld offers two
commands to the user. PUTON(x,y) gets x onto y so long as x is a
moveable Object, y is a brick or the table, and both have clear tops,
PAINT(x,c) changes x's color to ¢ , provided that x is directly on
the table. Use the follow ng vocabulary in answering the questions bel ow

BLOCK -- set of all manipul able objects.

BRICK, PYRAM D, WEDGE -- sets of objects with the corresponding shapes.
Bl, B2, P1, P2,Wl, W2, TABLE -- objects.

CLEAR -- one place relation signifying a clear top.

ON -- two place relation, a subset of BLOCK X(BRICKU {TABLE))

COLOR -- function from objects to hues.

RED, GREEN, BLUE, YELLOW -- hues.

(a) (3] Wite STRIPS-like prerequisite, add, and delete lists for
PUTCN.

(v) [4]1 Wat sequence of actions would be required to achieve the
goal (AND (ON Bl B2)(COLOR B1 RED)) in the follow ng situation:

blue ———s|B1}| B2

117



Artificial Intelligence Magi ¢ Nunmber

(¢) [5]1 Suppose a robot using the Wnston concept fornation algorithm
wanted to |earn about PuTON by |ooking at exanples of its operation.
Show a sequence of block configurations that woul d teach the robot

the prerequisites of PUTON.,

(d4) [5] waat could go wong? Present a legal training sequence that
m ght give the robot an_incorrect nodel of PUTON's prerequisities..

(e) [4]  Suppose the robot used backward chaining and means-end anal ysis
to solve problems. Devise a test problemto detect the error produced

by the sequence in part (d).

118



Har dwar e System Magi ¢ Nunber

1. Subroutine Linkage Architecture (12)

a. (3) What machine registers are affected by CALL to a subprocedure?
b. (4) How do you best transmit

i) simple (i.e., single word) parameters
ii) complex (i.e., record or array) parameters

c. (5) Discuss the effect of recursive calls in these linkages.

2. High Speed Arithmetic (8)

Discuss how pipelining complicates the handling of floating point
exceptions (i.e., overflow, underflow, . ..).

3. Floating-Point Representation (15)

The following table contains real numbers and their (octal representations
in an 18-bit floating-point scheme. Describe this particular floating-
point scheme.

-4 615777 1/4 172000
-3 601777 1/3 172525
-2 603777 . 1/2 174000
-1 605777 213 175252
! 202000 220(2]2-1) 377777
2 204000 -220(-2]2-1) 770000
3 206000 2"32 002000
4 212000 -2-32 405777

5. Communication Alternatives (5)

Describe the difference between synchronous and asynchronous
communication protocols.

119




Hardware Systens Magi ¢ Number

5. Combinational Circuit Problem (10)

The boolean Fibonacci function f is definded to be TRUE for the
binary inputs X13 X9s X35 X4 corresponding to EI, 2, 3, 5, 8, 131
and FALSE otherwise:

a. (5 Give the minimal sum of products expression for f.

b. (5) Give the minimal product of sums expression for f.

6. Circuit (10)
Sketch a circuit to implement the following precedence function.

X means don"t care.

INPUTS OUTPUTS
A B C D PA PB PC PD
! X | X | X 1 0 0 0
0 |1 [ x |x 0 ! 0 0
0 [0 [ I [x 0 0 1 0
0 0] 011 0 0 0 1
0 |l0ojO0]O 0 0 0 0

120



Nunerical Analysis Magi ¢ Number

Nunerical Anal vsis

1. (10 points) CGaussian Elimination

A (3 points) Suppose A= LU are n xn matrices with L unit

| ower triangular and U upper triangular. Gven L and U, how can det(A)

be obtai ned?

B. (4 points) How many multiplications and divisions are required to

obtain det(a) by the method of part A ? Include the cost of factoring A .

Gve the leading term

¢. (3 points) How many nultiplications are required by the obvious

expansion by cofactors nethod?

2. (20 points) Sparse Chol esky Factorization

A. (13 points) Suppose Ais a symetric positive definite n xn matrix.

The rows of A contain |eading sequences of zeros; in fact

aij=0 for a||1ij<fiii,

1

| A

i

| A

n .

The nunbers fi are known in advance. Gve a pseudo-al gol procedure for

computing the Cholesky (tLT) factorization of A which makes as much use as

possi bl e of the structure of A .
- B. (3 points) Gve a multiplication count for your nethod.

¢C. (4 points) Suggest an appropriate data structure.

121




Nurerical Anal ysis Magi ¢ Nunmber

3. (15 points) Nonlinear Equations-.

Design a subroutine to compute QC . Assune the conputer uses rounded

binary floatin oint arithmetic with a 24 bit fraction.
y gp The routine should use

a rapidly convergent iterative nethod and stop when the approxi mation x ot
satisfies

X = % 2=20
—% <

You should consider:

(1) reducing the range of values of C wthout introducing rounding error;
(i1) generating a good initial guess;
(iii) estimating the number of iterations required.

The nethod should use little storage; large tables are prohibited

4. (15 points) Polynom al Approximation

(3 points)
A Let =0 -2 i =
- Let r(x) =x" -2 X What is ||r |l = sup [rx)| 2
-1 <x<1
(6 points) T

B. Show that if qg(x) is a polynonial of degree < 2 t hen

1= = qe) Il > lreo I

You may use:

Theorem if fe C[-1,1] and p(x) is a pol ynonial of degree o such that

f (x) - p(x) achieves its maxi num val ues + max
- =l<x<1 lf(X) = P(X)l

with successively alternating signs at h + 2 or more points in [-1,1], then

for any polynomal q(x) of degree <n

e -pll <llg£-q] .
.. (6 points) Prove the theorem

122



Mat hemat i cal Theory of Conputation Magi ¢ Nunber

Problem 1. Recursion Theory. [15 points]

Let x be a real number with 0<x<1. W say that x is a
"recursive real" if there exists a recursive function f napping the
non-negative integers into {0,1} which gives a binary expansion for X
(i.,e., X= Z £(1)2™). Question: If x andy , with 0 <x <1,

i=0
0<y<1l, =xyC1l, are recursive, nust x+ty also be recursive?

Justify your answer.

Problem 2. Logic. [15 points]

The conpactness theoremfor the predicate calculus with equality is
as follows:

Theorem Let S be an infinite set of sentences of the predicate cal cul us

with equality. Suppose that every finite subset of S has a nodel. Then
S has a nodel.

Use the conpactness theoremto show the following: If ¢is a
sentence of the predicate calculus with equality such that for each nunber
n there is afinite nodel of ¢ with nore than n el enents, then p has
an infinite model.

(Note: A model for a theory in the predicate calculus with equality
must interpret the equality relation as identity in the nodel.)

Problem 3. Automata and Languages. [15 points]

Let G be a context-free grammar with n productions, each of which
has at nmost mletters on its right hand side. Suppose that the |anguage
generated by G consists of just one sentence s. Gve a tight upper
bound for length of S in terns of n and m. Justify your answer.

Probl em 4.  NT-conpl et eness. [15 points]

The firehouse problemis: given an undirected graph G, a maximm
distance d , and a nunber of firehouses k , can you choose k vertices
as firehouses so that every vertex is within distance d of at |east one
firehouse.

123



Mat hematical Theory of Conputation Magi ¢ Number

(a){ 51 Prove that the firehouse problemis |V-conplete.

(6) [51 Suppose d is fixed instead of being an input paraneter.
I's the firehouse problem still NP-conplete?

()] 51 Suppose k is fixed (but d is variable). |Is the firehouse
problemin this version NP-conplete?

124



Sof tware Systens Magi ¢ Nunber

1. Syntax Notation (10)

a.(5) Write the syntax definition for FACTOR, given below in
PASCAL diagram form, using BNF.

Factor
1 unsigned constant

variabTsg d

- function identifier [—< G pxnm«inn*.m

@ expression

{ not — factor

~© O

. N\ :

expression .. expression
N\

b.(5) Discuss briefly the advantages of the two notations.

2. Paging (10)

a. (3) Specify the information needed by a paging system to decide when
to release or rewrite memory pages to the paging device.

h. (3) Why are larger pages better than small ones?

c. (4) List four parameters that affect optimal page size and give
their effect. )

125



Sof twar e Systems Magi ¢ Number

3. Language (11)

A PASCAL record can have variant parts.

a. (1) Why are these variants desirable?

b. (1) What is the problem with them?

c. (2) Suggest a solution to overcome the problem.

d. (3) You are writing these new PASCAL records out to a file, another
program is to read them. What happened to your solution?

e. (4) How would you fix that?

4. Ethernet Communication Protocol (5)

a. (1) In this protocol, who does error detection and correction?

b.. (4) How is that done? Write steps in a very high level language
format.

5. Code Generation (6)

Write in an assembly language [either HP2xxx, DEC10, 1BM370, DEC11, or MIX]
the code to be generated for the CASE statement in the PASCAL program
given below.

IT no match is obtained the case statement should be skipped.
(Do not concern yourself with syntactical details of the language.)

PROGRAM  SALARYLIMITS
VAR ED, SAL, BSSAL, MSSAL, OTHERSAL : INTEGER;

BEGIN
CASE ED OF
I : SAL := PHDSAL;
2 1 SAL := MSSAL;
3 o SAL := BSSAL;
9 : SAL := QOTHERSAL
END;
END.

126



Sortware System Magic Number

6. Cooperating Processors (10)

a. (5) You have multiple processors sharing memory. A processor
can lock units of memory.

What are two protocols to prevent deadlock?
b. (5) Which protocol would be best in a distributed computing

environment, i.e., the processors communicate to storage
via potentially slow communication lines, and why?

7. Binding (8)

Describe the difference in argument binding between ALGOL and LISP.
Show an example.

127




Analysis of Al gorithms - Solutions

Problem 1 (a), (b)

There are several possible approaches to this problem For instance,
it can be solved by sorting the line segments either by x or by vy
co-ordinates. W shall describe a solution that sorts by x co-ordinates
that is easily adaptable to part (c).

1. Sort the endpoints of the intervals (both left and right) by x
co-ordinate.

2. Scan through the endpoints in increasing order on x-co-ordinate.
Maintain a balanced tree of line segnents having a point with the current
x-co-ordinate. These segments are ordered in the tree by y-co-ordinate.

(1) To process a |eft endpoint a; ! Enter i with value vy in the
tree. If i is the segnent in the tree with smallest y-value,
mark i visible.

(ii) To process a right endpoint b, ! Delete i fromthe tree. Mark
visible the segnment in the tree with smallest y-value.

After processing all endpoints, the ones marked visible are indeed
visible; the Oothers are not. Same care nust be taken to deal with ties
in the x-co-ordinates of endpoints, depending upon how exactly one w shes
to define "visible".

This algorithmrequires Qn log n) time for the sorting of 2n
nunbers in (i) and Qnlog n) time for n insertions and n del etions
in (ii); each tree operation takes 0(log n) time using your favorite
bal anced tree data structure.

(c) The crucial point is that if two intervals overlap, then anywhere

along their overlapping part the order of their y co-ordinates stays
fixed, because they don't intersect:

«— larger y

-\.(—-— smaller vy

] e — m—— o~ —

128



Anal ysis of Al gorithns Sol utions

V& use the same tree and operations as in (a) and (b), but
during every insertion and deletion we reconpute y co-ordinates of
segments al ong the search path. Each such reconputation takes constant
tine, and the nodified algorithmhas an Q(n log n) time bound.

Problem 2 (a), (b).

Define s(i,j) for O0<i<n, O<j<n tobetrueif
©sCy v vy Cyyy 1S @ CONPOSI tion of ey, 0 O%K and bl,bz,...,b_.J,
and fal se otherwise. W want the value of s(n,n) , W can conpute the

s C

values s(i,j) by using the recurrence
s(0,0) = true

s(i,j) = (s(i,j-1) and Civy = bj) or
(s(i-1,3) and City = ai) .

A double loop iterating over i and j in increasing order conputes
s(i,3) in o@3) tine.

Probl em 3.

Divide the sheds into [vnl (or fewer) groups, each containing Vol
bikes. W nmaintain the property that if any bikes are in a group, they are
packed into the first sheds of the group. W also make sure that, although
bi kes are noved, no bike noves from one group to another.

On_arriving: Check the last shed of every group to find a group
with an enpty shed. Check all sheds in the group to find the first enpty
one. Put your bike init. Time: o(vn) .

On_| eavi ng: Check all sheds in the group in which you left your
bike to find your bike. Renove your bike and replace it by the bike in
the last filled shed in the group. (If your bike was the last, no
repl acenent is necessary.) Time: o(vn) .

129



Artificial Intelligence - Solutions

Probl em 1.
(a) A semantic network saves space when the data base is sparse,
i.e., not every relation has a value for every entity.

(b) Backward chaining is a problem solving method in which one chooses
an operation that achieves a goal, then sets up the prerequisites for that
net hod as subgoals. 'There is no constraint on how the operations are chosen.

GPS uses a table of differences to determne which operation to
perform

(C) Meta-planning is planning applied to the planning process itself.
The following are two typical heuristics.
1. Solve hard problems before easy ones.
2. If you can't prove a claim try to disprove it.

B . ]
$% 4 vd b o
Probl em 2.

(a) 1. @ Hat(h) A Belongs(h, The-Postman) A COLOR(h, BROM) A LOC(kr, O eaner)

2. ¥x 3y Loves(x,y)
Ty VX Loves(x,y)
5. EDy ... 1325 Postma.n(pl) A . A Postman(p25)
AP APy AP # P A0 A pl FPx
A P‘_o % P3 /\ e,
(b) 1. u/f(A , VIA, w4, xIA, YA

2. hone

130



Artificial Intelligence - Solutions

Probl em 3.

(a) He should maxinize points/ expected tinme. This isn't optinal
because when he cones near the end, he may choose a problem that requires
nore tinme than he has left. In other words, he must take into account the
amount of time he has remaining.

(b) Branch and Bound is nost appropriate with time as her cost
function and 20 points on her goal .

(c) He is correct; Beatrice's strategy is not optimal for him He
shoul d maxim ze points/time subject to the constraint that he gets 20 points
in each area. In mnimzing time, Beatrice mght choose a problem for which
points/time is not high.

(d) The robot would have to know the goal of the test and the
characteristics of each search nethod.

Probl em &.

(a) prerequisites for PUTON(x,y): CLEAR(x)
CLEAR(Y)
xe BLOCK
y € BRICK |y TABLE

delete list: ON(x,2)
CLEAR(Y)

add list: Cear(z)
oN (%, )

(b) PuTON(P1, TABLE)
PAINT(B1, Red)
PUTON(BL, B2)
(c) The followi ng sequence of operations would teach Wnston's
program the -prerequisites for puron. In each case, assume that the goal

is toput Xinto Y.

1. X Y|

2. é{\ E generalizes X to manipul abl e objects
-~ Jon :

3 X JYN requires Y to be a block

L '_)Q denonstrates that X need not be

‘E_] on the table

-

131



Artificial Intelligence - Solutions

5. EE] ~ denonstrates that Y need not
r—-——w
X g~ be on the table

6. Lo requires that X be clear
x]

7. [:] requires that Y be clear

(d) If 2 differences are introduced at once, the program ni ght
concentrate on the wong property. For example, suppose examples 1 and 2
were replaced with the follow ng

1. / D 2. —
red —> 2| viue—s ¥

The program might infer that a block must be red to be noved and m ght not
realize the restriction on Y .

(e) One could either request it to put a block into a pyramd or
to move a blue block. In the first case the program woul dn't realize that
the situation was inpossible; in the second it would spuriously paint the
bl ock before moving it.

132




Har dware - Sol utions

Hardware
a) Needed at CALL:

i. Register to save current instruction counter.
ii. Current instruction counter gets new address.
iii. Parameter values or address must be obtainable (perhaps via i or ii).
iv. General purpose registers have to be saved or protected.

b) i. Single word parameters are most efficient using value, or if
. needed, value-result.
ii. Large parameters are best passed by reference, to avoid large moves.

¢) To handle recursion a stack is needed to handle previous past instruction
counters (a.i) and parameters (b.i). Arguments, otherwise passed by
reference, may have to be stacked if arbitrary computation is possible
at intermediate levels.

