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Abstract 

Since Spring 1972, the Stanford Computer Science Department has periodically given a 
"comprehensive examination" as one of the qualifying exams for graduate students. Such exams 
generally have consisted of a six-hour written test followed by a several-day programming problem. 
Their  intent is to make it possible to assess whether a student is sufficiently prepared in all the 
important aspects of computer science. This report presents the examination questions from thirteen 
comprehensive examinations, along with their solutions. 

The  preparation of this report has been supported in part by N S F  grant MCS 77-23738 and i n  part 
by IBM Corporation. 





Foreword 

This  report probably contains as much concentrated computer science per page as any 
document In existence - it is the result of thousands of person-hours of creative work by the entire 
staff of Stanford's Computer Science Department, together with dozens of h~ghly-talented students 
who also helped to compose the questions. Many of these questions have never before been 
published. Thus  I think every person interested in computer science will find it stimulating and 
helpful to study these pages. 

O f  course, the material is so concentrated it is best not taken in one gulp; perhaps the wisest 
policy would be to keep a copy on hand in the bathroom at all times, for those occasional moments 
when inspirational reading is desirable. 

By publishing these examinations we aim to help future students prepare for future exams, 
and to provide a resource for anyone who wishes to make up similar test questions. Furthermore, I 
think this is an important historical document, showing what at least one faculty has perceived to be 
the core of Computer Science during the 1970s. 

Speaking of history, I should say a few words about the development of Stanford's 
Comprehensive Exams. Our  department originally gave specialized qualifying examinations in 
different areas; by the late 1960s there were five such official areas (Artificial Intelligence, 
Hardware, Mathematical Theory of Computation, Numerical Analysis, and Programming 
Languages and Systems), each of which was intended to assess a student's qualifications for research 
work in that area. A student was required to pass the Programming Languages and Systems qual, 
plus two of the other four quals. Unforunately from the students' standpoint (but fortunately from 
the standpoint of our discipline), computer science was growing by leaps and bounds, so that every 
year it took longer and longer to learh everything necessary for one particular qual. As a result it 
became humanly impossible for a student to pass three quals without almost totally ignoring the 
subject matter of the other two quals not being taken; our students were being forced into an  
overly-specialized educational pattern. 

A major reform was therefore adopted, beginning in the spring of 1972: Instead of three 
specialized "area quals," we switched to a system that would provide both breadth and depth. Each 
graduate student was now to pass a new exam called the comprehensive qual, after which he or she 
was to pass just one of the area quals (In the intended thesis area). The  purpose of the 
comprehensive qual was to define and enforce the minimum standard of competence, in all areas of 
computer science, that we wished each graduate student to have. 

O u r  original intention was to include only "interdisciplinary" questions in the comprehensive 
exams, questions that couldn't be asked in ordinary courses or in the previous area quals because 
the answer required knowledge from more than one subject area. Unfortunately, when the first 
comprehensive qual committee met in 1972, we realized that such notions were too idealistic; almost 
every interdisciplinary question we could think of was either trivial or an unsolved research 
problem! Even worse, only the student members of the committee were able to understand questions 
in more than about two of the subareas of computer science; the faculty couldn't keep up with all the 
exploding knowledge any better than the students. Nevertheless, we did come up with a few 
interesting questions that span two or more subareas, and through the years such questions continue 
to appear. T h e  comprehensive exams began to be subdivided into named areas in 1974, so that a 
student's weakness in a particular area could be more easily identified by the grading committee. 
Th i s  of course had the unfortunate corollary that interdisciplinary questions became rarer, but the 
programming problems tend to ameliorate this defect. 

It is perhaps necessary to point out that students were never expected to get perfect scores on 
these exams. In recent years the criterion of "passing" the written test has been to require roughly 
113 of the points in each area and 213 of the total points summed over all areas. 

A reading list was given each time to help students prepare for the exam. T h e  cumulative 
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reading list appears at the end of the report, together with dates indicating when each publication 
was inserted into or deleted from the list. All exams were "open book". 

Frank Liang deserves an enormous vote of thanks for undertaking to collect and edit the 
examinations into publishable form. 

D. E .  Knuth 
June 1978 

Syllabus 

T h e  Comprehensive Exam is meant generally to cover the material from the following courses 
(given by Stanford University's Computer Science Department): CS 1 1  1 (assembly language); 112 
(hardware); 1 33A (numerical analysis); 140A, 140B, and 246 (systems); 144A (data structures); 156 
(theory of computation); and 224 (artificial intelligence). Since the precise content of these courses 
varies somewhat, the actual scope of the exam will be determined by the references given in the 
reading list. Please note that the reading list includes some material involving structured 
programming as well. as the history and culture of Computer Science even though it does not 
correspond to any particular course. 

T h e  exam also assumes a certain mathematical sophistication and a knowledge of programming. 
T h e  mathematical sophistication required includes knowledge of techniques such as induction, 
recursion, "divide and conquer" (e.g., techniques in sorting algorithms, case arguments, etc.), and will 
be at the level of an upper division undergraduate in the mathematical sciences. T h e  programming 
knowledge required will be an ALGOL-like language (e.g., ALGOL W or SAIL), the basic elements 
of LISP, and possibly some assembly language. 
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Spring 1972 eomyrehensive Exam 

Problem 1 .  (5 points) 

Fill in the Karnaugh map shown below for the function realized by the following logic network. 

Problem 2. (5 points) 

Complete the following ALGOL W program by inserting a single assignment statement in the b o x  
shown. Your program, when executed, should write the value "1" and nothing else (not "0") ! 

B E G I N  COMMENT A STRANGE PROGRAM; 
INTEGER ARRAY A ( 0 : : O ) ;  
INTEGER PROCEDURE I; 

BEGIN 

0 
END I; 

PROCEDURE WRITEZERO(1NTEGER X ) ;  
BEGIN 

X:=O; 
WRITE( X )  

END WRITEZERO; 
WRITEZERO(A(1) )  

END. 
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Problem 3. (20 points) 

Discuss the historical development of general-purpose digital computers up to 1950. Mention the 
names of the principal contributors and the places they worked, and give some noteworthy 
characteristics of the machines. 