High Speed Arithmetic

In a pipelining machine information about instruction which may cause a
floating point exception has to be carried along until no further failures
are possible. Enough information has to be kept of all instructions to
allow restart - this means mainly that no stores precede earlier floating
point stores.

Simply flushing the stack on detection of floating point error leads to
problems in error indication to the user and in programming of adequate
error recovery.

nonnegative.

- - = H - M O i
bit 1: sign bit; if 1.number is negative

bits 2-6; exponent + 16; thus the possible binary values 00000 through
11111 = 31]0 represents exponents -1610 through +15. The base is 4.

bits 7-18: mantissa, a 6 digit base 4 quantity with point between the
first and second quaternary digits. If bit 1 is 1 the mantissa holds
the I°s complement of the magnitude.

Numbers which cannot be represented exactly (e.g., 1/3, 2/3) are
chopped.

133



Har dware - Sol uti ons

Communication Alternatives

In Synchronous Communication transmission is continuous. When no data
are available, IDLE characters are put into the transmission stream.
Clocks are derived from the signal.® Transmission can proceed at a high
rate because of the stability of transmission.

In Asynchronous Communication the transmission is initiated when data

are available. A start bit precedes the data, and at least one stop bit is
inserted to account for differences in clock initiation time and clock speed,
prior to transmitting more data. More bits are transmitted per data

element and transmission rates tend to be lower.

If X4X3XoX1 represent a 4 digit binary number between 0 and 15, then
f(x4,x3,x2,x]) has the given table of values, f is true if XgXXoXy €
{goa1, o0Q10, G011, 0101, 1000, 1101}

Wd’
X1%2 00 01 11 10

00 |0 }O ,tO 1

01 1)1 ! 0

ml1]o |o o

0f(212(0 0 0

A minimal sum of products form 1is fF =x3x4x1x2+x4x1x2+x3x1xx+x1x3x4

_ - 1. - -
Since a minimal sum of products for f XXyt XqXg F XoXy + XoXaXp F X XoXq

Then o _
f = (x1+ x4)(x1 + x3)(x2 + x4)(x2 + Xy ¥ x4)(x1 + Xy + x3)
A ' PA
B I A PB
C 1

134



Nunerical Analysis - Solutions

2. a) CObserve that the factor L can fit in the nonzero part of A:
L. =0 if j<f, , 1l<ic<mnmn
i i - =
Mdify the |oop bounds in Chol esky algorithmto avoid operating

on zeros:

for k:= max(f ,£ ) toc
r’c

o © - * .
Qrc' Qrc 2rk Q’Ck i

for ki =f to r-|
r
.= - *
L lrr' . Q’rk Qrk

£ .= sqrt(flrr) :

rr

b) Define v = card{i>j | £, < i}

for j = 1,...,n-1

Ex: A has the structure

X

X X
X X

X X X X

135



So that £, =1, £, =1, £, =2, £, =1, f_ = 2

Then w, = 2, w2=3,w—2, w4—1.

n- |
The # of mults =% w, + w°
a1 4
J 2
c) It is reasonable to store only the elenents a.l.J Wi th

fiijii and use the sane space for L (i.e. overwite A with

L ). These would be stored in a I[-dinensional array A, row by row,
in order of increasing colum index within the row An array of n + 1
poi nters NRON woul d be used to show where the rows begin.

Ex: The lower triangle of A:

ofx
X 0 X
0 0{X X

O|X 0 0 X

woul d be stored

a

Ala111222(231|232(233 (243 [Pas 252|253 |54 | 255

NROW| 1] 23] 6] 8] 12

NROW(i) = location in A of first element of row i

NROW(mt+1) = |ocation of first unused position in A .

136



3.

Subroutine for 3\?7: .

|. Express c as ¢ = ¢ X 23n
where 1]<|&|< 8 . Then '\3{’?= 5 x 2™ .
This can be done on a binary conputer without introducing roundoff.
[I.  Use Newton's nethod to solve the equation f(x) = x3—6 =0.
Thi s means, given X9
5 4
X -=-C
X =x - n
n+l n 3x
1 2
—3{2xn+ xz}
n
I1l.  Since |&]> 1 and |&] < 8 ,
1< | Ve <2
Take some rough approximation to q’,”' e, by a pol ynom al or
pi ecewi se polynomal, to obtain the initial approximtion x,
For exanple, take
Xy = 1.5 withrel. error at nost .5
1.25 if &< (15)°
or x5 _ 3 with rel. error ¢ .25
B 1.75 if &> (1.5)
oo f0o = 1.5+ (2‘21—29) with rel. error ¢ .162

Iv. It was difficult to carefully estimate the nunber of iterations

required. Wth

en:Xn—

and the assunption leol < .25 , it can be shown that ]eSI <2

33

(in the absence of round-off error), so 5 iterations would suffice.

137



In fact, since

f" (g)

en+l--<- 2f! (x) n

L 3 - .
where £& int (x, Y2 ), it follows that

2 2
|®nt1] < 2]e |, |2e ;] <2e |

This is because the iterates X remains in the interval

[1,10/3 and in that
£" (&)
|2f ( | 2.
Thus,
2 4 n

2|enl_<_J2en_l| < [2en_21 <... ]2e0|

n

2. n
81 < 32e | < 272D

whence e5_<_2'33 :

Since the iteration function does not require subtracting nearly equal
quantities, round-off should be no problem If full 24 bit accuracy
was required, however, the last Newton step would be done in double

precision.

138



PROGRAM

function cuberoot (C);
real cuberoot, c,Xx,char;
i nteger iexp;
/* find cbar in[1,8] such that */
/* ¢ = cbar * 8%iexp

cbar:=c;
iexp:=0;
whi l e (cbar < 1) do
{cbar:=char * 8;
i xep: =i exp - 1}
while (cbar > 8) do
{cbar:= cbar /8;
iexp:= iexp + 1}
/* generate initial guess. error_< .25 %/
if (cbar < 27./8.) then x:= 5/4
el se x:= 7/4; -
X:= 1/3 * (2*x + cbar/(x*x));

repeat
4 nore
tinmes
cuberoot := X * 2Tiexp
end( cuberoot);
4. a) Since r'(x) = 3x2 - 3/4 , local extrema nay occur at -1,1
(the endpoints) and at -1/2,1/2 (the critical points). One
. 1
sinply conputes r (-1) = r(+1/2) = -1/4, r(-1/2) = r(1) = 7.

Thus |r||= 1/4 .

b) r attains its maximumwith alternating sign at 4 points in [-1,1].

Thus the hypotheses of the theoremare fulfilled with
3

n=2 f(x) =x, p(X) = 3x .

139




c) Suppose |[f-q || < || f-p Il , where p,q are polynomials of degree n,

f €([-1,11, and f-p achieves its max with alternating sign at
di stinct points RS TRR W [-1,1] . Since
| (- (x| < flg-all < [l£-pll = [E-p) =]

h
q(xj) < p(xj) when p(xj) > f(xj), and q(Xj) > P(Xj) when

P(Xj) < f(xj)

(see fig bel ow)

5 541

Thus p-q alternates in sign at the n+2 points {xj}, and
therefore has n+l roots in (-1,1) . Thus p-g 3 0 , which

contradi cts the hypot hesis.

140



Mathematical Theory of Computation: Solutions

1 , Yes. Let xi be the ith bit of x, yi the ithe bit of y, and zi the ith bit of z=x+ y. We wish to
show that z is recursive if both x and y are recursive. Now, for each i, z; can be computed from Xi
and yi if it is known whether there is a carry from lower order bits. This can be decided by
searching down the strings x and y looking for a pair of zeroes (no carry), or a pair of ones (carry).
If the search terminates, then finc. Otherwise z is recursive: it is some finite bit string followed by
an infinite string of ones.

More formally, for each i there are two cases to consider.
(1) X# Y for al j > i.
(2) There is some k>i such that xy = yy.

If there is any i such that case (1) holds, then z is recursive, since zj = 1 for dl j>i. So we may
assume that for each i there is some k>i such that xy = yk. But then each z; can be effectively
computed by searching forthefirst k>i with xg =yy; if xp = yk = 0 then there is no cary; if
xg=vyx=1 then there is.

Note that although x + vy is recursive for any recursive x and recursive y, it is not possible to pass
recursively from indices of Turing machines for x and y to the index of a Turing machine for x+y.
This is becausc it is impossibe to tell in general which of the cases (1),(2) above holds.

2. For each n, let ¥ be asentence which says, “there exist at least n distinct objects’. ¥ might
be, for example, "3x3x, . -HXn(/\Lnggn(xi”j))"' Then by the hypotheses of the problem,
every finite subset of the sct of sentences S= {@,¥,¥,,¥,,.. .} has a model. Therefore, by the
compactness theorem, the whole set S has a moddl: that model will be a model of ¢, and will have
more than n elements for each n; that is, it will be an infinite model.

3 . Upper bound = m™. Let T be any derivation tree for the scntencc S. Then no non-terminal
symbol of the grammar can appear twice aong one path down the tree. If a non-termina did
appear twice on one branch, the subtree rooted at the upper appearance (assuming the root of T is
at the top) could bc replaced by the subtree rooted at the lower appearance, yiclding a derivation of
adifferent scntence, contrary to hypothesis. Sincethe grammar has n productions, only at most n
distinct non-terminals may appear along any path down the tree. Thus, the depth of T is at most n.
The branching factor is a most m, and so the maximum possible number of leaves which T can
have (= thc maximum possible length of S) is m™. This upper bound is achieved by the grammar:

141



Mathematical Theory of Computation - Solutions

S —» /\2A2 LA,
A, —>A3A3 LA
A3 —->A4A4 . UA
A +aa . . . a

n

where the length of the right hand side of each production is exactly m.

4. (a) The firehouse problem can be solved in NP time by first guessing a placement of the
firehouses and then checking whether that placement has the desired properties (it is easily seen
that the check can be done in deterministic polynomial time). The problem is NP hard because the
vertex-cover problem can be reduced to it, as follows. (Also, the more obscure dominating set
problem [Garey & Johnson pg 190] reduces directly to the firehouse problem by taking d= 1)

Suppose that we wish to know whether a gragh G can be vertex-covered by k vertices. Take G,
and make each of its edges into a triangle by adding a new vertex and two new edges:

. N

For example:

A —
‘_\’/

Let G’ bc the graph which results from G by this procedure. | claim that G has a vertex-covering
with k firchouses if and only if G’ has a firehouse covering with k firehouses and with d= 1. The
implication in one dircction is trivial: a vertex covering for G is a firehouse covering for G'. For the
converse, suppose that -wechave a firchousc-covering of G’ with Kk firchouses. Consider the set of
new vertices which were added to G in order to arrive at G'. If a firehouse sits on any of the new
vertices, then it can be moved to either of the neighboring old verices without destroying the
covering (if either of the neighboring vertices adready has a firehouse, the firehouse on the new
vertex can be simply removed). Thus if G’ is firchousc coverable at all, it is firchouse coverable
subject to the restriction that al firchouses sit on old vertices. It is easy to see that a firchouse
cover of G with d=1 and all firchouses on old vertices is a vertcx cover of G, and so wc are donc.

142



Mat hemati cal Theory of Computation - Sol utions

(Note that athough a vertex cover is aways a firchouse cover with d=I, the converse is not true.
For example, the triangle requires only one firehouse, but two vertices are needed for a vertex
cover.)

(b) Yes if d is fixed with d=1.

() No. For each k, there are less than nk possible placements of firchouses on a graph with n
vertices. Thus all possibilites for a firehouse cover of G can be checked in time polynomia in the
size of G.

143



SOLUTIONS

SOFTWARE SYSTEMS - May 1980

1.

Syntax Notation

a) <factor> ::

<unsigned constant>|

<variable>|

<function>

(<expression>)|

NOT <factor> |

[set list]

function identifier

function identifier (expression list)

<expression list> ::= <expression>l {note direction of recursion
<expression 1ist>,<expression>

<function> ::

<set list> ::= <null>|
<set specification> |
<set specification>,<set list>
<set specification> ::= <expression>|
<expression>..<expression>

b) The syntax diagrams are easy to follow when writing statements.
Multiple recursions can be incorporated in one definition chart.
BNF can be analyzed to deduce syntax features of the grammar.
BNF can be processed automatically to generate parsers.
BNF makes recursion clear.
Diagrams can be generated from BNF.

Pagin

a) Basic paging system needs
used, changed, shared, locked-for-1/0 indicators for a page.
IT working set algorithm is used, also needs owner and owner status.
IF LRU is used,time or relative time since last use.
The changed or dirty bit determines release versus rewrite.

b) Less bookkeeping and smaller pagetables,
less overhead, less paging in well-behaved programs.

c) Disk or drum seek latency and seek
If fast,smaller page size is feasible.
Average user program size relative to real memory
Number of users relative to real memory
If many users, smaller page size iIs warranted.
Disk or drum transfer rate
If high,larger pages may be read in.
Expected user program behaviour
Segment sizes in user program
IT very random accesses then segments are small,and smaller
page size is best
Match of device sector and page size is desirable
Page table limits and cost
If page table are restricted and costly,large pages are best.

144



Software Systems Solutions

3. Language

a) Variants are used to describe entities that have alternative
attribute types,
Reduces storage

b) Variants cannot be type-checked properly.

¢) Enforce the use of tags to indicate which variant is in use, perhaps
with case constructs on reading records. [See Algol 68]

d) Types and tags depend on programs, and another reading program
may define record structure differently,

e) Copy record description to file, and check with programs that read file,
or actually import the record description.

4. Ethernet

a) The sender detects collisions and retransmits.

b) PROCEDURE TRANSMIT (MESSAGE, LENGTH-OF-MESSAGE);
MULTIPLIER = 1
Rl :  READ ETHER INTO BUSY;
IF BUSY THEN GOTO R1;
FOR 1 = 1 TO LENGTH OF MESSAGE BEGIN:
BIT = MESSAGE(T);-
WRITE AND READ BIT ON ETHER;
{WRITE AND READ SEPARATED BY NET TRANSMIT TIME1l
IF BIT # MESSAGE (I)
THEN GOTO TRYAGAIN;
END;
RETURN;
TRYAGAIN: WRITE JAM ON ETHER {ASSURE FAILURE IS DETECTED BY ALL}
pELAY (RANDOM*MULTIPLIER)
MULTIPLIER = MULTIPLIER"2
GO TO RI;

END.

145



Software Systems Solutions

5. Code Generation

* CODE FOR GENERAL MACHINE WITH REGISTERS R1, R2, R3
* Indexes, specified as (R) are added to address

* TABLE SOLUTION

LD Al, ED
CMP Al, "1°-
JLS  DONT
CMP Al, 'g'
JGT  CONT
LD A2, TAB-1 (A1)
LD A3, 0(A2)
STO A3, SAL
DONT . . .
TAB ADR  PHDSAL 1
ADR  MSSAL 2
ADR BSSAL 3
ADR  SAL 4
ADR  SAL 5
ADR  SAL 6
ADR  SAL 7
ADR  SAL 8

ADR OTHERSAL 9

(8 executed instructions)

* DEC-10
MOVE R1, ED
MOVE R2, SAL
CAIN R1, 1
MOVE R2, PHDSAL
CAIN RI, 2

MOVE R2, MSSAL
CAIN RI, 3

MOVE R2, BSSAL
CAIN R1, g

MOVE R2, OTHERSAL
MOVEM R2, SAL

MINSIZE

(11 exec. instr.)
[cain = COMPARE AND
SKIP IF REG. NEQ
IMMEDIATE OPERAND]

146

* FIXED OPT BRANCH SOL"N

LD Al, ED
CMP Al, "3" MIDDLE
JLS LOW
JGT  HIGH
LD A2, BSSAL
JMP DONE
LOW CMP AL, "1F
DLS  DONT
JGT 152
LD A2, PHDSAL
IMP DONE
1S2 LD A2, MSSAL
IMP DONE
HIGH CMP  Al, "g"
INE DONT
LD A2, OTHERSAL
DONE STD A2, SAL

DONT . . .