Problem 4. (15 points) 

Using AND-gates and OR-gates, draw a two-stage logic circuit to realize the function 

with the minimal number of logic gates and literals (a literal is either an occurrence of a variable or 
an occurrence of the co~nplement of a variable). Assume that each input variable and its 
complement are available to your circuit. If a literal appears as input to more than one gate, each 
appearance counts. 

Problem 5. ( 2 0  points) 

Describe, in general terms, the uses of tree data structures in 

(a) artificial intelligence applications 
(b) system programming applications 
(c) numerical analysis applications 
(d) hardware applications. 

Give as many different kinds of uses as you can. 

Problem 6. ( 6 0  points) 

Consider the following context-free grammar: 

Start symbol A 
Nonterminal symbols A B C 
Terminal symbols a b c 
Productions A-ta B-tb C+c 

A-taBC B+bCA C+cAB 

(a) (10 points) Show that this grammar is ambiguous, by constructing two different parse trees 
for the terminal string abcabcabc. 

(b) ( 2 0  points) Prove that if x,.  . .x, is any string of a's, b's, and c's, for n z  1, the string 

( a b ~ ) ~ ' ~ - ~ x ~ .  . .x, is in the language defined by the above grammar. Hint: Show that the 
following are true: 
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(c) (20 points) Consider the following ALGOL W program, which is a "top-down analyzer" 
based on the above grammar: 

BEGIN INTEGER P; STRING(150)  S; 
LOGICAL PROCEDURE MATCH((STRING(1) VALUE X ) ;  

BEGIN LOGICAL L;  
I F  S ( P J  1)=X THEN BEGIN P:=P+l; L:=TRUE END ELSE L:=FALSE; 
L 

END MATCH; 
LOGICAL PROCEDURE A; 

BEGIN INTEGER Q; LOGICAL L ;  
Q:=P; 
I F  MATCH("AH ) AND B AND C THEN L:eTRUE 
ELSE BEGIN P:=Q; L:=MATCH("AH ) END; 
L END A; 

LOGICAL PROCEDURE 0;  . . . (analogous to A, by symmetry) 
LOGICAL PROCEDURE C; . . . (analogous to A, by symmetry) 

READCARD(S); 
P:=O; 
I F  A AND MATCH(" ." ) THEN WRITE("ACCEPT" ) 

ELSE WRITE("REJECTfl ) 
END. 

Suppose that an input card containing the string "ABCABABCABCAC." is punched. Explain 
what the program does, giving evidence to the grader that you understand the recursive 
sequence of calculations. Why does the program print "REJECT", even though the 
corresponding string abcababcabcac is in the language defined by the grammar? 

(d) (10 points) Find a string X I . .  .x, of a's, b's, and c's (n r 71) which is not in the above language 
but for which the above program will write "ACCEPT" when X I .  . . x ,  is punched on the input 
card. Or,  give an informal but convincing proof that no such string exists. 

Problem 7. (20 points) 

Prove by resolution (or by "iterative consensus") that the following set of clauses is unsatisfiable: 

p v ~ q ,  q v ~ r ,  r v ~ p ,  pvqvr, ~ p v ~ q v ~ r .  

Try  to use the minimum number of resolutions necessary, and give an informal proof that your 
method uses the minimum number. 
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Problem 8. (15 points) 
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A certain computer has "ideal" 8-digit floaring-point decimal arithmetic, in the sense that the result 
of floating-point addition or subtraction is the true sum or difference of the operands, rounded to 8 
digits. Formally, 

where 

i f x - 0  
[lokx+ .5 J , if 10' s lokx c 10' 

-round(-%), if x < 0 .  

Here Lxj denotes the greatest integer < x. 

(a) What is the smallest value of a floating-point number c such that floatingadd(1,c) > 1 ? 

(b) What is the smallest value of a floating-point number c such that floatingsubtract(1,c) < 1 ? 

(For the purposes of this problem, assume that the range of exponents in these floating-point 
numbers is unlimited.) 

Problem 9. (15 points) 

T h e  concept of a buffer is central to both logic design and programming. 

(a) What is a buffer? 

(b) Give an example to illustrate the use of buffers in logic design. 

(c) Give an example to illustrate the use of buffers in systems programming. 

Problem 10. (25 points) 

A linked list of n elements has been stored in locations xl l l  through x[nl, with the links in locations 
p[ 11 through p[n] .  .The first element of the list Is x w ,  the next is x[p[fJ], the third is x[p[p[ fJ] l ,  etc. 
T h e  link p [ p [ .  . . p [ . .  . .I] (Iterated n times) is 0. 

T h e  following algorithm rearranges the list, putting the first element in x[ll, the second In x121, 
. . . , the last in x[nl. (You need not prove that the algorithm works, but it will be helpful if you 
understand in your head how and why i t  works.) 
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fo r  k := 1 step I rcntil n do begin 
while f < k do f := p [ f l ;  
t := ~ [ k ] ;  ~ [ k ]  := ~ [ f l ;  x[fJ := t; 
q := p [ . ;  p [ f l  := P[kl ;  P [ k l : =  f; 
f : = q  

elid 

(Here 5 is an auxiliary variable having the same type as x, and q is an auxiliary integer variable.) 

Suppose that the final contents of the arrays, after this algorithm has been performed, are as follows 
( n  = 8) : 

(If you understand the algorithm, you will know the final value off.) 

What  were their initial contents, just before the algorithm was performed, and what was the initial 
value of fl 

PROGRAMMING PROBLEM 

This  programming problem is designed to emphasize topics in hardware design and the creation of 
nontrivial programs, as well as numerica.1 analysis. 

T h e  problem is to determine the value of 

in decimal notation, correct to 18 decimal places. 

Hint: It may be helpful to first transform the integral before blindly applying a formula for 
numerical integration. 

All programming should be done in either ALGOL W or SAIL. You should not use any 
subroutines not written by yourself, except for fundamental routines such as inputloutput or square 
root. Thus, you will probably have to write some extended-precision arithmetic subroutines. 

Your grade will be based on (1) clarity of the program and its documentation, (2) how close you are 
to getting the correct 18-digit answer, and (3) running time of the program. 
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Problem 1. 

A hash table of size N contains K items. Collisions are resolved with random or linear quotient 
probing. There is a probability P that the items for which searches are conducted are in the table, 
What  is the expected number of probes necessary to search for one of these items? 

Problem 2. 

Consider a three-digit chopped decimal floating-point number system F, with numbers 

with -100 s e 5 100, and 0 5 d; s 9. Let F be normalized (i.e. x # 0 3 d l  z 0). T h e  number zero is 

contained in F and has the unique representation: +.000 x 1 0 - ' ~ ~ .  

W e  denote by @ the operation of floating-point addition. For all x and y in F, the value of x CB y is 
defined as the floating-point number closest to x t y  whose magnitude is less than or equal to the , 

magnitude of x +  y. We denote by 8 the operation of floating-point multiplication. For all x and y 
in F, the value of x QD y is defined as the floating-point number closest to x x y  whose magnitude is 
less than or equal to the magnitude of x xy. 

(a) How many different real numbers can be exactly represented by F ? 

(b) Find examples of x, y ,  z E F to show that the following statements are not generally true: 
(1) (x B y )  QDz= x 8 ( y  QDz) 
(2) ( x @ y ) @ z = x @ ( y @ z )  

(c) Find an example where (x @ y) $ z has a relative error of at least 50% . 

Problem 3. 

Several processors must each be able to access a critical data base. Since any of them may alter it, 
they must not access the data base simultaneously. Each processor may run at a different speed. 
T h e  following mechanism is proposed to accomplish this: 

Each processor before accessing the data base will check a special "lock" word in memory. T h e  lock 
contains a 1 if any other processor is accessing the data base, and a 0 if not. 

Will the following instruction sequence executed by each processor accomplish the goal of shared 
but not simultaneous access? Explain your answer. 

TEST LDA lock 
BRP TEST 
SET l o c k  

access data base 

(load accumulator from lock) 
(branch if accumulator > 0 to TEST) 
(set lock to 1) 
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end access 
C LR lock (zero lock) 

Can you improve on this program? You may rearrange the given instructions, delete some, and/or 
add other reasonably implementable instructions. 

Problem 4. 

You have been hired to design a syntax-checker for Stanford's new, optimal programming language, 
NIL .  

T h e  language is as follows: A program consists of a series of statements, each of which is one word. 
A program must begin with BEGIN and end with END. The "initial segment" of a program, following 
BEGIN,  may have as many A D D l  statements as you wish, possibly none, but each A D D l  statement must 
be immediately followed by a SUBTRACT1 statement. (This is the only place a SUBTRACT1  statement 
can occur.) After the "initial segment" comes a "final segment" which consists of a non-zero number 
of "nochange" statements. Each "nochange" statement may be either an ADD0 or a T I M E S 1  statement. 

(a) Describe the syntax of N I L  by a regular expression. Design a syntax checker which may be 
either a transition graph or a finite automaton (designate which) that accepts exactly the 
programs of this language. 

(b) You were successful and now the user community has demanded a more flexible language. 
Accordingly, the language is revised so that in the initial segment of the program the A D D l  
and S U B T R A C T l  statements can occur in any order. Of  course the program can still only 
compute the same value (using the obvious meaning of the statements). Give a formal 
grammar of the syntax of this initial segment. Will a regular language suffice? Why or why 
not? Will a context-free language suffice? Why or why not? 

Problem 5. 

Consider a sequence gk (k = 0, 1 ,  . . .) which satisfies the relationship 

where c,  s, and (ab,  Xj,)pl are unknown constants with IApl  < 1 and lApl  r IAp,,l. 

(a) Given numerical values go, g , ,  g2, g3, show how to use Aitken-extrapolation to determine 
an approximate value of s. 

(b) Under what circumstances will your algorithm yield the exact value of s when go, g , ,  g2,  g3 
are given? 
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(c) Perform the calculation to determine s, given the following values for gh: 

go -2.5, g, = 14.5, g2 = 4.5, g3 = 8. 

Problem 6. 

Consider a complete resolution proof procedure that will find all possible resolvents (and factors) of 
a set of clauses, all resolvents (and factors) of those, etc. The procedure terminates on the empty 
clause or in the absence of further distinct resolvents. For each of the sets of clauses given below, 
determine: ( I )  Does the procedure terminate? (2) Is the set satisfiable? Explain. 

(Here a, b are constants; x, y, z are variables; P, q, r are predicates; and f ,  g are functions.) 

Problem 7. 

Show that for each of the three common fixed point binary number representations (signed 
magnitude, ones' complement, two's complement), there is a reasonable floating point number 
representation such that the same comparison instruction can be used (1) to test whether one fixed 
point number is greater than another and (2) to test whether one normalized floating point number 
is greater than another. 

Problem 8. 

TWENTY QUESTIONS 

1. Whichmachineisfaster? (a) IBM360165; (b) CDC6600. 

2. What is the main innovation of the IBM 3601851 

3. Which of the following are stack machines? 
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(a) PDP-I0 
(b) B 5500 
(c) 360165 

4. Which language is designed especially for string processing? 
(a) ALGOL W 
(b) SNOBOL 
(c) LISP 

5. What is the fastest general-purpose digital computer? 

6. What is the cheapest general-purpose digital computer? 

7. Are there any general-purpose 20 ns cycle time computers? If yes, give name. 

What is the essential difference between combinational and sequential hardware circuits? 

How many switching functions of 3 variables are there? 

How fast can sorting be done on a single sequential machine? 

Let Ax) = ( x - u ) ~ ,  and assume that xo is close enough to a. What is the rate of convergence for 
the iteration x,,,, = x , ~  -f(x,,)/ft(x,,), n = 0, 1, . . . ? 

Let fix) = cos x . For a given accuracy, which method requires fewer operations for finding a 
zero of Ax): Newton's method or the method of regula falsi? Why? 

Approximately how long is one nanosecond? 
(a) one millimeter; (b) one inch; (c) one fool; (d) one kilometer. 

Name two reasonable algorithms that might be used to determine which page to replace when 
a new page is brought into main memory in a paging memory system. 

What switching function does the following logic diagram implement? Describe in simple 
form. 

16. Consider 1's complement versus 2's complement representation of integers. From a hardware 
standpoint, in which system is i t  easier to implement the complement operation? Why? 

17. What information must be saved for later restoration when an interrupt is received and 
serviced? 

18. Is a queue or a stack the more common data structure in parsing? In 110 routines? 

19. Give a good candidate for the smartest A.I. program. 

20. Write down at least one "computer science joke." 
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PROGRAMMING PROBLEM 

You are given the six distinct objects that can be made from four unit cubes placed face to face so 
that none of them is a rectangular parallelpiped, and the one object that can be made from three 
unit cubes with the same restrictions. 