(7-9 executed instructions)



Software Systems Solutions

6. Cooperating Processes

a) i. Uninterruptible initial locking of all resources to be used.
ii. Acquire resources using a globally specified ordering.

iii. Do not assign initial or additional resources if not sufficient
resources are available for process completion (Bankers algorithm).

iv. Allow pre-emption of processors.

b) i Assigns resource with little communication. During acquisition all
other processors are locked out.
ii. Ordering can be made known to all processors, decision making is
distributed.
iii. Is not very suitable, implies central controlling node, although

potentially best storage allocation.

iv. Remote®processors are not well enough controlled to use preemption.

7) Binding

While variable binding is static in ALGO1 and dynamic in LISP,
arguement binding on call by NAME is dynamic, depending on callers
environment at time of use. LISP NLAMBDA function arguments are
evaluated at time of use, using current environment, unless a

FUNARG is used in the invocation, referring to a specific point in
the evaluation stack. LISP LAMBDA is similar to ALGOL CALL-BY-VALUE

ALGOL

PROC P(A,B,C);
B= 5;
PRINT(A,B,C)
END;
A=2
B=4
CALL P(A,B,A+B)
END.
YIELDS
2,5,7

147

LISP

(DEFUN k (A B ©)
(PROG (SETQ B 5)
(PRINT A B C))



8yl



Spring 1980 - Conprehensive Programm ng Project
Approxi mation of Integrals

The goal of this projectis to construct a program which will conpute
approxi mations of integrals of real valued functions over convex regions
of LRZ whi ch are bounded by pol ygons.

This progranmng problem is associated with nunmerical analysis but it
is our intention that the numerical analysis aspects of this project are
sufficiently well described here for the project to be conpleted satisfactorily.
More sophisticated ideas could be used for error estimation, etc., but we
have intentionally kept these as sinple as possible. Extended precision
arithmetic will not be necessary. If you have any questions related to
the nunerical analysis aspects of the problem feel free to ask those
menbers of the examconmttee |isted at the end of this project description
for clarification. - - -

The programs will be eval uated based upon the effici ency of the algorithns
constructed and the underlying data structures, the structure and clarity of
the code, and the associated docunentation. You will be asked to devel op a
heuristic strategy to efficiently inplenent the basic algorithmto be described.
You shoul d describe the heuristic you use and explain why you find it to be
a reasonabl e approach to the problem

The programto be devel oped will be an adaptive quadrature program
based upon a quadrature fornula defined on triangles. W assume that we
are devel oping prograns for approximating the integrals of functions which
are very expensive to evaluate. |t is Qur goal to0 construct programs which
attenpt to mnimze the nunber of function evaluations of the integrand.

In line with this goal we require that the prograns never evaluate the
integrand at any point of B° nore than once. This al so nakes the

programming Nnore interesting.
The Quadrature Formula and Error Estimates,

Qur basic approach to the approximation of an integral will be to
subdi vi de the polygonal region into triangular subregions, approximate the
integral over each subregion using a quadrature fornula, and finally to
add up these approximations. The program should generate a sequence of
finer and finer triangulations, based upon error estimates, until it
obtains one for which the total-estimated error is sufficiently snmall.

149



If we label the vertices, midpoints of the sides, and the centroid of
a triangle Q. as |

we define our basic quadrature fornula which approxinates J’f as

Q

7
(1) Ih’Qj (£) = H-(Qj) ;L;zlwzfl

wher e fiz is the value of the integrand in the point | and Wy =27/60 ,
Wy = Wy W) =8/60 and Vg = Wg = W = 3/60 . u,(QJ.) is the area of the
triangle. This formula is exact for cubic polynomals and has an error
which is CXhA') as h - 0 where h is the maxi mum of the Iengths of
the sides of the triangle, i.e.,

4
j'.f- %’94(f) = o) ,

9

provided that the integrand, f , is sufficiently smoth. In order to
estimate errors, and to inprove our approximtions, we wll also consider
approximations on Q. obtained by subdividing q. into four simlar
triangl es such that the new vertices are the mdpoints of the sides of the
original triangle.

W | abel these QJ p 0 L= 1,2,3,4 . W can then approximte the

integral of f over Qj ’ using (1) and over Qj by their sun, i.e., by
2
4

I () = = (£)
VW can then estinmate the absolute error

Eh:Q- = If f-Ih,Q.(f)l

J QJ- J

-

150



If our error estimate (2) is not good enough we then take the four
subtriangl es just defined and subdivide each of themto estimate the error
on each of them etc. This will be our basic refinenent procedure.

7777777

For any given integration (there will be several) you will be given
the vertices of the boundary polygon, a definition of the function f£(x,y)
to be integrated, and an error tolerance ¢ . You are asked to input an
initial triangulation of the region and the error tolerance. You shoul d
wite a procedure to conpute values of f . This initial triangulation
should contain as few triangles as possible consistent with the desire that
the ratios of shortest to longest sides should be close to 1 -- this is
to be interpreted rather loosely, i.e., in spirit.

Samething El se To Do.

W ask that you consider the problem of constructing a programto
conpute a good initial triangulation. A good initial triangulation will be
as above -- the ratios of shortest to |ongest sides should be nearly 1 if possible,
Di scuss approaches and difficulties associated with this problem and describe
how you woul d inplenent such a programin your witeup. Do not program this
part of the problem

- Refi nement _Strat egi es.
‘ The crucial part of this project is to devise a strategy to decide when
and where to refine the triangulation. W now discuss several issues which
you shoul d consider in devising your strategy.

Let o be the region over which we are to approximte the integra

of a given function f and |et Qj , ] =12...,m be an initial
m
triangulation of o, i.e., Q= U Q. . VW begin by considering

the basic strategy of eqtidistributing the absolute error over the Qy -
W will nodify this by changing our strategy tw ce before we conplete the
description of this programming problem W want to construct an

appr oxi mati on IQ(f) such that

\£ £- I(9)] <
We define the error per unit area, ¢', by
. et = &/ulQ)

where o(q) is the area of the region o . if we generate a triangulation

Q= U Q. such that
j J 151




f- ()| < e'u(q.)
(3) l,J;_)J Ih’Qj I = [ 3

we obtain .
|fo-IQ(f)l < ¢
W th
(1) o) = T ()
J

Ve will estimate e' in(3) wusing (2). Iet e]'a,Q. = %0 /u(QJ.) be our
Jn dq‘

estimate of ¢'. Note that we nust refine 9 to compute our error
estimate. Since we must campute Ih/2 Q (£f) to estimate the error we mght
, Qs
dJ

as well use Richardson extrapol ation to—t»ry to inprove our estimate Of

the integral on Qj which we finally use. W wll use
*

Ih,oj = (16Ih/2,nj - L,)/15

as our final approximation on q. if (3)holds and substitute these
quantities for 1 o () dn (3.
98l ———

W now discuss the first of our i nprovements on this strategy. W

may have done nuch better than E'“‘(Qj) on sone of the regions Q. , i.e.,
eﬁ’Q << ¢' for some j . W can take advantage of this by relaxing
J

our error tolerance on the remaining regions. Suppose at the n-th step

in our algorithmwe have accepted approximations On the n subregions q, ,
j =1,. . 0, and at this step we have estimtes of the errors per unit
area e?2 . W now defirg! b

3 E( l)’ y

n n
f(nl) © (E ) j§l 3 ““19)/*(“ T, % ) .

W now use this for ¢ in (3)for j =n+tl . To begin we define €l = !
Finally, we observe that this strategy could be nodified to advantage

for many common situations. W assume that our integrands are only difficult

to approximate over isolated and small subregions of the region o . W

may encounter a subregion over which the integral is very difficult to

approximate -- we are required to make repeated subdivisions. |f the

integral is easily approximated over the rest of the region we nmay do

much better (in terms of -"unction evaluations) if we require nore accuracy

on these "easy" subregions and less on the "difficult" subregions.
152



Accordingly, you can provisionally accept approximations over subregions
but be prepared to go back if you encounter a difficult subregion |ater,
Devel op an heuristic strategy to use in your program which takes advantage
of this.

Output.
For each problem we ask that you output:

) the nunber of initial triangles,

(1)

(2) a description of the initial triangulation,
(3)the number of tines a triangle is subdivided,
(4) the nunber of times the integrand i s eval uated,
(5) your approximation of the integral,

(6) your estimate of the absolute error.

Probl em 1.
Let 0 have the vertices
(0,0) ) (l,O) ) (2:1) :(1:2) ) (0:2) ;

f defined by

2
f(%y) = x +xy+y
and

Probl em 2.
Let o have the vertices

(0,0) , (1,0) , (1,1) , (0,1)
f be defined by
f(x,y) = o (x+y)

and

Addi tional problens will be given out on Mnday, 14 April, at 1:00pm.

If you have questions, contact:

Ji m Boyce Jacks 341 7-1658 hone 858-1293
Jay Gischer Jacks 450 7-3088 home 321-8643
Joe Qi ger Jacks 308 7-313L honme 321-6784

153



Spring 1980 - Comprehensive Progr amming Proj ect

Final Set of Problens

Probl em 3.
Let a have the vertices
(0,0) 5 (1,0), (1,1) 5 (0,1) 3
f(x,y) be defined by
£(x,y) = ‘lx—yll/e ;

and use ¢ = 10_2 .

Probl em L,
Let o have the vertices
(0,0) 5 (2,0) 5 (k,2) , (4,3) 5 (351) 5, (2,4) 5 (0,2)
define p(x,y) by

(O i f x2+y2>l

p(X:Y)
exp([x2+y2-l]_l) i f X2+y2< 1
and then define
f(x, y)

-2

o(2x-k, 2y-4)

use g = 10

Probl em 5.
Let Q have the vertices
(0,0) , (1,0) , (1,1), (0,1)
l et o be as above in Problem4, and define f by
f(x,y) = p(10x%,10y) + o(10x-5, 10y -15/2) ;

and use ¢ = 1072

154



WINTER 1980/81 (COMPREHENSIVE EXAMINATION

Numerical Analysis
(Subproblems have equal weight.)

Problem 1. {16 points]. Nonlinear Equations.
The equation sin x = z2 has two solutions, x = 0 and x = .87672. The following fixed-point iteration
schemes are proposed for finding the nonzero root.

(a) Tni1 = (sinxn)%" Ty = 5

(sin z, — z2)

(b) Tnit1 = Tn — zo = 1.0

€08 T n — 2z,)
In each case, predict the limit (if any) of the sequence z,,, the order of convergence, and , if the convergence
is linear, the asymptotic convergence factor. You may need to know that

cos( .87672) = .63967
sin(.87672) = (.87672)? = 76864

Problem 2. {13 points]. Interpolation.
The function f(z) = In x is tabulated at x = 1,2,3,...,100. The table shows four correctly rounded
decimal digits after the decimal point. For what part of the table is linear interpolation sufficiently accurate
to preserve the accuracy of the table?

Problem 3. [21 points]. Linear Systems.
Consider the system of n linear quations in n unknowns

(A + iB)(z +17) = (¢ + id)

where A and B are real n X n matrices, z,7, ¢ and d are real n-vectors, and i = v—1. We have twvo
choices:
1. Solve the system by Gaussian elimination with partial pivoting, using complex arithmetic
throughout.
2. Solve the real linear system

(@) Which is more efficient in terms of arithmetic operations performed? In terms of space used? Justify
your answers.

(b) Assume that A + 1B is Hermitian (i.e. that A = AT and B =—BT7) and positive definite (i.e. that
(2 — 19)T(A + «B)(Z + ) is real and nonnegative for all real n-vectors z and ¥, and vanishes only for
Z = 5 = 0). Reassess your answers to (a) in light of these assumptions.

() Solve, by any method you choose,

1 1 1 1 1
1 1 —1 =1, . 2
z 1 =
Y L P
1 —: -1 1 1

155



Problem 4. [10 points]. Numerical Stability.
(a) Show that if A is a nonsingular matrix, § = AZ and §’ = A%, then

-

7=l . 412 =2l
TN

where n(A) = ||Al|[|A~1]|,]|Z|| is a vector norm, and ||4]| is the subordinate matrix norm.
(b) It is claimed that if 2 is such that ||AZ|| = C||A||||2|| where C >}, then relatively small changes in Z
produce relatively small changes in § no matter how large x(A) is. Give a proof or a counterexample.

156



NA Sol uti ons.

87672, sin x > x2 whence (sin x) vz, X; thus

with asynmptotic convergence factor

1. (a) For 0 < x < x* = .
X =) x*. Convergence is |inear

g' (x*) = 1 cos x* =1 ,63967 = 345
(sin x*) Z 87672
To see t hat x—}x* quadratically note

(b) This is Newton's method.
that, if f(x) =sin x -x2, £ (x*) = cos (x*) - 2x* # 0 and
1t

f < 0 everywhere, so f is convex and Newton's nethod converges:

2. Interpolation error <f

for i <x<1+ L

Roundoff error in table entries <5 X 107°
S0 we want
1 <s5%x10°
812"
or i > 50.
3. (a) I. Conplex Caussian elinination:
St or age: 2n2
A .3 .4 .3
Work (multiplies): 4 . (—n;-sn
13 43
n

(adds): 2(— )+2(— n) =3
since a complex nultiply can be done using 4 real multiplies and
2 real adds, and a conplex add uses 2 real adds.

157



NA Sol uti ons (Con't)

[, Real 2n x 2n.

St orage: (Zn)2 = 4n2
Vork (Milts.) %-(2n)3 =-§ 03
(adds) py 3_8 3
3 (2n) 3 n
Method | is twice as fast and uses half the space.

(b)  Cholesky factorization can be used in either case, This doesn't

change the conparison.

() 11 1 17 1 1 1 1
1 -1 -1 i 1 i -1 -i
1 o
411 4101 a1 1 -1 1 -1
1 1 -1 -i -1o-i-l i

Therefore the solution is

7
1 -2-
4 1
-2+i
' ' ] 1
4. (a) since y -y =Ax-x |y -yll</lallllx --=x[].

Also x = Aly, wo||x||< 1[a7H] |lyl]s therefore

Uy = 5ll <tIAll a7 ] e - xl].
[yl B [ x]]

] t
(b) as before, ||y -yl | < [lal]]lx -x|].

Divide by ||yl ]=C [|a]] ||x]| to get

{y--lvll = =l <z I -«

11 x| ST | |x] |

158




Software Systems

1. Synchronization and communication (10 points)

A typical message-passing system might be based on two primitives:

« Send (process, message)
¢ Receive (process, on«zwno

where Send blocks until the message is queued for the receiver, but does not wait for a
reply. In such a system, a remote procedure call might be implemented using those two
primitives back-to-back -- i.e.:

proc RPC (process, message);
begin
Send (process, message):
Receive (process, message):
end,

What synchronization problems arise with this approach? How might you solve them?

Solution: Assume process PA executes RPC(PB,M1). Assume also that PA has no messages
queued for it when process PB performs a Send(PA, M2). PA will then accept M2 as if it were a
response to its request, M1. In general, this need not be the case. In particuiar, PB's Send may be
part of an attempt by PB to execute RPC!

This problem can only be eliminated by re-defining the semantics of remote-procedure-call: For
example, a unique transaction id can be generated for each outgoing call, such that only a reply
containing that transaction id will be accepted as completing the call.

2. Paging (10 points)

Assume that we have a main memory that can hold 3 pages of size 1000 (decimal) words.
The pager can take advantage of the fact that a page has not been modified since placed
in main memory and will not cause a copy of that “clean” page to be sent to disk when
that page is reclaimed. We are given the following reference string:

1000(r), 234(r), 3345(r), 805(w),
2998(r), 3768(r), 1002(w), 5806 (w)

The numbers are word addresses. The (r) means read access, and (w) means write
access. Assume that the main memory is originally empty. Give the sequence of paging
operations that would be performed assuming an LRU page replacement algorithm. Give
your answer in terms of SWAPIN(i) or SWAPOUT (j) whe:e i and j are page numbers.

Solution: To simplify things, change everything to page references:

1(  r)SWAPIN(1)
0(r) SWAPIN(O)
3(r) SWAPIN(3)
O(w) nothing

159



2(r) SWAPIN(2) (noneedtoswapoutl)
3(r) nothing
I(w) SWAPOUT(0)
SWAPIN(1)
5(w) SWAPIN(5) (noneedtoswapout?2)

3. Multiprocessing (9 points)

Assume that Progressive Computers Inc. has decided to go from running its programs on
a single machine to a multiprocessor configuration with shared memory. Since their
programs always ran in a multiprogramming environment they expect very few problems
in converting to multiprocessors.

a. (3) Give a short list of feasible benefits they can expect to reap from this change.
Include a brief explanation of each benefit.

Solution: Increased reliability due to redu.idancy of processors. Increased performance
through parallelism and load sharing. The ability to handle increased complexity due to
modular decomposition of tasks into subtasks capable of being executed on muitiple
processors simultaneously.

b. (3) Given a configuration of exactly two processors, why wiil it be in general
impossible to expect twice the processing power?

Solution: All the synchronization necessary in memory and data base access.

c. (3) Assume they use a simple primitive such as a test-and-set operation to
synchronize processes in a multiprogramming environment. Give the one (possibly
fatal) flaw in the architecture of their synchronizing primitive that would cause it to
work in a multiprogramming environment, but not in a multiprocessing
environment.

Solution: Not locking out the memory bus access to the other processor when altering a
lock.

4. Parsing (10 points)

Consider the following BNF grammar

<A> = <B>!<C>?<B>
<B> = a]|<B>!a
<c>1= a |<C>?a

160



a. (5) Show the parse tree for ala?a?a.

Solution:

» — — @

b. (5) This grammar could not be used for operator precedence parsing because in
some cases ! has greater precedence than ?, and in some cases the reverse is true.

Which case occurs in the sentence of part a? Give a sentence and parse tree
which illustrate the other case.

Solution: In the sentence in part a, ? has higher precedence than !, because a? must be
reduced to C before ! can be used in a reduction.

In the string ala?ala, ! has higher precedence than ?.

5. Binding time (12 points)
Binding is the association of some attribute with a name. For each point below, give an
example of a programming language that involves binding at that time. Be specific about
the language and what is being bound.

a. (2) compile time

b. (2) link time

161



c. (2) load time
d. (2) block entry

e. (2) procedure call

f. (2) assignment (give an example where some attribute besides value is bound at
assignment)

Solution: (There are many possible answers - these serve as examples.)

a. Compile time -- types in Algol, Pascal, Fortran; array size in Fortran, Pascal.

b. Link time -- procedure, function, or subroutine correspondences in any language with separate
compilation (e.g. Fortran, PL/1); external names in PL/1; COMMON blocks in Fortran.

¢. Load time -- absolute addresses of code for most languages; of variables in Fortran and other
languages with static memory allocation.

d. Block entry -- size of variably-dimensioned arrays in Algol, PL/1.

e. Procedure call -- correspondence between actual and formal parameters (any language that allows
parameters for procedures).

f. Assignment -- type in LISP, SNOBOL, APL.

6. Interpreters (9 points)

LISP is usually implemented by an interpreter rather than a compiler. Give three

characteristics of LISP that are related to this fact (for example, features that would be
harder to implement with a compiler).

Solution:
a. Types of variables are determined (and can be modified) at run time.
b. Data computed by the program can be executed as code.

c. Variables are bound dynamically at procedure-call time.

162



Hardware Systems

1. (12) Bus communication

a. (8) Describe how bus arbitration may be accomplished via a centralized daisy-chain
technique, indicating clearly all the essential control signals required. lllustrate
your answer with a block diagram of a single bus system with 3 devices on the bus.

Solution: Signals in a daisy chain are bus request and bus acknowledge. Whenever a
request occurs the bus devices are given the opportunity to use the bus in chain-order.

D, (= D, {iss sy D

-— DN

AP RIS T

BUS RIQUCST L

Device Df- does the following: if bus acknowledge and Di has an outstanding request then
use bus, else send the acknowledge to Di 1 A request is held high by Di until it receives
an acknowledge.

b. (4) What is meant by fully-interlocked handshaking in bus communication?
lllustrate your answer with a simple timing diagram.

Solution: Fully interlocked handshaking means that both commuicating parties send
acknowledgments.

A typical situation might be:

163



Master Slave

bus request

( ------------------------------------
bus acknowledge
------------------------------------ )
data
< ------------------------- -
data acknowledge
—— >
bus release
( - - - > > > - - - - - -

2. (10) Logic diagrams

Draw the logic diagram of an exclusive-OR function of two inputs using NAND-gates.

Solution: Exclusive-OR is:

asd + 0B = T\&-;% = (A48)e(R 1)

NAND is: ;é. = K«-“é'

N — L

— —
5 | /—D>-— AT + 88
| |

3. (8) TTL logic

164



Describe the following terms with respect to TTL gates:

a. totem-pole output

|
Solution: +! *
POLL-UP
INPROT
ocVTPOT
]
/P\)\_.L_—WQ

Yields a faster switching time since puil up/down is through a transistor

b. tri-state output

Solution: Qutput can be in three states: low, high, or off. In the off state the output is free
to drift if another device on the same line sources or sinks it. Especially useful for busses.

c. fan-out

Solution: Number of loads an output can drive. Each device input may use one or more
loads.

d. noise margin

Solution: Difference between the highest low output and the lowest high output ( o r
switching threshold). It determines the susceptibility to noise.

4. (10) Cache memory

In a cache-memory system, let:

cache access time, t = 100 nsec
main memory access time, T = 1 microsec
block-size, B = 8 words

main-memory-to-cache connection size, C = 2 words

165




hit-ratio for memory access, H = .9

a. (3) What is the effective memory access-time, if a read-through policy is used?

Solution:

EAT = <cache access time>*<hit rate> + (1-<hit rate>)*<memory access time>
= t*H + (1-H)*T
=100 « 9+.1 . 1000

190 nsec

b. (5) What is the effective memory access-time, if no read-through policy is assumed,

so that the words in a block are fetched strictly sequentially on a miss and then
access from the cache?

Solution: Without read-through the delay is-

EAT = <cache access time>*<hit rate> +
(1-<hit rate>)*(<cache fill time> + <cache access time>)

cache-fill-time, F = (<block size>/{cache connection size>)*
<{memory access time>
= (8/2)*(1000 ns) = 4000 ns

EAT = t*H + (1-H)*(F + {)
=90ns +.1 « (4000ns + 100 ns) = 500 ns

c. (2) How many comparators are needed if the cache size is 16K words?

Solution: The number of comparators is <{cache size>/<block size> since only one
comparator is need per block:

214,23 = 211 = 2K comparators

5. (20) Computer organization

You are given a machine architecture with the following hardware:

« 16-bit words (all instructions operate on words)
o a hardware stack

e an ALU

o 28 bytes of memory (byte addressable)

166



e a single fixed size instruction format
There are two memory access instructions:
® push <addr>
o pop <addr>
which cause data to be moved from memory to/fron. the stack.
There are several address modes:
e absolute address: <addr> is a memory location
« direct: the top of stack contains the location (it is oooon 2o
o indexed: top of stack (it is popped) + <addr>

There are 60 oiher O-address instructions which perform operations on the stack.

a. (4) Give an instruction encoding which minimizes the sizes of instructions in byte
increments.

Solution: Something like the following will work:
- —
00 = not push/pop

01 =push
10=pop

If not push/pop, the remaining bits encodes the other instructions. For push/pop there are
2 bits to encode the three addressing modes. |If the address mode is 1 or 2 then a byte
follows, otherwise it is unused.

b. (8) Using the following blocks draw a block diagram of the organization showing all
data paths and indicating their sizes and direction of data flow.

9 3 TSR
ix/\& WTJ(l n

l"’—]E“ 2 i \  ad / (R k

LR




Solution:

| STk
|
ko : fl
mb&JLﬁ
M o o
\V
;/(EI'\O&‘( e MER =t o4

c. (8) Using the notation:

(3

e

(23

6

A --> B: description

to describe data flow from A to B, show the fetch, decode, and execution cycle for

the instruction:

push indexed y

where y is the offset. The sequence starts with:

PC --> MAR :

instruction address to memory

L

There is no need to show control, but the descriptions can indicate operations that

occur.

168



Solution:

PC ==> MAR: instruction address to memory
MAR ==> memory: address to memory

memory ==> MDR: instruction to MDR

MOR -—> IR: Instruction to IR

stack ==> ALU: pop stack into ALU

IR[8:16] -=> ALU: offset part (y) into ALU

ALU ==> MAR: after add send new object address
MAR ==> memory: operand address

memory ==> MDR: operand value

MDR =-=-> stack: push the value

PC ==> ALU: send PC to ALU

ALU ==> PC: after incrementing by 2



ARTIFICIAL INTELLIGENCE

1. Searching with Lisp (24 points)

Consider the following LISP program given, for your convenience, in both LISP external
notation and in MACLISP.

findpath[x, y] < fp 7 [<x,y, NIL]

fo 1{u, v, path] «
if n u then LOSE
else if au ¢ path then fp1[d u, v, path]
elseifau = y then reversely . path]
else [Aw: ifw OSE then {37[(1 u, v, pat h] else w]

rfn‘lrnnnn eanrelanl v an thl
L CLeSSU/S1ady, y,adu . iy

i{ou

(defun findpath (x y) (fpl (1list x) y nil))

(defun fpl (u y path) (cond
((null u) °lose)
((member (car u) path) (fp1 (cdr u) y path))
((equal (car u) y) (reverse (cons y path)))
(t ((Yambda (w) (cond
((eq w 'lose) (fpl (cdrf u) y path))

(t w)))
(fpl (successors (car u)) y (cons (car u) path))))))

The program searches (depth-first) for a path from x to y in a finite directed graph in
which the successors of the node x are given by the function successors. When the
search is successful the value of findpath[x , y] is a list of nodes starting with x and
ending with y such that each node except x is a successor of the preceding node. When
the search is unsuccessful findpath[x ,y] = LOSE.

Assume that the cost of finding a path is dominated by the cost of computing successors
of x.

a. (12 points) How is the above algorithm inefficient? Give a simple example of its
inefficiency.

Solution: Because the program remembers only nodes on the path it is presently
searching it can recompute the successors of a node that can be reached on different
paths. An example is the graph

8
/—-’-’E

A C

O

Given that successors{A] = (B C D), successors[C] will be computed twice.



b. (12 points) Write a more efficient LISP program to perform depth-first search.
Remember the assumption about costs. You may use external notation or
MACLISP or INTERLISP notation.

Solution:

findpath{x,y]« [Xw. if a w = LOSE then LOSE else reverse w}
[fp1[<x>, v, NIL, NIL]]

tp1{u, vy, path, seen] «
if n u then LOSE. seen
else if a ue seen then fp7[du.y, path, seen]
else if a u =y then path
else [Xw. if a w = LOSE then fp7[{du,y, path, dw]]
[fp T [successors au,y,au . path, au . seen]]

2. Quickies (12 points)

For these questions, a few phrases to indicate your understanding will suffice. (3 points
each)

a. Why does the speech understanding problem require techniques from both Al and
pattern recognition?

Solution:

The input to speech understanding systems is noisy and incomplete. This makes statistical
methods from pattern recognition desirable.

Knowledge sources for speech understanding include models of the semantics and

pragmatics of the utterance, making "knowledge representation” techniques from Al
desirable.

b. What are the basic ways in which RSTRIPS & ABSTRIPS are improvements on
STRIPS?

Solution:

RSTRIPS uses a goal protection system to handle the problem of sub-goal interaction.

ABSTRIPS plans more efficiently than STRIPS by planning hierarchically, putting operator
pre-conditions in order by importance and difficulty.



c. Relate the problems of unification and of simple pattern matching.

Solution:

Pattern matching is a kind of unification in which one of the formulas has only constants.

d. What are a few of the things which make “story understanding” hard for
computers?

Solution:
Story understanding requires real world knowledge, such as physical world relationships

and human goals, which are hard to give to a computer. Related to this is the need for
natural language parsing abilities, including the ability to resolve pronoun references.

3. Constraint Application (9 points)
Indicate the kinds of prior constraints applied in

e case analysis of sentences;
e blocks-world vision;
e speech understanding;

(three constraints in each area are sufficient for full credit)

Solution:

® case analysis:

o The possible meanings of sentence verbs constrain the cases of noun groups in the
sentence,

0 The case of a noun group constrains the main noun of the group;

O The preposition of a prepositional phrase constrains the case of the noun group in the
phrase;

0 Sentence position constrains the case of noun groups;
O The case of a noun group constrains the cases of the other groups in the sentence;

0 Sentence context constrains noun & verb group meanings;

172




o blocks-world vision:
O Line labellings constrain trihedral vertex labeilings;
o Hlumination and shadows constrain line labellings;
© Knowiedge of boundaries constrains line labellings;
e speechunderstanding:

O characteristics of speech sounds;

o consistency in pronunciation;

O stress and intonation patterns in speech;
o grammatical structure of language;

© meanings of words and sentences;

O the context of conversation;

4. Representation (15 points)

Consider the following sentences:

Volcanos in the US. are generally dormant.

Mount Saint Helens is the only Volcano in Washington.
Volcanos are mountains.

Mountains are geological features.

Washington is in the US.

A volcano in Washington erupted recently.

a. (5 points) Express these sentences in a frame-like notation such as the “delineation
units” described by Nilsson.

Solution:

x | US-volcano
self : (subset-of volcanos)
location : US
condition : DORMANT

Mount-Saint-Helens
self : (only-element-of VinW)
location : (is-in Washington)

x | VinW
self : (element-of volcanos)
location : (iis-in Washington)

x | volcano

173



self : (element-of mountain)

x | mountain
Self : (element-of geological-features)

Washington
location : (is-in US)

Volcano-A
self : (element-of volcanos)
location : (is-in Washington)
condition : ACTIVE

b. (5 points) Why might units notation be used instead of First Order Logic in some
situations? Why in general might one representation be used instead of another
with equal or greater expressive power?

Solution: Units notation is somewhat more modular than First Order Logic, has a more
uniform structure, and is better suited to default reasoning. In general, different
representations are used when their expressive power is best suited to the application, and
because they may encode more heuristics for deductive operations.

c. (5 points) Consider the questions

Is Mount Saint-Helens a geological feature in the U.S.?
Is Mount Saint-Helens dormant?

What kinds of rules are necessary in order to deduce heuristically reasonable
answers to these questions from the units you indicated above?

Solution: Rules that encode the property inheritance characteristics of "element-of”,
"only-element-of" "subset-of", and the transitivity of "is-in" are necessary.

Rules which handle defauit reasoning on a hierarchy are necessary, e.g., that override
inheritance of the "DORMANT" property by Mount-Saint-Heiens with the particular
knowledge of its activities in Washington. In this case the "condition" slot is implicitly
default, as might be all slots that are not "is-a" links.

174




Algorithms and Data Structures

Problem 1. [20 points]. A mediocrity queue is a data structure that dynamically maintains a set S of numbers
and executes a sequence of instructions Iy,Iz,13...,1,,.... Each I; is either one of the following forms:
insert{z] (meaning S — S U{z})
delete[z] (meaning S « S —{z})
getmedia- (return the value of the median of S).

The set S is initially the empty set, and only distinct elements will be kept at any time. The median of S

is the[|S|/2]-th smallest number in S.

(A) [8 points]. Give an implementation of a mediocrity queue such that i, = O(n), ¢, = O(n) and
g» = O(1); 1., d,, gn are the respective worst-case costs of executing an insertion, a deletion, and a
getmedian when |S|=n.

(B) [12 points]. Repeat (A) with i, = O(logn), dn = O(log n), and g, = O(log n).

(C)[5 points]. suppose a mediocrity queue is available, such that the total cost of executing any sequence
of n instructions is f(n). Give an algorithm that sorts n distinct numbers in time f(3n— 1) + O(n),
by making use of the mediocrity queue.

Remarks. In the solutions to parts (A) and (B), give only a high-level description for standard data
structures, but it should contain enough information to justify the asserted performance. For example,
you can “maintain a 2-3 tree under insertions with O(logn) cost per insertion”, but you cannot “maintain
some kind of hash table that has a cost 0( v/») per insertion”.

Problem 2. {30 points]. Let zy,z2, ..., Zn, m be n <4 1 input real numbers that are all positive and distinct.
(A) [5 points]. Give an O(n log n)-time algorithm for deciding if there exist distinct 4, 5 such that z; +
;= M

(B) [lo points]. Give an O(n?)-time algorithm for deciding if there exist distinct 1, 5, k such that
T+ T, Ty = m.