T h e  problem is to write a program that will determine all of the distinct ways in which these seven 
objects can be assembled into a 3 x 3 ~ 3  cube. This is the classical SOMA cube puzzle. It is 
well-known that there are 240 solutions. Since this problem is classical, you are expected to d o  it 
entirely on your own. It is not open book, except for programming reference manuals. You may use 
or  build a version of the puzzle to experiment with while working on the problem. 

All programming should be done in either ALGOL W or SAIL. The grade will be based on (1) 
clarity of program documentation, (2) structure and elegance of the program, and (3) running time of 
program. Partial credit will be given for incomplete answers. Note: your program will take at least 
a minute or so to run. 
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Problem 1. (15 points) 

(a) A T flip-flop is shown schematically as 

There  is a single input, and the state of the flip-flop changes with each pulse on the input  
line. Show how a T flip-flop could be made from a single S-R (set-reset) flip-flop, O R  gates, 
and A N D  gates. 

(b) T h e  circuit shown 'below contains one T flip-flop and one S-R flip-flop. There  is a single 
clock input, c, and two outputs, z ,  and z2. Assume that initially zl = 0 and z2 = 0. Fill in the  
table below to show the values of the indicated variables after the arrival of each clock pulse. 

I n i t i a l  s t a t e  (no c lock  pu lse  present )  
A f t e r  a r r i v a l  o f  1 s t  c l o c k  pu lse  
A f t e r  a r r i v a l  o f  2nd c lock  pu lse  
A f t e r  a r r i v a l  o f  3 r d  c lock  pu lse  
A f t e r  a r r i v a l  o f  4 t h  c l o c k  pulse 
A f t e r  a r r i v a l  o f  5 t h  c lock  pulse 
A f t e r  a r r i v a l  o f  6 t h  c l o c k  pu lse  

T 

8 

S 

0 

R 

8 

Y l  

8 

Y2 

8 

21 

8 

22 

0 

- 
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Problem 2. (15 points) 

For each of the languages given below, decide whether the language is regular, context-free and not 
regular, or recursive and not context-free. Explain your decision in some convincing (not necessarily 
formal) manner. 

In the following, assume that t ,  j are positive integers and that n is a fixed positive integer. 

(a) ( aibj I J - n-i ) 
(b) { aibj I j = n + i )  

(c) { aibj I j = nui ) 

(d) { aibj I j = nli ) ("I" interpreted as integer division) 
(e) { aib1 I j = i n  

Problem 3. (30 points) 

Let G be the grammar whose productions are given below. Capitals ( A ,  B ,  . . .) denote nonterminal 
symbols, lower case letters (a, b, c, . . .) denote terminals, and E denotes the empty string. The 
nonterminal S is the start symbol. 

S 4 AC 
A -t CB I aB 
B - t C J A b  
C - t c  

(a) Is the grammar left-recursive? That is, could a top-down recognizer loop forever when 
parsing sentences with this grammar? Why or why not? 

(b) Find the precedence table for this grammar and determine if it is a (1,l) precedence grammar. 

For parts (c), (d) and (e), use thr grammar above and add the production C + E. 

(c) Determine which nonterminals produce the empty string. 

(d) Answer part (a) for the modified grammar. 

(e) Answer part (b) for the rnodified grammar. 
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Problem 4. (30 points) 

Distinguish between paging and variable length segmentation (without paging) wlth respect to: 

(a) memory utilization 
(b) memory allocation problems 
(c) ease of program sharing 
(d) implementation of virtual memory. 

Note: typical machines 
paging: (360167, XDS Sigma 7, Honeywell 6 180) 
segmentation: (B6700, Honeywell 6 180) 

Problem 5. (15 points) 

Architecture Problem (systems) 

What  machine architecture features are needed (or are useful) to accomplish: 

(a) looping 
(b) dynamic program relocation 
(c) recursion 
(d) inputloutput 
(e) implementation of P and V mutual exclusion primitives 
(f) debugging at machinelassembly language level. 

Problem 6. (45 points) 

G P S  SOLVES T H E  MONKEY, APE AND BANANAS PROBLEM 

Problem: A room contains a monkey, an ape, a box, and some bananas which are hanging from the' 
ceiling. T h e  monkey wants to eat the bananas, but he cannot reach them unless he is standing on 
the box, when it is under the bananas. The ape is willing and able to help the monkey. How can 
the monkey get the bananas? 

GPS task formulation and task environment: 

initial state: monkey's place = place1 
box's place = place2 
ape's place = place3 
conten ts-of-monkey's-hand = empty 
contents-of-ape's-hand = empty 

goal state: contents-of-monkey's-hand - bananas 

places: placel, place2, place3, under-bananas 

animals: monkey, ape 
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operators: 

CLIMB: 

WALK: 

MOVE-BOX: 

input- monkey's place = box's place 
action- monkey's place becomes on-box 

input- x is in the set of places, a is in set of animals 
action- a's place becomes x 

input- x is in the set of places 
ape's place is in set of places 
ape's place = box's place 

actions- ape's place becomes x 
box's place becomes x 

GET-BANANAS: input- box's place = under-bananas 
a is in set of animals 
a's place = on-box 

action- contents-of-a's-hand becomes bananas 

differences: DO = (monkey's place) 
D 1 = (ape's place) 
D2 = (box's place) 
D3 = (contents-of-monkey's-hand) 

difference ordering: (D3, D2, D 1, DO) 

table of connections: consider all operators relevant to all differences 

Write out the trace of the GPS solution to this problem. GPS is to be taken to mean the problem 
solving system described in chapter 8 of Newell and Simon, Human Problem Solving, particularly as 
summarized by Figure 8.7. Your answer should be laid out in goal-subgoal structure, indicating 
differences found, operators applied, and intermediate states achieved. A model for your answer is 
Fig. 8.10 in HPS, although your trace does not have to be quite as thorough and detailed as that 
one. 