(C) [15 points]. Give an O(n? log n)-time algorithm for deciding if there exist distinct ¢, 5, k, ¢ such that
Ti+T; Tk - Te= M.

Remark. We are using a random-access computer that can perform infinite-precision real arithmetic. (You

may ignore overflow problems on such machines.)

175



Problem 3.(10 points]. A k-right-biased binary tree is a rooted binary tree such that any path from the

root to a leaf takes right branches at most % times.
(A)  [2points]. What is the maximum number of leaves that any 2-right-biased binary tree with height 4

can have?
(B) [8 points]. What is the maximum number of leaves that any 2-right-biased binary tree with height A

can have (A > 0 an integer)?
Remark. We show below a 2-right-biased binary tree with height 3 and 5 leaves. This is not a I-right-biased
binary tree as the * leaves show.




Algorithms and Data Structures

Problem 1.

(A)

(©)

Perhaps the simplest idea is to store the elements of the queue in a sorted (increasing) array. Insertion
requires time linear in the the size of the queue to move the elements of the array around to make
room for the new element. Deletion requires linear time to move the the elements of the array to fill in
the gap created by the deletion. The site of the insertion or deletion can be found either using a ¥near
scan of the array, or by doing a binary search. To find the median in constant time, it is necessary to
keep another variable holding the current size of the queue. It can be updated in constant time during
an insertion or deletion. The median is found by looking in the [|S]/2]-th element of the array.

Use your favorite flavor of a balanced search tree, e.g. AVL tree, 2-3 tree, or R-B tree, to maintain
a sorted list with logarithmic insert and delete times. In addition, keep in each node the weight of
the subtree hanging from that node. This will permit you to find the median in logarithmic time by
looking at the weights (and weights of siblings) along a single path from the root.

This can be improved to a method that still does insertion and deletion in logarithmic time, and finds
the median in constant time. The idea is to keep the median in a specific location, so that it is easy
to End. The elements greater than the median are kept in a balanced search tree and the elements
less than the median are kept in another one. Insertion and deletion require a comparison to see
which tree is effected, and the logarithmic time to perform the operation. If the operation changes
the median, the old median is inserted into the appropriate tree as an extreme value, and the new
one is deleted from the other tree. Both of these can be done in logarithmic time.

Here is a way to sort n distinct numbers using just 3n — 1 mediocrity queue operations. First, insert
all n numbers into the queue {» insertions). Then, alternately find the median and deiete it until you
have found each element as the median once (n getmedians and n — 1 deletions). After an element
is found as the median, it is inserted into the right place in an array in constant time. (The first one
goes into the []S|/2]-th location. Thereafter, alternately the medians of the queue will be the first
element larger or smaller than the part of the array that has been sorted.)

Problem 2.

(A)

The first step is to sort the set {z;}. This takes time O(n logn). Then, for each of the z,, search the
sorted table for the value m — z;. Using binary search does each of the searches in time O(log n) and
the entire step in time O(n log n). After finding the right value in the table, it is necessary to check
that the proposed values of z; and z, are different. This is done (at most) once for each search.
Once you have the sorted table, it is possible to search it for a pair whose sum is m in time O(n).

1:=1;

=
while i < j do
begin

if z; + z, = m then exit loop with success;

if z; +z, <m then i : =14 1;

if z;+2z,>m then j:=j— 1,

end;
In effect, this program takes the two sets {z;} and {m — z,} both of which are sorted, and merges
them to see if they have an element in common.



(B)

Note: Several people said to sort the inputs with an O(n log »n) sorting algorithm, e.g. quicksort. While
quicksort does have an average running time of O(n log n), its worst-case running time is O(n?).
First, sort the inputs. Then, for each of the z, use a simple modification of (A’) to see if m — z;
occurs as the product z,z,. The sorting is done once in time O(n log n) ( Actually, an O(n?) sort is
sufficient.) Then a linear scan of the table is performed n times for a runtime of O(n?). The little
care needed to make sure the solution uses distinct values at most multiplies the running time by a
constant.

Note: Many p=ople felt that the products could be generated in order in time O(n?). Unfortunately,
this takes time 0( n2 log n).

The important observation in that it takes time O(n? log ) to sort n2 numbers. One solution is first
to sort the set of products {zxz;: k < !}. Then, perform n? binary searches of that table looking
for the values % Each search takes O(log n) time. At most two of the products can have z; or
z; as factors. This means that there is O(1) work to see if a there is actually a solution after each
successful search.

Another solution is to sort the sets {"‘:,_" 117 j} and {zkz; : k <!}. Check these two sets for a
common element by merging them. ‘A little care is necessary to make sure the values in the solution
are all distinct. When a common value is found. an element of the first set can “collide” with at
most two elements in the set. This means that only O(1) work is needed to for a solution if when a
common value is found.

Problem 3.

(A)

(B)

11. There are two definitions height that give values that differ by one. Some people count the number
of nodes (including the root) on the longest path in the tree. Others count the number of edges. The
diagram in the question showed which definition to use.

A maximal k-right-biased binary tree d of height h consists of a maximal k-right-biased binary tree
of height h — 1 hanging to the left of the root and a maximal k — I-right-biased binary tree of height
h — 1 hanging off to the right. A O-right-biased binary tree consists of a single path with a single
leaf. A maximal I-. . . tree of height h consists of h of those O-. . . trees and a 1-. ., tree of height
0. So a maximal 1-... tree has h + 1 leaves. A maximal 2-. . . tree consists of h of those 1-. . . trees
and a tree of height 0. The total number of leaves is

14243+ +(h—1)+h+1= "——(";'1)+1,

178



Mathematical Theory of Computation

Problem 1. [10 points]. A k-wheel is an undirected graph on k + 1 vertices vg, vy, . . . , ve—1, u-with edges

{vi, v(i+1) mod k} and {u, v} for 0 << k; y is called the center. Prove that the following problem is
NP-complete: Given a graph G and positive integer k, determine if G contains a k-wheel.

Yo
1
-,
V2
3

Figure. A S-wheel.

Problem 2. [25 points]. Let the array A be such that initially
vi(0<i< nDAj=1). (1)

(a) [only 5 points] Write a flow chart type program (i.e. with assignments and go tos), not using multiplica-
tion or any array other than A, that terminates with

Vi(0<i< n DAl =" )
3
i.e. it computes a vector of binomial coefficients. Remember the recurrence relation of Pascal’s triangle
which may be written

(n) =if¥x<0Vk>nthen Oelse if k=0vk=nthen 1 else (”_1)+(”‘1)

k - k=1 k) @)
but it shouldn’t be used directly as a recursive program, because it recomputes the (i) so often that it takes
exponential time.

(b) (20 whole points] Attach sentences of first order logic to each label of your program so partial correctness

as expressed by attaching equation (2) to the exit label can be proved by the method of invariant assertions.
We just want the assertions — not the proof.

Problem 3.[10 points]. M is a machine which takes its input from a papertape-like file (read-only, left-
to-right) and prints an acceptance of certain input tapes. Apart from a finite-state control, its only memory
is a pushdown stack, with the usual operations of push, pop, and test top symbol. An unpoppable internal
state S of M is one in which the stack can never become shorter than it is in S, whatever the input. (In
other words, the current stack symbols will never be popped.) Is there an algorithm t0 recognize such states?

(Describe one or show undecidability.)

Problem 4. {15 points]. Let L,;(s>0,1<j < 2) be the set of languages recognizable by machines with
+ counters as the only unbounded memory, and with left-to-right input if j = 1, two-way input if y = 2.
(Counters can be incremented’ dccremcnted, and tested for zero.) What inclusion relations hold among the
L;; 's? (State reasons briefly; detailed proofs are not required.)

179



Solutions - Mathematical Theory of Computation

1. Solution to the “k-wheel” problem.
We reduce the Hamiltonian circuit problem to the k-wheel problem. Given a graph G= (V, E)onn
vertices, one can clearly construct in polynomial time the graph H = (V', E'), where V' =V y{w} and
E' =EJ{{w,v}|veV}. The following result then completes the reduction.

Theorem. G has a Hamiltonian circuit if and oaly if H contains an n-wheel.

Proof.
(A) If G has a Hamiltonian circuit vo,v1,v2, ..., vn— then H contains an n-wheel with the set of edges
{{‘U!‘, Y(i41)m o d n}l {w» vi} i 0<:< n}'
(B)  If Hcontains an n-wheel:
Case 1. w is the center: Clearly, the rest of the wheel gives a Hamiltonian circuit for G.

Vn -1

Case 2. Vy5# w is the center: Let us label the vertices as shown, then v, vy, va,...,vn—1,vgiS @
Hamiltonian circuit for G.

This completes the proof of the theorem. o



Solution to Problem 2.
Verification question.

Program
=1
oloop: if i=n then go to end,
i = i+l
j = 1i-1
iloop: if j«l then go to nexti;

a(j) =a(j) + a(j=1);
jor=g-l
go to iloop;
nexti: go to ol oop;
end: return

Assertions: The follow ng sentences apply before execution of the statenents
to which they are attached.
oloop:  (¥Wk) [(0<k<i o a(k)=(;)) A (i<k<n > a(k)=1)]

1lo0p: () [(0sksi 5 a)=(1 1)) ~ (3<kst 5 a(k) = () A (1<kn 5 aG0)=1)]
end:  (¥k) (O<k<n > a(k) = (;)) (output assertion)

input assertion: (¥k)(0<k<n 5 a(k)=1)

181




3. Mis a machine which takes its input from a paper tape-like file

(read only) and prints acceptance of certain data tapes. Apart from

a finite-state control, its only menory is a pushdown stack, with the usua
operations of push, pop, and test-top-synbol. An unpoppable interna

state S of Mis one in which the stack can never become shorter than it

isin S, whatever the input, Is there an algorithmto test wuch states?

Answer: A given state S of Mcan be nodified into the initial state

of a machine M" that accepts those inputs which nmake Ms stack shorter than
it isin S  Standard methods construct a CF grammer for this |anguage
Equal |y standard nethods test the |anguage for enptiness. (An alternate
met hod of proof defines the set of unpoppable states recursively, by

a nonotone recurrence,)

4, Answer: (i=0) L-to-R and two-way finite state machi nes recogni ze
finite-state languages. A one-counter machine recognizes only recursive
sets, while a two-counter nmachine CL-to-R or not) is universal. An
L-to-R one-counter machine can't recognize

{tai B3 cii; " ;al BJ 43 - ,
while a two-way one-counter machine can. Therefore,

L L L., L L

01 = o2 11 12 21 = L22 = everything else .

182



Spring 1980/81 COMPREHENSIVE EXAMINATION

ALGORITHMS AND DATA STRUCTURES

Problem 1. [20 points]. We wish to design a data structure that deals with objects, each of which
has a value. Many objects can have the same value. Specificaly we wish to support the following
operations:;

(1) Creation. Given an array of objects and the size of the array, create a data structure containing
exactly those objects, which supports the operations of deletion and query defined below.

(2) Deletion. Given an index to the array of objects, delete the corresponding object from the
data  structure.

(3) Query. Answer the question: “Do al (remaining) objects in the data structure have the same
vaue?

The operations of deletion and query are being done in rea time. Therefore, the most important
property of this data structure is that the slowest of the operations of deletion and query be as
fast as possible in the worst case. Subject to this constraint, the expected time for the creation
operation should be as fast as possible.

Describe a data structure and the agorithms for implementing the three operations. Estimate the
time required for each operation. Justify any estimates that are not obvious.

For full credit, the time required for the deletion and query must be constant in the worst case, and
the expected time for the creation operation must be 0(n), where nis the initial size of the input
array. Partial credit will be awarded for slower solutions. Specificaly, if the deletion and query
operations require constant time, but creation requires O(n logn) expected time, three quarters
credit (15 points) will be awarded.

Problem 2. {20 points]. Someone wishes to generate bad binary search trees quickly, given a set of
keys and a distribution of the expected frequency of search keys. There are limits to how bad the
trees can be, however. Specifically, each key must appear in the tree exactly once, and the tree
must have the required order property. That is, that if the tree is traversed in symmetric order
(inorder) the keys are reached in alphabetical order. When searching for a key, the probability
that it is actudly in the tree is negligible, and the probability that it is between any adjacent pair
of keys in the tree is known.

That is, the input consists of n, the number of k¢ s in the tree, the n keys, and an array, freq0. . n].
If we let keyy denote —oo and let keyn4; denote +oo, then freg(i] contains the frequency with
which the sought key will be between key, and key,+,. The tree that is desired will have the
longest external path length, weighted by the entries of freq.

(@) [15 points] Design a polynomia time algorithm to find the tree with the worst possible expected
search under the assumptions above and show that your algorithm works. Make your algorithm
asymptotically as fast as possible. (Hint: you may use without proof the fact that in this tree no
key has two non-null sons.)

(b) [5 points] How fast does your agorithm run? Justify your estimate. Express your answer as
O(f(n)), for some suitable f(n).

183



Problem 3. [20 points]. Let G be an directed graph, with a weight, which may be any integer
(positive, negative or zero), given for each edge. For a given vertex v, we define a zero-cycle to
be a path starting and ending at v, passing through at least one other vertex, such that the sum
of the edge-weights along the cycle is zero. No vertex may appear more than once along such a
cycle (except for the initial vertex which appears only at the beginning and end). For example, in
the graph shown below, v has a zero-cycle, but w does not. Show that the problem of determining
whether G has any zero-cycles is NP-complete.




ALGORITHMS AND DATA STRUCTURES

Problem 1. We will create a new array of size n, where the element corresponding to each position in the
input array is a pointer to a counter containing the number of instances of that value. There is dso a global
counter containing the number of distinct values in the data structure.

The query operation can be done in constant time by comparing the count of the number of values to 1.

The deletion operation can aso be done in constant time. The link from the deleted object to its value
counter is followed and the value in the value counter is decremented. If this becomes zero, then .the global
number of values counter is decremented.

The creation operation takes expected time that is linear in the size of the original array. If the size of the
array is n, we alocate a 2n-cell array to use for hashing the values. Some suitable scheme such as separate
chaining will be used to resolve collisons. We process each element of the array in turn, incrementing its
value cell if it exists, and creating one and incrementing the global number of vaues cell if it does not. Since
the expected time to find the cell using hashing is constant, the expected running time of this operation is
O(n).

To do the creation operation in O(n log n) time, we can sort the original array and create an array of pointers
to the new positions of each object; then creating the value cells requires one pass through the sorted array. .

One person found an even better solution, for which creation is linear time even in the worst .case. The
objects are put into a doubly linked list, and we create a new array containing pointers to their positions in
this list. A count is kept of the number of adjacent pairs (in the linked list) which have different values.

The query operation can still be be done in constant time by comparing this count to O.

The deletion operation is done by deleting the corresponding object from doubly linked list. It is then
possible to update the count by comparing the deleted object with its predecessor and successor, and the
successor with the predecessor.

Problem 2.

(8 This solution uses the paradigm of dynamic programming. The idea is to solve al of the subproblems
in order from smallest to largest. Thus, the answers to the small subproblems are available when we try to
solve any larger subproblem.

In this case, it is first useful to use this technique to find the sum of the frequencies for all possible subtrees
(i.e. keys from i to 7). As input we have n, the number of keys, and the array freg(0..n], with freg{s] equa to
the frequency that the sought key is between key, and key;4,. The keys keyy and key,, are —oo and co
respectively. We now define the array sumls, 5] to be the sum of freg{k| from i to 7. Only the entries with
i< J need be computed. The entries are computed in order of increasing j— ¢;sumls,1] is easy to compuite,
and if 1 < j then sumls, j] = sumli,j — 1] + freq[s].

Armed with this array, we proceed to the main problem. Since in the pessimal tree no node has two non-null
sons, the root is either the largest key or the smallest key. Define the weighted path length of a subtree to
be the expected search time for that subtree times the frequency that the sought key is in that subtree. Here
again we solve al the subproblems.

Subproblems have two indices. Subproblem [i, j} means that the sought key is between key[i — 1] and
key(s +1] and the given keys are key{i] to key(s} inclusive. Only the problems with : < ; are interesting.
Solving a subproblem means determining weather key(:] or key[s] is at the root of the pessimal subtree
for that problem and the weighted search time in that tree. Again the subproblems arc solved in order of

increasing j —1 and the answers are stored in an array. If j —i = 1 then there are only two possibie trees and
the answer can be found quickly by exhaustion. If j — 1 > 1, then the pessima tree with key(;] a the root

185



has weighted path length equal to the weighted path length of the pessimal subtree for subproblem [i, j- 1]
plus the frequency that the sought key is between key{i —1] and key[s +1]. Similarly, the weighted path
length for the tree with key[s] at the root the weighted path length for subproblem [i + 1, 5] plus the same
frequency. Since one of these is the pessimal tree, a comparison will yield the answer to this subproblem.

After we have finished solving problem (1, n}, the tree can be recovered. The root is known. The root of the
rest of the tree is known. This can be iterated to cause the tree to be returned in any convenient form. The
above discussion shows that the agorithm works.

(b) The algorithm takes O(n?) time. For both the summirg and solving the main problem there are O(n?)
subproblems that must be solved. Each subproblem takes constant time to be solved. Unwinding takes only
O(n) time. Therefore the total time is O(n?).

Problem 3. The problem is clearly in ¥ P, since a non-deterministic machine can find a cycle and verify that
. its edge-weights add to zero, in time which is polynomia in the number of nodes in the graph. To show that
it is NP-complete, we can reduce the partition problem to it as follows. Given a set A={a;,as,...,an} of
positive integers, there is a set A’ C A such that Za‘_e,,, a,-=Za‘,eA__A, a; if and only if the graph

ay Qg [« 2
‘ —a —as ¢ —Gn )
0
hasa zero-cycle. (If you don't like multiple edges between a pair of vertices, you can add extra vertices to
the graph above to get the same effect.)

This is because every cycle must pass through al the vertices in the graph above. Therefore a cycle is a
zero-cycle if and only if the sum of the weights of the positive weighted paths is equal to the absolute value of
the sum of the weights of the negative weighted paths. This defines a partition of the set A, and conversely
any partition of A defines a cycle in the graph. This reduction can be carried out in time which is polynomial
mnn.

Another solution is to start with the problem of finding a directed Hamiltonian cycle, which is known to
be NP-complete. Given a directed graph, to see if there is a Hamiltonian cycle, first label al of the edges
with weight 1. Then choose any vertex v, and label al of its incoming edges with —(n — 1), where n is the
number of nodes in the graph. If there is a zero-cycle, it must contain one of these edges, and hence must
aso pass through n— 1 of the edges labeled 1. Because of the redtriction that no node appears twice on
a zero-cycle, this is a Hamiltonian cycle in the origina graph. Conversely, if the graph has a Hamiltonian
cycle, that cycle mill include an edge leading into v and therefore be a zero-cycle. Therefere, the weighted
graph will have a zero-cycle if and only if the original graph had a Hamiltonian cycle. This reduction can
clearly be done in time which is polynomia in n, which proves that the zero-cycle problem is NP-complete.



ARTIFICIAL INTELLIGENCE

Problem 1. [Line labelling] The techniques work on the basis of a number of assumptions, such as the
thoroughness of the line finder (no missing or additional lines or inters~ctions). This would be impossible to
achieve for the kinds of objects in the pictures. They are designed to recognize three-dimensional objects
with specia properties (e.g. faces are flat and every vertex is a junction of a most three edges) which are
not true of’'many natural objects (such as airplanes). Although they would work for flat projections (which
is what you mostly get from the air) they are not especidly useful in that case.

Problem 2. [ATN’s] A draightforward context-free grammar cannot deal with natural language phenomena
such as agreement, and cannot be used to provide a semantically appropriate analysis for cases of “movement”
like ‘Which dog did you say the cat hit?'. By having registers that that can be set and read (and passed
up and down), ATN’'s can handle these phenomena. It is interesting to note that there is current work on
extending the idea of context free grammars (via metarules of various types) to overcome the difficulties.

Problem 3. [Water witches]

(@) Production rules:

. If wiggles and grass then stream.
If twirls and twitchy then stone.
If sand and stone then lake.

If jump and stone then lake.

If grass then not lake.

If wiggle and twirl then sand.

SUurONR

Situation (1) Grass and wiggle:
(Looking for stream (1))

Is the rod wiggling? - Yes

Are you standing on grass? - Yes

At this point stream is established, but both may be present. If the program is smart it will recognize that
rule 5 can aready be used, and will say ‘You are over a stream.” If it is not, it will take the rules in order
trying to establish a lake.
(Looking for lake (3))
(Looking for sand (6))
(Rod is wiggling (aready established) (6))
Is the rod twirling? - No
(Looking for lake (4))
Is the rod jumping? - No
(Looking for lake (5))
(Grass is aready established)

s0 lake is diminated, al search is done and answer is ‘You are standing over a stream.”

Situation (2) No grass, wiggle, twirl and twitch:
(Looking for stream (1))
Is the rod wiggling? - Yes
Are you standing on grass? - No
(Looking for lake (3))
(Looking for sand (6))
(Rod is wiggling (aready established))



Is the rod twirling? - Yes

S0 it is established that there is sand . . .
(Looking for stone (2))
(Rod is twirling (dready established))
Is the rod twitching? - Yes

so it is established that there is stone. Answer: “You are standing above a lake”

(b) Planning:

Actions:
Anneal
" Preconditions: none
Delete Soft, n gnarls
Add: hard, O gnarls
Transmogrify 1
Preconditions. soft, at least one gnarl
Delete: n gnarls, m branches
Add: n— 1 gnarls, m + 1 branches
Transmogrify 2
Preconditions. hard,, a least one branch
Delete: n branches
Add: n— 1 branches
Clone
Preconditions. none
Delete: n gnarls, hard
Add: 2n gnarls, soft

We have separated out the action of transmogrifying into the two cases depending on hardness. We also
ignore the possibility of applying the operator in cases where it will do nothing.

Initial conditions (2, 1,ha}d) [gnarls, branches, hardness].

The plan is:
(2,1, hard) 3 (2,0, hard) [transmogrify2]
= (4,0, soft) [clong]
= (3, 1, soft) [transmogrifyl]
= (2,2, soft) [transmogrifyl]

A simple difference driven search (4 la GPS) would not get an answer to this problem, since the solution calls
for making apparently backward movement.

Goal (2,2,?)— have (2,1, hard).

Difference = branches, need to add.
Try Transmogrify 1 — preconditions; needs to be soft.
Try Clone — no preconditions = (4, 1, soft).
applying Transmogrifyl = (3, 2, soft).

Difference = gnarls; need to remove.

Try Anned — precondition none = (0, 2,hard):
Difference = gnarls; need to add.

Failure — there is no way to add gnarls if there are none.

The plan would eventually be found by an exhaustive backtracking or breadth-first search.



(c) Proof:
Axioms (using arithmetic in the obvious way):

Since we are always dealing with one rod, we can treat the operations as one-argument functions from
situations to situations. Similarly, hard and soft can be predicates associated with situations. It wouldn’t
harm anything to carry adong a variable z standing for the rod, but it isn't of any use either.

Predicates:
hard(s), soft(s), gnarls(n, s), branches(n, a).

Operators (functions from situation to situation):

anneal, transmogrify, clone.

AXxioms:

Vs soft(s) v hard(s)
Vs =(soft(s) A hard(a))
Vs hard( anneal( s))
Vs gnaris(0, anneal(s))
Vs, nbranches(n, s) D branches(n, anneal(s))
Va soft (a) D aoft( transmogrify( s))
Va hard(a) D hard( transmogrify(a))
Vs, n, k soft(s) A gnaris(n,s) A n >0 A branches(k, a)
D gnaris(n — 1, transmogrify(a)) A branches(k + 1, transmogrify(a))
Vs, k soft(s) A gnaris(0, s) A branches(k, s)
D gnaris(0, transmogrify(s)) A branches(k, transmogrify(s))
Vs, n, k hard(s) A branches(0Q, s) A gnaris(k, a)
Doranches(0, transmogrify(a)) A gnaris( k, transmogrify( s))
¥s, n, k hard(s) A branches(n,s)An >0 A gnaris(k, s)
D branches(n — 1, transmogrify(s)) A gnaris(k, transmogrify(s))
Va aoft( clone( s))
Vs, n gnaris(n, s) D gnaris(2n, clone(s))
Vs, n branches(n, s) D branches(n, clone(a))

To prove: you cannot produce (1, 1, ?) from (1,2, soft). Informally: A soft rod can never decrease its branches
without losing all its gnarls forever after.
Proof: To decrease branches, it must be hard and then transmogrified.

To become hard it must be annesled.

If it is annealed it loses dl its gnarls.

There is no way to add gnarls to a rod that has none.

Axioms and proof using stage numbers:

Predicates:

hard(a)

soft(s)
gnaris(n, 3)
branches(n, a)
anneal( 3)
transmogrify(s)
clone(s)

189




where the last three are interpreted as meaning that the named operation was applied to stage s — 1 in order
to produce stage a. Take stage O as the initial state.

[1]Vs a > 0 D (anneal(s) V transmogrify(s) V clone(s))
— every stage after the initiad one comes from some operation —
[2] Vs anneal(s) D —(transmogrify(s) V clone(s))
[3] Vs transmogrify(s) D —clone(s)
~ — only one operation per stage —
[4]Vs3Im,n m > 0 A n >0 A branches(m, a) A gnaris(n, a)
— there exist some number of branches and gnarls a each stage —
[5] Vs soft(s) V hard(s)
[6] Vs ~(soft(s) A hard(s))
[7]Vs anneal(s) DO hard(s)
[8] Vs anneal(s) D gnaris(0, a)
[9] Vs, n branches(n, a) A anneal(s + 1) Dbranches(n,s+ 1)
[10] Vs soft(s) A transmogrify(s+ 1) Dsoft(s+ 1)
[11] Vshard(s)Atransmogrify(s + 1) Dhard(s+ 1)
[12] Vs, n, k soft(s) A gnaris(n, ) A n > 0 A branches(k, a) A transmogrify(s+ 1)
D gnarls(n — 1, s+ 1) Abranches(k + 1, s+ 1)
[13] Vs, n, k soft(s) A gnaris(0, a) A branches(k, a) A transmogrify(s + 1)
Dgnaris(0,s + 1) A branches(k,s+ 1)
[14] Vs, n, k hard(s) A branches(n, a) A n > 0 A gnaris(k, a) A transmogrify(s + 1)
D branches(n — 1, s+ 1) A gnaris(k,s+ 1)
[15]Vs, n, k hard(s) Abrenches(0, a) A gnaris(k, a) A transmogrify(s+ 1)
D Abranches(0, s+ 1) A gnarls(k,s+ 1)
[16] Vs clone(s) D soft(s)
(17} Vs, n, k branches(k, @) Aclone(s + 1) Dbranches(k,s + 1)
(18] Vs, n, k gnaris(n, a) A clone(s + 1) Dgnaris(2n,s+ 1)

Given branches(2,0) A gnarls(1, 0) A soft(O), we want to show that =3sbranches(1, ) A gnaris(1, a). Proof by
contradiction: assume the Conclusion.

Let z be any integer 0 < x <s such that brenches(m, x — 1) and braenches(n,z), where m > n. Such a
stage must exist Since branches(2,0) and branches(1, a).

anneal(x) V transmogrify(z) V clone(x). 1]
Taking cases:

anneal(x) Abranches(m,x — 1) D branches(m, x) [9] — contradiction,
clone(x) A branches(m, x — 1) Dbranches(m, X) [17] — contradiction.

So transmogrify(z).

Lemma 1: —seft(z— 1). Proof by contradiction: assume soft(z — 1).
35 gnaris(y,z — 1), (4]
and y =0 or j > 0. Assuming soft(z— 1) A j =0,
soft(z — 1) A gnaris(0,x — 1) Abranches(m, x — 1) Dbranches(m, x) [13] — contradiction.
Assuming aoft(x — 1) Aj >0,

soft(z — 1) A gnaris(j, x — 1) Abranches(m,x — 1) Dbranches(m + 1, x), [12]

190



which is a contradiction since branches(n, X) and m > n. Lemma proved.

soft(z— 1) V hard(z— 1). [5]
Therefore hard(z — 1), by Lemma 1. Since we have soft(O) and hard(z —1), there must exist 0 <y < z
such that hard(y) and soft(y — 1).

anneal(y) V transmogrify(y) V clone(y). (1]

Taking cases:
clone(y) O soft(y) [16] — contradiction,

aoft(y — 1) A transmogrify(y) O soft(y) [10] — contradiction.
So anneal( y). Therefore
gnaris(0, y). 8]
Lemma 2: gnarls(0, z) for al 2> y. Proof by induction.
Induction step: VK gnaris(0, k) D gnaris(0, k + 1).

anneal(k + 1) V transmogrify(k+ 1) V clone(k + 1). (1]

Taking cases: o
anneal(k + 1) O gnarils(0, k + 1), 8]

clone(k + 1) A gnaris(0, k) D gnaris(0, k + 1), [18]
and for the case transmogrify(k + 1), either hard(k) or soft(k) by [5], so

soft(k) Atransmogrify(k + 1) A gnarls(0, k) D gnaris(0, k), (13]
if soft(k), otherwise 3j branches(s, k) by [4], and j =0 orj > O

hard(k) A transmogrify(k+ 1) A gnaris(0, k) A branches(0, k) D gnarls(0, k), [15]
hard(k) A transmogrify(k + 1) A gnaris(0, k) A branches(s, k) A j > 0 D gnaris(0, k), [14]
so0 the inductive step is proved.
Base of induction: gnaris{0,y) by assumption. End of Lemma

Therefore gnaris(0, @) since s > x > y [Lemma 2|, but this contradicts the initial assumption that
gnaris(1,s). Q. E. D.

191



ARTIFICIAL INTELLIGENCE

Problem 1. [10 points]. What major difficulties would you expect in applying line-labelling tech-
niques (Waltz, Huffman, Clewes, etc.) to the problem of analyzing aeria photographs to detect
roads, airports, missile launchers, etc.?

Problem 2. [5 points]. Why are ATN parsers better than ordinary context-free grammars for
natural language understanding?

Problem 3. [three parts, 15 points each]. You have been hired as a consultant by Acme Dowsing
International to help them apply Al to improve the profitability of their water exploration teams.
They have asked your help in several ways.

(@ [15 points] Acme's expert dowsers have over the years built up a set of’ rules of thumb for
deciding what is causing the rod to dip. Somebody tried to get them to write down their rules,
and produced the following:

o If the rod wiggles and you are standing on a patch of grass, then there is an underground
. stream below. -

o If the rod twirls and is twitchy then you are over a buried stone.

o If either you are above a sand formation or the rod jumps, and aso you are over a buried
stone, then there is a lake below.

o There is never a lake below a patch of grass.
« Whenever the rod wiggles and twirls you are above a sand formation.

Acme wants to replace its expensive experts with a computer program that will tell what kind
of body of water is causing the dip. Put these rules into a production rule form (of the kind
used by MYCIN, but without certainty factors). Show a dialog that would be produced by a
straightfor- ® ard backward chaining diagnosis program, for each of the following situations. Its
result should be something like “*You are over a lake” or ‘You are over a stream”. The didog will
include questions asked of a semi-skilled dowser’s helper who manipulates the rod and can answer
questions like “Arc you standing on a patch of grass?’ and “Is the rod wiggling?’ but who has no
idea about what is underground.

Situation (1): The helper is standing on a patch of grass and the rod wiggles.

Situation (2): The helper is not standing on a patch of grass and the rod wiggles, twirls, and
twitches.

Note: The words used in this problem are intended to be taken as purely formal, and no conclusions
should be made on the basis of their ordinary meanings. For example there is no relationship
between “wiggling” and “twitching” and “jumping”.

192



(b) (15 points] The dowsers have also discovered over the years that in certain situations different
rods work best, depending on the number of branches and gnarls they have. In the old days they
combed the forest for appropriate rods. Later they learned that there were alchemical methods
for modifying rods, and that they could start with one that wasn't right and get the one they
wanted. Only the little old rodmakers knew the secrets of producing good rods. The company
wants to decrease its dependence on these rather unpredictable and sassy fellows by automating
the rodmaking process. They have analyzed what the rodmakers are doing and have found that
there are 3 processes obeying the following rules:

o If arod is annealed it loses dl its gnarls and becomes (or remain;) hard.

o If arod istransmogrified, then if it is soft one of its gnarls becomes a branch, otherwise one
of its branches fals off.

o If arod is cloned, then the number of gnarls is doubled and it becomes (or iemains) soft.