Problem 7. (15 points) 

BEGIN 
R E A L  A ;  
REAL. PROCEDURE P; 

A 4- 0 ;  
B E G I N  
REAL A ;  
PROCEDURE Q(REAL PROCEDURE R )  ; WRITE(R) ; 

A + 1; 
Q ( p ) ;  
END 

END. 
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BEGIN 
REAL A ;  
REAL PROCEDURE P(REAL A ) ;  A+1; 

A + 0 ;  
B E G I N  
REAL A; 
PROCEDURE Q(REAL PROCEDURE R ) ;  WRITE(R(A)); 

A + 1; 
Q ( P ) ;  
END 

END. 

(a) What will each of these two ALGOL W programs print? 

(b) What issue in language design is illustrated by this example? Name a language which does 
this differentl) from ALGOL. What are the arguments for each side? 

Problem 8. (30 points) 

You are on duty as a consultant for a computer center and you have just been asked to provide 
subroutines to compute the error function and the inverse error function. Neither of these is in your 
library, but you do have access to an otherwise well-equipped library of general numerical 
mathematics subroutines. Your visitor needs immediate answers to his programming problem 
because he has planned on using these functions later this morning. However, he is interested in 
computing only a few numbers with these subroutines (at unknown points) and great accuracy is not 
important, Neither are speed or elegance, but inputting tables will not solve his problem (or yours). 

(a) Provide algorithms using only general library subroutines to compute the error function, 
defined by 

and the inverse error function, defined by 

inverf(z) = x H erf(x) = z. 

You need only outline your solution, but you must give a brief description of any library 
subroutines you would use. Pay particular attention to what information or parameters would 
be necessary or useful. For some representative values of these parameters, give an estimate of 
the accuracy you would expect your algorithms to achieve. 

(b) Briefly comment on the efficiency of your solution and suggest alternative approaches you 
might try if you wanted to add these functions to your library (and had a week to d o  so). 
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PROGRAMMING PROBLEM 

You have been asked by a local computer system manufacturer to simulate the design of a 
multiprogramming operating system. You are seeking to find out, for example, at what rate tasks 
can be processed (throughput), to what extent memory is utilized, and how task priority and 
processing time requirements affect the turnaround time for a particular task. T h e  basic system 
model is shown below. 

t a s k s  r e q u i r i n g  f u r t h e r  processing 

a r r i v a l s  system of CPU departures 
queues server  

Tasks arrive at Poisson intervals and bring with them certain demands for systems resources. Call 
these demands di, where i runs from 1 to n. When a task arrives, we could form a demand vector, & 
= ( d l ,  d,, ' .  . . , d,,), which represents that task's resource requirements. We will assume that these 
demands remain fixed for the life of the task. Examples of possible demands include C P U  time, 
main memory, disk memory, peripheral equipment, priority, or special data bases. 

With respect to the problem of scheduling tasks to be run, we first observe that no task will be put 
in "ready to run" status until it is possible to allocate to that task all resources which the task has 
demanded. In the case of CPU time demand, this philosophy is tempered by the multiprogramming 
notion to the extent that each task which is ready to run will ultimately be given a quantum of time, 
q seconds, during which the CPU is devoted to running that task. If the task requires further 
processing when the q seconds are up, then it will be returned to the ready to run queue. Otherwise, 
it will depart from the system. 

T h e  system you will model has four resources to allocate: 

1. CPU computation time 
2. Main memory 
3. Disk memory 
4. Priority 

T h e  first and fourth of these resources are limited in the sense that no CPU time demand may 
exceed some limit, L1, and no priority may fall outside the range 1 r priority I L4. T h e  second and 
third resources are limited in the sense that no more than L2 words of main memory and L3 disk 
tracks can be allocated at one time. The implication is that some arriving tasks may have to wait 
until other tasks depart before they may be initiated. 

Since we are simulating the real world, we must find a way to generate task arrivals and task 
resource demands. We do this by drawing demands and arrival times from suitably distributed 
rarldom variables. 

Arrival of a new task occurs at intervals which are distributed exponentially, with mean I (mean 
interarrival time). Upon arrival, a task is assigned a demand vector u!, with d l ,  d2, d3 (CPU time 
in units of q seconds, main memory in words, and disk memory in tracks, respectively) chosen from 
exponentially distributed random variables whose means are m,, m2, and m3 respectively. The 
priority of the task, d4, is given an integer value between I and Lq, using a uniform distribution. 
T h e  larger the value of 4, the higher the priority of the task. 
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By now it should be apparent that the system of queues that must be maintained is split into two 
parts: 

(1) Tasks, ordered by priority, which are awaiting initiation because there were insufficient 
resources available when the task first arrived. 

(2) Tasks, ordered by priority, which have been initiated (i.e. allocated necessary resources) and 
are ready to run, but which are queued up waiting to get a quantum of time on the CPU. 

T h e  scheduler is run each time a task's quantum runs out. The scheduler first attempts to move 
tasks from the queue of tasks awaiting initiation to the queue of tasks which are awaiting CPU 
access, and then the scheduler attempts to start up the highest priority task which is ready to run. 

A n  arriving task will be given a demand vector and will be queued at the rear of the tasks in its 
priority awaiting initiation. Ultimately (we hope), it will be placed in the ready queue by the 
scheduler. 

T h e  figure below shows the queueing system in more detail. 

4 4 & 
ready task  queue I 

I 

I I I CPU 
depar t ing  

-? t t a s k s  

_____* I I * * .  1 
a r r i v i n g  t a s k s  awaiting 

t a s k s  i n i t i a t i o n  

Given the following parameters, run your simulation until 1000 tasks have been completed. Note 
that it may be necessary to initiate more than 1000 tasks. Collect statistics as described below. 

Parameters: 

I = mean interarrival time = 30 seconds 
m, = mean CPU time required = 20 q units 

m2 = mean main memory required = 200 K bytes 

m3 = mean disk space required = 20 tracks 

L I  = maximum CPU time allowed = 240 q units 

L2 = maximum memory available = 2000 K bytes 

La = maximum disk space available = 200 tracks 

L,  = number of priority levels = 4 

q = quantum time = 0.5 seconds 

Note that the total CPU times of all tasks waiting for initiation or in the ready queue may exceed 
240 q, but no single task may have a CPU demand in excess of 240 q. Furthermore, when a task 
departs, it returns all disk and main memory that it demanded. 

Statistics: 

Define T to be the total time the system is in operation, i.e. T is the difference between the time at 
which the 1000th task departs from the system and the time at which the first task enters the 
waiting queue. 



18 COMPUTER SCIENCE COMPREHENSIVE EXAM 

( 1 )  Average throughput (broken down by priority) = 
total number of prisrity I tasks run 

T 

(2) T h e  mean and variance of queue lengths in both waiting and ready queues, broken down by 
priority. Collect these statistics incrementally each time the scheduler is run. 

(3) Memory utilization. Let t i  be the interval of time from the moment task i first enters the 
ready queue to the time task i departs from the system. Let d2(i) be the memory demand 
assigned to task i when it enters the system. Then memory utilization is defined as: 

where i runs over all tasks which have been completed, and T is as defined earlier. 

(4) Disk utilization. (Same as (3), except replace d2(i) by d3(i) and L2 by L3.) 

( 5 )  For each priority class, prepare a scatter plot of the total time a task is in the system against 
the CPU time demand the task makes. Note that this "total task time" is not the same as the 
t i  in (3). 



Problem 1. 

Consider the foliowing sever1 steps which are executed (rt,cursively) in some binary tree traversal 
algorithms: 

1. Visit the root 
2. Visit the left successor of the root 
3. 'Traverse the left subtree of the left successor of the root 
4. Traverse the right subtree of the left successor of the root 
5. Visit the right successor of the root 
6 Traverse the left subtree of the right successor of the root 
7. Traverse the right subtree of the right successor of the root 

(To be completely precise, steps 2, 3, and 4 should be preceded by the phrase "If the root has a left 
successor"; and steps 5, 6, and 7 should be preceded by the phrase "If the root has a right successor".) 

(a) Express the standard traversal algorithms of preorder, inorder, and postorder in terms of the 
above steps. 

(b) Consider the following tree; call it S. 

(1 )  Let the "inside out" algorithm be defined by executing the steps in the order 4 6 3 7 2 5 
1. Apply this algorithm to tree S.  In what order are the nodes visited? 

(2) Which of the algorithms, when applied to tree S, visit the nodes in the order I H F C B 
G E A D ?  

(3) Give a permutation of (A B C D E F G H I) which cannot represent the order in 
which the nodes of S are visited by one of the 7! algorithms which can be defined in 
terms of the steps above. Prove your answer. 

(c) Suppose all 7! algorithms which can be defined in terms of the steps above are run on some. 
arbitrary (but fixed) tree T, resulting in 'I! permutations of the nodes of T. How many of 
these permutations are distinct? 

(d) Given an algorithm A, consider the algorithm AR defined by reversing the order of the seven 
steps. (E.g. if A is 4 5 2 3 1 6 7 then is 7 6 1 3 2 5 4.) Are the nodes of all trees traversed 
by AR in the opposite order to the order they are traversed by A? Prove your answer. 
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Problem 2. 

(a) How would you recognize that you have obtained the nth degree polynomial P ( x )  that  is t h e  
minimax (Chebyshev) approximation to a function A x )  in CCa, bl? 

(b) Use your answer to (a) to find the straight line that is the best Chebyshev approximation t o  
tRe quadratic ax2 + bx + c in I - 1 . 1 1 .  

(c) Find the answer to the problem in (b) by expanding the quadratic in a series of Chebyshev 
polynomials To(x)  = I ,  T l ( x )  = x, T;(x) = 2 x 2 - I .  State the general theorem you are using. 

(d) Suppose the interval in (b) is changed to EO,lJ. Explain how you would apply the  methods of 
(b) and (c), but do not carry out the details. 

(e) Prove that 

fix) = (x-x ,)(x-x3. - .(X--X,~) 

where the xi are at your disposal, is minimized with respect to the maximum norm in [-1,1] by 
choosing xi ; cosl(2i- l)n12nl. 

Problem 3. 

Ternary operations 

Dr. Art  D. Ware once had the marvelous idea of using ternary logic for improving the speed of 
computer hardware. He uses "trits" instead of bits, and the following functions: 

T h e r e  are three binary operators, And ( ), O r  ( g  ), and Sup ( @ ); and two unary operators. 
Rot ( t$ ) and Neg ( @ ). Use these components to build a half-adder and then a full adder. To 
help you get started we give below the construction of a multiplier modulo three. 

. . 



WINTER 1974 

Mul(a,b) = And(Sup(Or(a,b),Neg(Or(a,b))),Neg(St~p(Or(a,Neg(b)),Or(Ne~a),b)))). 

Your end result should have a similar form. 

Problem 4. 

Consider the polynomialf(x) = x3 + 3x2 + 2% - 1. 

(a) Show that there is a positive zero a and find an interval of length 1 (i.e. an interval of the 
form Ia,a+ I]) which contains a. 

(b) Consider the iterative method 

where xo r [a, a+ 11 and 

Find a value of m for which this method converges to a for any xo e [a,  a+]]. Show that  for 
your value of m the sequence xn does converge to a . Discuss what happens if xo is a n  
arbitrary real number, considering convergence or non-convergence, and if convergent, the  
speed of convergence. 

(c) Consider the iterative method 

is  this method convergent? Explain. 

(d) Consider Newton's method 

xn+ 1 = X ,  - flxn)lf'(xn) X o  a a + 1 . 
Discuss the convergence or non-convergence. 

Problem 5. 

T h e  Algac 60 executes Algol 60 programs directly except for inputloutput. It reads a number by a 
statement x := read and writes by a procedure zurite(x). It has a clock interrupt to a statement 
labelled foo every algosecond. The procedure return is used to return from the interrupt. Write the  
program at foo and establish conventions for communicating with it so as to read and write arrays 
of numbers. 
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Problem 6. 

Prove or disprove each of the following four statements. 

(a) L(G) is regular, where G is the grammar ((S, A, B,  C, DJ, (0, I), P, S )  and the productions P 
are: 

S -1 AB 
A -t CCC 
B - 1 D D D  
C D  + D C  
DC + C D  
CDC + DCD 
DCD + CDC 
c - 1 1  
D 4 0  

(b) {ruruR : ru in { a ,  b)*] is linear context free. 

(c) {ruczuR : zu in ( a ,  b)*j is regular. 

(d) (anbnc" : n 1 I )  is context free. 

Problem 7. 