« Whenever an operation would call for removing a branch or gnarl and there are none, the
operation has no effect on the rod at al.

« Anything not mentioned above is assumed to be unchanged by the operation (e.g. annealing
does not change the number of branches).

Your job is to create a knowledge base for a STRIPS-like robot planning system which can be
used to generate a sequence of operations to be carried out given a raw rod and a desired form
for the finished product. It should be done in a general enough way that data describing new
rod-modifying processes can be added without reprogramming.

Show a plan for generating a 2 gnarl, 2 branch rod (any hardness) from a soft, 2 gnarl, 1 branch
one. Show a trace of what would happen if you tried to generate it with a difference driven planning
system (like GPS).

() [15 points] One of the little old rodmakers has argued for years that he cannot produce a 1
gnarl, 1 branch rod from a 1 gnarl, 2 branch rod using any combination of the known operations.
The boss has had him keep trying, in hopes he is wrong. Represent the operations in predicate
caculus using a Situation variable and outline a proof that it is impossible. You do not have to
give the proof in detail.

193



HARDWARE SYSTEMS

Problem 1. e.

Problem 2. (8 F (b)) F(c) T (d F (g F () T

Problem 3. 3. Memory addresses require only 15 hits, so al can have a 0 in the most significant bit. So let’
IO addresses be distinguished by having a 1 in the most significant bit. This leaves 15 bits to encode 100 IO
port addresses. any 2-out-of-15 code does the job. Each address decoder then has to test the most significant
bit, and the appropriate two of the remaining bits.

Problem 4, & T (b) F (c) F (d) T

Problem 5. (@) 4 () 6 () 2 (d) 7 (€ 8 () 1,2 (g 1, 2 3, 4 () 5() 1 ()5

Problem 6. (a)
A
B O
c )0—_
D O

o~

,— _L)o— F1
F )0__
G
H
E

(b) 256 X 4.

(0 10 AND gates: AB’CD/, A’BC’, FGH, E’, BCD, CDE’'H, FGH’, AB'CD, ABEF, A’BC’,
AB'CD'FGH’. ( F G is implemented as FGH + FGH’.)

16 inputs per AND gate (each variable and its complement).
4 OR gates (1 for each function).

Problem 7. In horizontal microprogramming, each gate is directly controlled by a singie, separate bit in the
microinstruction. In vertica microprogramming, functions are encoded in one or more fieds, each field is
decoded, and the ouput from the decoders goes to the gates. Horizontal microprogramming alows greater
paralelism, but takes more space.

Problem 8. The microprogram control unit uses overlap, so that the next microinstruction is aready being
fetched while the current one is being executed. Since the test outcome is not known until the end of the
current microinstruction, the branch must be delayed one microinstruction cycle.

194



HARDWARE SYSTEMS

Problem 1. {10 points]. Several fundamental-mode state tables are shown below. Such tables are
used to describe the operation of sequentia circuits built from cross-coupled gates or unclocked
flip-flops. In particular, one of these state tables describes the operation of a positive-edge-triggered
D flip-flop. Which one?

Hint: How to read fundamental-mode state tables: Parenthesized entries indicate stable states. In
table (c) below, suppose that the circuit is in state A with input 01 (i.e. CLK =0and D = 1).
Then if the input changes to 11 and then 10, the circuit will traverse the states shown by the
arrows.

(a) CLK, D (b) CLK, D
S 00 01 11 10 O S 00 01 11 10 @
A | (4 B B (4 o0 A l B (4 (4 B o
B | B) 4 4 (B) 1 B| A4 (8 (B 4 1
@ CLK,D A (d) CLK, D
P>} Uu Ul 11 1U o/ >} [¥]0) Ul 11 10U o/
4 l W) W8 @ o A ' (4 B (4 @ o
B | (B (B B4 1 Bl 4 ® (B B 1
¢ CLK, D (1 CLK, D
S 00 01 11 10 @ S 00 01 11 10 O
A | (4 @ ¢ B o Al B ¢ (4 4 o
B | A A4 (B) (B 0 B | B (B 4 4 o
c D D (¢) (€) 1 c | (¢) (¢) D D 1
D | ) ) ¢ B 1 D | B ¢ (D (D 1
(2) CLK, D (h) CLK, D
S 00 01 11 10 Q S 00 01 11 10
Al @ @ ¢ ¢ o Al (4 @ ¢ B o
B A A (B (B) o B A A D (B 0
C D D (€) (€) 1 c D D © A 1
D | () (D) B B 1 D | (D) D) ¢ B 1

195



Problem 2. [6 points]. In a memory-mapped 1/O system, input/output ports are addressed as
memory locations and may be accessed by any memory-reference instruction. Computers that use
memory-mapped 1/O include the PDP-11, VAX-11, 6809, and 68000. In an isolated I/O system,
input/output ports have their own address space and may be only by accessed by specia 1/0
instructions. Computers with isolated 1/0O include the PDP-8, HP21MX, 8080, 8086, 280, 28000,
and MCS-48. Answer TRUE or FALSE to each of the following questions.

(@ With isolated 1/O, separate buses must be provided for the memory system and for the I/O
system.

(b)y With memory-mapped /O, memory locations and 1/0O ports must have the same maximum
access time.

(c) With a processor designed for isolated 1/O, memory-mapped I/O may be used at the discretion
of the system hardware designer.

(d) With a processor designed for memory-mapped 1/O, isolated I/O may be used at the discretion
of the system hardware designer.

(e) Vectored interrupts cannot be provided in a system with isolated /0.

(f) 1/O port addresses in a memory-mapped 1/O system may be assigned in disjoint segments of
the memory address space.

Problem 3. [4 points]. A particular computer system with 32K bytes of main memory and 100
I/0O ports uses memory-mapped 1/O. If the address bus contains 16 lines, what is the minimum
number of AND-gate inputs that each I/O interface needs to decode its address? Explain your
answer briefly. (Hint: use “m-out-of-n" codes.)

Problem 4.(8 points]. Two n-bit operands A and B are to be combined by two’'s-complement
addition; the bits of each are numbered from 0 (least significant bit) to n — 1 (sign bit). Let S
denote the sum; let C(n — 1) denote the carry from bit n — 2 into bit n — 1 when A and B are
added; and let C(n) denote the carry out of bit n — 1. Indicate whether each of the following
conditions is a valid test for two's-complement overflow. (The condition must be true if and only
if there is overflow.) Answer TRUE or FALSE.

(a) C(n)# C(n—1).

() A(h — 1) @ B(n— 1) = C(n).

) A(n —1) S B(n—1) # C(n).

(d) An—1)@®B(n—1 = 0and AN — 1) % S(h — 1).



Problem 5. [10 points]. Memory hierarchies. Severa different types of computer memory are listed
below, followed by certain memory characteristics.

(1) Semiconductor RAM (main memory)
(2) Semiconductor RAM (cache memory)
(3) Erasable Programmable Read-Only Memory (EPROM)
(4) Core memory

(5) Floppy disk

(6) Moving-head (Winchester) disk
(7) Head-per-track disk

(8) None of the above

’
For each characteristic below, list the memory type(s) above which have that characteristic.
(@) Erased by every read operation
(b) Lowest cost per bit
(c) Highest cost per bit
(d Best for external storage in demand-paging systems

- (e) First type of memory technology used in computers
{f) Volatile
(g) Random access capability
(h) Longest access latency
(i) Highest storage density (bits per unit ared) in storage medium.

() Highest storage density (bits per unit volume) in computer room.

197



Problem 6. {12 points]. The following four boolean eguations describe a 4-output logic function.
Apostrophes (') denote compiementation.

F1= AB'CD' 4+ A'BC' + FGH + E'
F2 = BCD + CDE'H + FGH'

F3 = AB’CD + ABEF + FG

F4 = A'BC' + AB'CD'FGH'

(@ [5 points] Draw a circuit diagram for F'1 using only 4-input NAND gates.

(b) (3 pointg] If the 4-output function is implemented with a read-only memory, what sze ROM
is needed?

() [4 points] If the 4-output function is implemented with a programmable logic array, describe
the organization of the PLA by giving:

o [2 points] The number of AND gates (also list the corresponding AND terms from the equations
above for each one),

e [1 point] The number of inputs per AND gate,
e [1 point] The number of OR gates.

Prohlam. 7.[5 points]. Explain the difference between vertical and horizontal microprogramming.

Problem 8. [5 points]. In some microprogrammed processors, conditional microprogram branches
take place one microinstruction after the branch microinstruction is executed. For example, the
following microcode implements the machine instruction DJNZ R ,ADDR (Decrement and Jump if
Not Zero).
Microprogram
Address  Instruction

Load R

Decrement R
Branchto11ifR = O
Store R

Load ADDR

Store PC

Fetch next macro instruction

—_ O woo 4o o

In this example, ingtruction 8 is executed whether the branch is taken or not. Instructions 9 and
10 are executed only if the branch is not taken.

Now the question: Why is the microprogrammed processor designed this way?

198



NUMERICAL ANALYSIS

Problem 1. Let A(Y) = A. Then the agorithm for computing the Cholesky factorization goes as follows:

Fork=12,...,n

fik =10, i=12...,k—1

fui = (D2

fie = aie/ frk, i = k+1,...,n
a£f+1)=a‘$f)_fikfjk: j2i= k+l,...,n.

Thus n square roots and n®/6 + O(n?)Aops (a combination of a floating multiply followed by a floating add)
are required for computing the Cholesky factor.

(& If the matrix is 5-diagonal, then
fik=20 wheni <kori>k + 2.

The above equations show that n square roots, and about 2n divisions and 3n flops are required for computing
the Cholesky factor.
F has only three non-zero diagonds;
0
F= \
0 A
and thus requires at most 3n — 3 words.

(b) The matrix A appears thusly:

\ 0

After one step of the Cholesky factorization, the zeros are destroyed, so that n®/6 + O(n®) flops are required
for computing the factorization.

199



(0 We can smplify the problem by permuting A ((n,n—1,...,1) «(1,2,...,n)) so tha
PAPT =

Now F requires 2n — 1 words; and n square roots, n — 1 divisions, and n — 1 flops are needed to’ compute
the factorization.

Problem 2.

(@) To apply the Aitken procedure for estimating g8, we must eliminate & in the 8k term. This can be done
by noting that

co
~ vk
zk+1—zk=ﬂ + Za,)\r,

k==1
where &, = a,.(\, — 1). Then if we apply the Aitken scheme to

Y = Tk41 — Zk,

the extrapolated value will approximate 3.
(b) It :

v =B+ a\f,

then from yg, ¥1, y2 we can determine 8 since we have three unknowns 3, &, ;. Hence if

T, = a + Bk + al)\'f,

we can determine 8 precisely.

Problem 3.
(&) Note that

x;+1—a=f(z;,y;)—f(aﬂ)-§—f( —a)+ Fw-n+

y;+1 _13:9(1;14-1:3/;)_ 9(a, B) = ( Trntt —a)+ a(y;_ﬂ)+"'

0 "';4—1“0‘ Tf a_f :‘ +
- 1 yn+1_ﬁ 0 §2 :I.
1 O\t (10
(—a 1) —(a 1/’
3

1 o\/& s af af
o )_( >(a€ '8?)_( 9z T )
AR - ag ] " \og ar oar a ag I
sz U\O 5 #it HE+E

Hence

e

Since




(b) We wish to show
17 (e, )| < 1 (e, B)]

when
1V (e, B)I < 1.
Since the first rows of J(a,8) and J*( a, B) are the same, we simply need to check the second row of J*(e, 8).
Now
39 3f| |3 89 3s| |3 |2f] |2f] |2 |2
9z Oz dy 0z dy| — |0z| |0z| |dy| |O=z dy
9g|f|8f af g
< | Z| = it =2
< |2l (321 + |3e)) + 35
99 9g
< | = ==
= |9z +~'8y

The last step follows since ||J(a, B)|| < 1. Thus [|/*(e, B8)|| < ||/ (e, B)|} when || (e, B)|| < 1.




NUMERICAL ANALYSIS

Problem 1. Linear systems {20 points]. Let A be a rea, symmetric, positive definite matrix. In this
problem, we assume the matrix A is sparse and we wish to investigate means of taking advantage
of the structure. We desire to compute the Cholesky factor F of A so that FFT = A. Note that
since A is positive definite it is not necesssary to pivot for numerica stability.

(@ [9 points] Assume that a;; = O when |7 — 2> 3, i.e Ais a five diagonal matrix. Describe
an efficient variant of the Cholesky method for finding F. How much storage does F require? How
many numerical operations does your agorithm require?

(b) {5 points] A ssume that the first row and column of A are non-zero but that a;; = O when
i>2,j22 andi## j. How many operations are required to find the factor F and how much
storage is required?

(c) [6 points] Show how to reorder the matrix given in (b) so that the storage and the operations
are reduced. Give a count of the number of operations after this'improvement.

Problem 2. Acceleration [15 points]. Consider a sequence zx,k = 0, 1,. . . which satisfies the
relationship

(-]
Tk = o+ fk + ) a2k,
r==1

where a, 8, and {a, \-}&.; are unknown constants with |\,|< 1 and [\,[ > [\r41].

r==1
(a) [8 points] Given numerical values zq,zy,z2, 3, show how to use Aitken acceleration to
determine an approximate value of A.

(b) [7 points] Under what circumstances will your agorithm yield the exact value of g when zg,
Xi, 9, and z3 are given?



Problem 3. Non-linear equations {25 points]. We wish to solve the system

= f(I1 y):
Y= gz, y)

Let us assume that a solution exists, which we denote as x = «,y = 3. Consider the following

iteration schemes:
| I

*

Tn41= f(z-m yn) Tpt1 = f(x;; y:;) ‘
Ynt+1 =9(zn, Yn) Ynt1 = 9(Tny1:Yn)

with zo = 73,y = yg- Let
- — xﬂ—a -‘_ I;—a
dAﬂ - (yn _ﬂ)) dn - (y:‘ _ﬂ)’

. aﬂ+1 = J(a: ﬁ) En + 3'm
where J is the Jacobian associated with f and g.
(@) (15 points] Show that

so that

Gy = I, 8) s + 83
Give an expression for J* (Q, 8), assuming 3; consists of higher-order terms.

(b) [10 points] For a given matrix

we define || Al| = max(]a|+ [bl, |c| + |dl). Show that if ||J(a, A)|| < 1, then ||/*(e, B)|| < ||J (e, B)]|.




SOFTWARE SYSTEMS

Problem 1.
z = f 1(2);
while p1(z) do
begin
x = f2(z);
if not p2(z) then
begin
while p3(z) do z:= f3(z);
x:=f 1(2)
end
end

Problem 2.

(@) The following program assigns true to v if the activation environment is used, and false if the declaration

environment is used. )
begin

boolean v, z;

function p;
p: -z

function q(r); function r;

begin
boolean z;
X == true;
g:=r
end;
z = false;
v = q(p)

end

(b) Bleck-structured languages typically use the “declaration environment”. These languagssare usually
compiled, and greater runtime efficiency is obtained by static binding of variable references at compile-time.
LISP, which is usualy implemented by an interpreter, provides greater flexibility by delaying binding until
run-time’ and thus uses the “activation environment”.

Problem 3.

(8 Static links are less efficient for resolving non-local references, because (possibly long) chains of pointers
have to be followed; with displays, a single indexed, indirect addressing operation is sufficient.

Static links are more convenient and economical to maintain, especially if the langauge permits procedural/
functional parameters or cal by name, both of which require context changes that are not smple pushes or
pops of the activation record stack.



It can be assumed that variable references are much more frequent than the context changes which require
updates of the static chain/display. This favors displays.

However, it can aso be assumed that the vast magjority of variable references are either local or global to the
entire program. Program global variables can be stored in a separate, static area, and be accessed directly.
This favors static links.

(b) Neither static links nor displays are needed; loca variables are in the topmost activation record pointed
to by the stack pointer, and, as mentioned in part (a), program globals can be stored in a separate, static
area and be addressed directly. So the non-local accesses dlowed are particularly efficient.

Problem 4.
(8 Because G1 is unambiguous, whereas G2 is ambiguous.
(b) (1) Associativity and precedences of operators (“,” and %”).

(2) There will be fewer states in the generated parser, so generation time, parser size and parsing time
will al be reduced.

Problem 5. The line numbers refer as closely as possible to those of the original program.

4. s =0 ;
7. T:=10+U;
9. V.= T,
PQ =R * 10;
5 repeat °
7. PQ = PQ — 10;
9. S:=S+PQ
10. until PQ < 10

PQ is a new temporary’ holding the value that was previoudy P * Q. Optimizations:
() Subgtitution of 10 for Q everywhere: constant folding.

(b) Elimination of lines 1 and 2: dead variable (redundant store) elimination.

(c) Elimination of line 3, and replacement of P by R everywhere: copy propagation.
(d) Movement of lines 7 and 9 out of the loop: code motion.

(e) Replacement of (Q + U) by Tin line 9: common sub-expression elimination.

(f) Replacement of “«” inline 9 by “—” in line 7: reduction in strength.

(9) Elimination of P from loop: induction variable elimination.

Problem 6.

(8 Deadlock in monitors can occur in many ways. The most obvious is having a procedure in monitor A
cal a procedure in monitor B, and vice versa. If one process calls the procedure in A a the same time that
another calls the procedure in B, neither call will be able to complete because both monitors are locked.

Deadlock in a message-passing system would occur if process 1 was waiting to receive a message from process
2, which was itself waiting to receive a message from process 1.



(b) Starvation occurs when some process does not get a resource it wants; for example, because higher-
priority processes monopolize the resource. Deadlock implies that process(es) are permanently blocked, and
cannot recover without outside intervention. With starvation, it remains possible that the process will
eventually get the resource and be able to continue.

(c) The following solution rses an array of semaphores, one per process.

processi: while true do
begin
non-critical  section;
P(sem(s]);
critical  section;
V(sem{i + 1 mod 10])
end;

The required initialization is to have every semaphore except sem[1] equal O, and sem[1]= 1.

Problem 7. (a) 21, 1000, 6, 6,6. The'idea here is that a long job (52) keep some short jobs (I3, J4 and J5)
waiting for a long time under FCFS. T1= 21 is to ensure that J2...J5 are all dready in the queue when
the large job (J2) sarts.

(b) 21, 100, 100, 50, any. The idea this time is that a short job (J4) keep at least two earlier, longer jobs
(J2 and J3) waiting at least an extra 10 time units under SIN.

(c) 20, 15, 20, 10, 10. Short jobs get high priority; this is one way of implementing SIN. Alternatively:
1, 1, 1, 1, 1. If the queue never contains more than one job a a time, the scheduling method is immaterial!

(d) 100, 50, 100, 10, 6. The idea here is to cause at least 3 preemptions, costing an extra context switch
each (note that preemption actually causes two context switches, but at least one is aways required to
run the job, whatever the scheduling method). The above jobstream causes 3 as shown below (* indicates
preemption):

JNo* R >*Jd4—* B S5J4-J2-7J1-73.



SOFTWARE SYSTEMS

Problem 1. Structured Programming (8 points]. The following is an adaptation of a program
extract that was actually published (!). Rewrite it in a clearer fashion, by applying the principles
of structured programming.

Al: z = f1(z);
L1: if p1(z) then
begin
z = f2(z);

if p2(z) then go to L1;
B1: if p3(z) then

begin
z = f3(z);
go to B1
’ end
go to Al

end

Problem 2. “Funarg” Problem (10 points]. Consider a block-structured language (e.g. Algol60) that
alows a forma parameter, say FP, of a function, say F, to be a function name. When FP is used
in an expression within F, the function represented by the corresponding actual parameter, say
AP, is invoked. There are at least three possible environments in which it could be executed:

(1) The “activation environment”: the environment at the point of-call of FP in the expression.

(2) The “binding environment”: the environment at the point of cal of F, when FP was bound
to AP.

(3) The “declaration environment”: the environment at the point of declaration of the function
represented by AP.

The choice of which environment is actually used in a particular language is a language design
decision.

(a) [6 points] Write a program extract in some informa high-level notation that would assign a
different value to a variable V depending on whether the “activation” or “declaration” environment
is used.

(b) [4 points] Which of the three environments listed above is commonly used in block-structured
languages (e.g. Algol60)? In LISP? Are these choices consistent with the philosophies and features
of these languages? Explain briefly (5 lines maximum).

207



Problem 3. Static Links versus Displays {6 points]. Two alternative methods of implementing
references to non-local variables in block-structured languages are “static links’ (or “static chains')
and “displays’.

(a) [4 points] What considerations apply in choosing between these two methods?

(b) [2points] Certain languages (e.g. BCPL and C) alow a procedure to access only loca variables
and variables global to the entire program (i.e. declared at the top or program level). How does
this affect the implementation of non-local variable references? .

Problem 4. Parsing [6 points]. The following is a simple grammar for lists of identifiers separated
by commas or semicolons:
Gi: L:=cL| L C
CL::=id C, id

id stands for an identifier, and can be considered a termina symboal.

An dternative grammar for the same lists is:
G2 L::=L/L|LL]id
(& (2 points] Arautomatic parser constructor would normally prefer to deal with Gl than with

G2. Why?

(b) G2 can be used as the basis for automatic parser construction, provided some additional
information is provided.

(1) [2 points] What information is necessary?

(2) [2 points] What are the advantages, if any, of using G2 instead of Gl wrhen constructing an
SLR or LALR parser?

208



Problem 5. Optimization {10 points], Apply the standard code improvement transformations
(optimizations) used by optimizing compilers to the following program segment. Show the op-
timized program and identify the optimizations used, stating the type (class) of each. Work entirely
in the source language; do not generate code. You may assume that no two variables are aiases of
each other, and that al variables except P and Q are live on exit. P and Q are dead on exit.

1 P :=3;

2. Q:=P+7;

3. P .-.-R;

4, S .-.-0

5.  repeat

6. P.—P—1,

7. T:=@Q+U;

8. S: =S+ Px*xQ;
9. Vi=Q+U

10. until P L1

Problem 6. Synchronization [10 points].
(@ [2 points] Give an example of deadlock caused by monitors or message-passing.
(b) {1 point] What is starvation? How does it differ from deadlock?

(c) Suppose we have ten processes (numbered O through 9) which occasionally wish to have
exclusive access to some resource. Any process that is not currently using the resource is alowed
to work as it pleases. A process i which requires the critical resource cannot use it unless no other
process is using it and process ((i — 1) mod 10) was the last process to use it.

(1) [6 points] Using semaphores (or arrays of semaphores), monitors, or messages, describe how
the above synchronization may be implemented. Do not write detailed code!

(2) [1 point] What is the appropriate initialization such that when the system is restarted it
appears that process 0 has just used the resource?

209



Problem 7. Scheduling {10 points]. Consider the following jobstream presented to a scheduler:

Job. Arrival time  Processing time required  Priority

J1 0 T1 low
J2 5 T2 medium
J3 10 T3 low
J4 15 T4 high
J5 20 T5 high.

Arrival times and processing times required are given in the same time units (e.g. milliseconds).

Assume there is an overhead of 0.1 time units involved each time the scheduler changes the job
being run. For each of the following conditions, supply integral vaues for the processing times T1,
T2, ..., T5, so that the condition is satisfied for the above jobstream:

(a) [3 points] First-come first-served scheduling results in at least twice as large a mean response
ratio as shortest job next scheduling.

(b) [3 points] Shortest job next scheduling causes the response time of two jobs to be at least 10
time-units longer than they would be under first-come first-served scheduling.

() [2 points] Non-preemptive priority scheduling is eguivalent to shortest job next scheduling for
this jobstream.

(d) [2 points] Preemptive priority scheduling has an overhead of at least 0.3 time units more than
non-preemptive priority scheduling.

Note: Use your intuition about the scheduling methods involved to arrive at suitable processing
times; it should not be necessary to do detailed calculations.

210



THEORYOFCOMPUTATION

Problem 1.

(@ The following assertions assume that the domain of all variables is the natura numbers; i.e. relations
such as 0 <« are implicit.

& :Ve.x < kDals]=0

&3:Ve.6 < N Dalg]=0

£ V6. < N Dalx] = (# of pairs (i’, j’) such that foo(,5") =k A < i)

L5 Ve« < N Dalx] = (# of pairs (¢,7") such that foo(i’,j’) = k A(¥ <iV({F'=iA7 <])
£ Vx.c < N Dalk] = (# of pairs (i, j’) such that foo(s',7')=r A < i)

& :Ve.x < N Dafx] = (# of pairs (¢,5') such that foo(+/, ") = )

&3 : (47 assertion) AVk.x <k Dals]< 1

done : (¢7 assertion) A ((k > N A Vx.a[k]< 1) v (k< N Aalk] > 1 AVs.6 <k Dals]< 1) .

The assertion at £g is not absolutely necessary since the assertion at ¢4 can till be proved without it. The
expression (i' < 1V (¢ = 1Ay <]j)) a & is a hit tricky. Another important point is that the assertion a
£7 needs to be kept as part of the later assertions, since the partial correctness of the program is a statement
about foo, not about the array a.

(b) We need to show that the loops at ¢;, 24,25, and ¢g al terminate. The first and the last are easy, since
they can be shown to execute a most N times. The ¢s loop terminates because j is incremented on each
pass through the loop, while iremains constant, so by induction we can show that eventually foo(i, j) > N.
Similarly the sequence foo(0, 0), foo(l,0), foo(2,0), ... is strictly increasing, so eventually foo(i, 0) > N for
LMe i .

Problem 2. If both A and B are regular, then so is A © B. To prove this, let M4 =(Q, L, 4, q0, F) be
a DFA accepting A, where @ ={qo,...,qm} iS its set of states, ## CQ is the set of final states, and
6 : Q@ xI—@Q is the transition function; and let Mg = (R, Z,n,7, G) smilarly be a DFA accepting
B. We can construct a non-deterministic finite automaton M, g which accepts A (O B as follows: let
Maos = (@ X R,%,7,(g0,70), F X G), where the transition function 7 : @ X R —»29%F jsdefined by

¥((g:,7;), 8) = {(6(qi, @), 75), (gi, n(r;,a))} fora€ E.

M.,z works by smulating a step from either M,, or M on each transition, and “remembering” the state
of the other machine while doing so.

To see that this accepts A OB, first let w be a string accepted by M. If we examine the transi-
tions of Macp as it accepts w, let ay,.. ., @ be the input symbols which cause transitions of the form
(gi,7;) — (6(g:, ak), r;), and let by, . . ., b, be the input symbols which cause transitions of the form (g;,7,)—
(g:,n(7;,ax)), then it is clear that @, ...a € Aand b, ... b€ B. By appropriately adding null strings, we
can convert ay...a,t0z;...z,and by ... b toy, ...y SOthat W=2z,y1...Zpr¥yn.

Conversdly, if W = zyy1... 2,y € A B, then M4 accepts z, . . . X,, and M accepts y; . . . ¥y, and the
sequences Of transitions taken by these two machines can be used to construct a segquence of transitions of
Ad o p Which accepts w.



Problem 3. The basic idea is that an autonomous pushdown machine can be made to “count” in binary on
its stack, and terminate when the count reaches a certain point. As an example, take k= 4, and let M, be
the machine corresponding to the following diagram:

Start

X

l Push 0 J

89 ]

| Pop and test }——9—;——){ Push 1

I 3

1
84

stop

It is clear that M4 runs for four steps and then halts with the stack restored to its initial condition. We can
similarly define Ms and Ms. Now, given M;, we can build M;4; as follows:

Start

X

I Push 0

S2

M

3k+'1 [ ]

Pop and test ]—0%;—2—{ Push 1 1

1
Sk+4-3

stop

This machine runs for 4 + 2N, steps, where N; is the numbei of steps that M, runs. Thus it is clear (and
can be shown by induction) that N; > 2'/* for i > 4. Therefore, we can let B = 2'/%,

212



THEORY OF COMPUTATION

Problem 1. [20 points]. Let foo(z, j) be a function whose arguments and value are always non-
negative integers, and such that for al < and j,

foo(z, j) < foo(i + 1, j)
and foo(i, j) < foo(7, j +1).

The following program is intended to find the smallest k in the range 0 < k < N for which
foo(i, j) = foo(s’, j’) = k for two different pairs (i, j) and (i’, j’).

£: k: =07
£y : alk]:=0;
=Kk + 1
if kK < N then go to £3;
£3: 1:=0;
£, : if foo(Z, O) > N then go to £7;
3:°0;

L5 : if foo(i, j) > N then go to Zg;
a[foo(s, 7)| := a[foo(s, )] + 1;

j=i+1

go to £s;
g: 1:=1+ 1

go to £4;
4 k'=0,

£g . if k > N then go to done;
if a[k] > 1 then go to done;
k:=k+ 1,
go to £s;
done : if k> N thenprint(" LOSE")
else print( "The smalest k is", k);

(@ [15 points] What assertions should be attached to what labels in order that its partia cor-
rectness can be proved by the method of inductive assertions? (Give just the assertions, not the
proof.)

(b) [5 points] What is involved in proving its termination? (Give an informal description; the
proof itself is not required.)

213



Problem 2. [20 points]. Let A and B be languages over an alphabet X, and define the “shuffle” of
A and B to be
AOB ={w€Z*|w = 21Y1...Tn¥Yn},

where each z; and each y; is either a member of ¥ or is the empty string, z;...z, € A, and
Y1-.-Yn € B. That is, A © B is the set of strings that we can get by “shuffling” a string from A
into a string from B. If both A and B are regular sets, is A © B regular? Give a proof of your
answer.

Problem 3. [20 points]. Consider the set S of autonomous, terminating, pushdown store machines.
“Autonomous’ means they have no input. “Terminating” means reaching a designated “terminal”
control state. “Pushdown store” means that the only memory, except for a finite number of control
dtates, is a single pushdown stack, initially empty, over a two-character alphabet, say 0 and 1.

Show that S contains an infinite sequence of machines {M;|i=k, k +1,...} for some integer
k, where each M; hast control states and runs for at least B* steps before terminating, for some
constant B > 1, which is independent of i. That is, show that S contains machines whose running
time is exponential in the number of control states.

214



Magic Number

Spri ng 1980-81 Computer Science Comprehensive Exam
Written Exam .
Saturday, May 9, 1981 (9:00 12=00; 1:30 - L4:30)

READ THIS FIRST

1. The exam contains questions drawn from six areas of computer science.
The total possible score is 360 points, 60 in each area. Hint:
6 hours equal 360 minutes, this may help you plan your time.

2 Please do your best to relax during the lunch break. You may not
consult any references or colleagues or write drafts of answers

during thi s period. Just relax.

3 Be sure that you have all 16 pages of the Exam. Your answers are to be

written in blue bobks. Use a separate blue book for each of the six subject
areas. Write your exam number in the upper right-hand corner of every page
on which you have any solution to any problem. Please write legibly, with

a pen or sharp soft pencil.

L Strategic considerations: (a) To pass this exam at the Ph.D. level, you
should not leave any of the six subject areas completely blank. as there
wi 11 be a minimum competence requirement of roughly 20 points in each area.
The total scores of everybody who passes this minimum requirement will then
be used to determine whether or not the written exam as a whole is passed.

You should plan your exam-taking strategy accordingly. (b) To pass this
exam at the Masters“ or CS Minor level, simply try to maximize your _total
score.

un

Show your work, as partia-1 credit will be given for incomplete answers.

6. This exam is open book: You may use whatever books and notes you have
already brought with you and any library books provided by the committee.

7. Sign the honor code statement below and turn in this page with your 6 blue
books. This page will be separated from your blue books prior to the grading
process.

8. The committee suggests that you read over the entire exam quickly once, in
order to help in allocating your time. We also suggest that you refrain

from panic. GOOD LUCK.

9. A committee member will be available to answer questions.

in recognition of and in the spirit of the Honor Code, | certify that | have
neither received nor given unpermitted aid on this exam.

Signed