Consider a game playing program for a game in which there are always exactly two moves to 
consider, A and B. The  program explores the game tree to a fixed depth D, and uses an evaluation 
function that assigns a different value to each bottom position (the positions at depth D from the 
starting position). The  program always considers the moves in a fixed order (A then B) because It 
is difficult to tell a priori which of the two moves is likely to be preferred. In order to reduce the 
size of the game tree considered, the program uses a restricted "alpha-beta" pruning procedure 
which only does one level cutoffs. (In Nilsson's terminology: when deciding whether search should 
be discontinued below a given node, its provisional backed-up value is compared with the 
provisional hacked-up value of its parent node only.) Thus there are no deep cutoffs. 

What  is the expected number of bottom positions this game playing program will consider as a 
function of D? 

Problem 8. 

Base '7 adder 

Design, as efficiently as you can, using And ( ), O r  ( d$ ), and Neg ( 4 ) functions, a three-bit, 
base seven full adder. The  input is seven bits, including the carry. The output is three bits and a 
carry. Say why you think that your design is good. 



WINTER 1974 

Problem 9. 

T h e  actual parameters of an ALGOL 60 procedure may be called by name or by value. Explain 
clearly the difference between these two mechanisms, and say which you would choose in a situation 
where either could be used, In what circumstances is it essential to call parameters by name? 

T h e  following procedure prints a table of values of the function 

the method used is unusual. 

procedure David ( a ,  b, c); 
real a ,  b, c; value a ,  b, c; 

begin 
integer i; real y; 
y := 2; 
for i := 1 step 1 until 9 do begill 

print  (axyxy + bxy +c); 
c : = c + b + a ;  
b := b + 2*a; 

end 
elid Davi4  

Trace the action of this procedure when activated by the program segment 

and deduce the values of f(2) and f(3) computed 

!(a) with the procedure as given; 
(b) if the part value a ,  b, c; is omitted. 

Note that the action of this procedure is the same in ALGOL W as in ALGOL 60. Only the 
notation of the procedure heading is different in the two languages. 

Problem 10. 

A cubical barrel contains 27 identical spherical apples in a regular 3 x 3 ~ 3  array. A worm is to start 
at an outside apple and eat his way from apple to apple visiting each apple once and going to a 
touching apple. Write a sentence of predicate calculus with equality whose satisfiability expresses 
the possibility of the worm doing this and ending up in the center. It is not necessary to determine 
whether the worm can do it in order to write the sentence. 

(a) How might you quibble about this problem? 
(b) Solve it without quibbling. 
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Problem 11. 

QUICKIE QUESTIONS 

(a) What is Professor Knuth's middle name? 

(b) Perform the following 9-bit ones complement addition: 

(c) Compute 9- 1 +2+ 3+4*. 

(d) What is the importance of ĝ , in connection with the heuristic power of fi, especially 
considering the admissibility and optimality of A*? 

(e) Is ALGOL W a context-free language? 

(f) Apply Warshall's algorithm to the following binary matrix: 

What data structure would you use to represent a 100 x 100 array which you know will 
always have less than five non-zero elements? 

What is a nybble? 

Prove, in any wa.y you can, 3xV-y (Fx3F-y). 

What is the biggest architectural flaw of the IBM S/360? 

What is strength reduction? 

Alphabet soup: expand the following abbreviations: 

A P L  
BNF 
COBOL 
A V L  
CCW 

For integration of a first order differential equation with initial cor~dition, multistep methods 
such as Adams' method are generally more efficient than the Runge-Kutta method. Under 
what circumstances or in what portion of the calculations would the Runge-Icutta method be 
preferred? 
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100000 1 
1 1 (n) L e t s I =  - and S z =  7 .  

n - ~  n2 n-IOOOOO n 

If these sums are computed on a finite precision computer of the usual type, which one would 
you expect to have the smaller round-off error and hence give a better approximation to 

Why? 

(0) How would you calculate (x) = x - & correctly to the number of digits used in x when x 
is very large compared to a? 

(p) In a few words what is the most important property of a spline function approximation which 
makes it better than a polynomial approximation for interpolating a given function at a given 
set of points? 

(q) What  is the biggest architectural flaw of the PDP-lo? 
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PROGRAMMING PROBLEM 

A semigroup is a set of objects S together with a binary operation * such that (x*y)*z .I x*(y*z) for 
all x ,  y ,  z in S. T o  define a semigroup on the four objects A, B, C, D, we must specify a 
multiplication table for the operation U, namely a 16-tuple 

which satisfies the 64 relations 

Two semigroups defined by multiplication tables n and m f  are isomorphic if there is a permutation p 
of (A B C D) such that p(x*y) = p(x)afp(y) for all x, y E S. 

You are to write a program which prints out all such semigroup multiplication tables In 
lexicographic (i.e. dictionary) order, except that you should list only the lexicographically first table 
from each class of isomorphic semigroups. In other words, you are to find all the nonlsomorphic 
semigroups on four objects. 

Example: For two objects, the answer would be 

AAAA, AAAB, AABB, ABAB, ABBA; 

since the set of all semigroup multiplication tables is 

AAAA, AAAB, AABB, ABAB, ABBA, ABBB, BAAB, BBBB; 
1 2 3 4 5 6 7 8 

and the pairs ( I  ,8), (2,6), (5,7) are isomorphic. 

Th i s  is intended as a programming problem and not as a problem in group theory. T h e  problem is 
classical, but you are expected to do it entirely on your own; the definitions above should be 
sufficient. It is not open book, except for programming reference manuals. 

As  your program generates solutions, have it print out the elapsed time, along with any other 
measures of performance you think important. Your grade will be based on the structure and 
elegance of your program and the clarity of your documentation, as well as its performance. 

You may find the following facts helpful: 

(1) There are less than 10,000 semigroups on four objects. 
(2) Less than 1000 of these are isomorphically distinct. 
(3) T h e  grader's program took less than ninety seconds to run. 
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HARDWARE 

1. (7,3?-coun ter. (20 points) 

A (7,3)-counter is a combinational circuit with 7 inputs and 3 outputs, in which the 3-bit output is 
the binary representation of the number of 1's present on the inputs. Assuming that a (7,3)-counter 
costs $ 1  and a one-bit full adder costs $2, design a combinational network of (7,3)-counters and full 

. adders to calculate the sum of fourteen 10-bit unsigned integers. Give a strategy for the design and 
state the number of each building block needed, making the cost of your design as low as possible, 

2. T m .  (10 points) a 

T h e  following circuit might be called the "poor man's trigger". Sketch the behavior of the output 
signal when the circuit is presented with the following input signal: 

1 (true) 
Input ( I  1 

0 . (false) 

time 

Explain briefly the reasons for the behavior observed. 

SYSTEMS 

3. Software factory. 

You are the director of a large software consulting company. The XYZ company has just given you 
a fixed price contract to supply all the software for its new machine which it will market in tzuo 
years. The  system should sell for about $300K to small universities. The contract allows you the 
normal outrageous profit if you can produce the software with less than ten man-years of effort. 
Assume that you have available whatever software talent is needed. Lay out a software 
development schedule in some detail - show what software is to be developed, when development 
starts and stops, and some indication as to the way in which major packages would be implemented. 
Explain clearly any additional assumptions you are forced to make in order to make the question 
more well-defined. 
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4. Operating systemslarchitecture. (20 points) 

A systems designer at Veeblefetzer and Beebleberry has noticed that machines which use base and 
bound registers to implement virtual addressing must still use physical memory addresses for 110, 
while using virtual addresses for program references in the CPU. This is because the 
transformation from virtual to real addresses is done by the CPU. 

T h e  CPU address calculation logic (e.g. indexing, indirect addressing) produces a virtual address. 
Th i s  value is added to the contents of the current base register producing the correct physical 
memory address. 

T h e  designer decides to make things more symmetric by building the virtual-to-real mapping into 
the memory. This way, he reasons, programs can issue I10 requests referring to virtual buffer 
addresses and these can be used in the various 110 devices since the virtual addresses will be 
transformed to physical ones at the memory. He also hopes to permit dynamic program relocation 
even during 110, since all addresses entering the memory request queue will be virtual. Evaluate 
this strategy, pointing out as many flaws or weaknesses as you can. 

5. Circular lists. (10 points) 

A programmer has designed a circular list format as follows: 

empty l i s t :  HEAD e 0 

non-empty l i s t :  HEAD -----+ L I ~ $  

H e  writes the following routine to insert a new data element DNEW into the list. FREE is the index of 
an available node in PointerArray. 

o r  HEAD ---+ DATA POINTER DATA 

IF  HEAD = 0 THEN B E G I N  
PointerCFREE] +- F R E E ;  
HEAD +- FREE 

E N D  
ELSE B E G I N  

PointerLFREE] + Pointer[HEAD]; 
PointerLHEAD] +- FREE 

E N D ;  
DataEFREE] * DNEW; ' 

POINTER 

Specify a change to the data structure which will allow you to simplify the insertion routine by 
eliminating the conditional. The change should preserve the circularity property. Rewrite the 
insertion routine for the modified data structure. 
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6. Block structure. (20 points) 

Implementation of certain features for block structured languages can cause some serious difficulties. 
Write a short paragraph or two in response to each of the following questions: 

(a) Algol W implements records and references but places only references on the stack, while 
records are kept in separate storage not a part of the stack. Why is this? 

(b) It is unusual to find an interactive Algol system which allows a user to modify his program 
incrementally, that is, adding and deleting text at will, recompiling as little of the program as 
possible. Why is it so difficult to build such a system? Cite several specific problems that you 
can think of. 

NUMERICAL ANALYSIS 

7. Euler's method. (3'0 points) 

Consider the ordinary differential equation 

9 = xy, t a 0, y(0) = yo. 
nt 

(a) Define Euler's method for this equation. 

(b) Let v,, = v(i,,), t, = nk,  n = 0, 1, . . . , k > 0, be the approximation to ~(t, ,).  Solve the Euler 

difference equation and show that v,  = yoexp(n~k - nh2k2/2 + 0(k3)). Hint: In(l+x) = x - 
x 2 / 2  + x3/3 - . . .  , -1  < x i; 1. 

(c) Using the expression obtained in (b), compute an expression for Jv, - y(tn) I. What can you 
conclude from this? 

(d) Let h = h l  + iXp, i = J-?, X 1  and X 2  real, X I  5 0. Then ly(i)( 5 lyol. Derive a relation for k 
which is both necessary and sufficient so that I v, I i; lyo I. 

(e) Discuss the usefulness of Euler's method for integrations over long t-intervals if X I  = 0. What  

if ( h l  ( is very much smaller than l ~ ~ l * ?  Are these conclusions valid if one is only interested 
in the solution over a very short t-interval? 
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ARTIFICIAL INTELLIGENCE 

8. Search. (15 points) 

T h e  U. S. Postal Service has developed a simpTe model to help speed the mail. The  model deals 
with 7 cities and the bi-directional mail shipment between them. The following graph represents 
the model: 

T h e  number on an arc is the actual transit time of mail traveling that route. The number in 
parentheses at each city is an estimate of the transit time from that city to city B. 

(a) Use the A* algorithm (Nilsson) to "search" for the apparent shortest path from A to B. Use 
the estimates at the cities for the heuristic estimate of distance to the goal. Illustrate your 
application of the algorithm so that the grader can understand it. 

(b) Does A* find the actual shortest path? If not, why not? 

9. Trends. (15 points) 

Nilsson's survey article on artificial intelligence suggests that a major and fundamental shift in 
approach to the A1 core problem areas has occurred in recent years. Describe and discuss this shift, 
giving examples from the A1 "applicationn areas if you wish. 
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T H E O R Y  O F  COMPUTATION 

10. Turing. machine implementation. (20 points) 

(a) Describe the finite control for a Turing machine that recognizes 

given these constraints: 

1. T h e  alphabet of the machine is (" ,a,  b, x}. 
2. The  symbol x will never appear on the input a. 
3. T h e  contents of the tape at completion may be anything. 
4. T h e  head begins on the lefthand r. 
5. n 2 0. 

First explain how your implementation works, in English. Then give a precise description of 
the machine, using some Turing machine formalism (e.g. quadruples or flow graphs). Be sure 
to mention how the T M  indicates success or failure.. 

(b) Can a NDPDA (non-deterministic push down automaton) recognize this language? Why or 
why not? 

(c) Is this language context sensitive? 

1 1. Propositional calculus. * (10 points) 

T h e  following formula in the propositional calculus is either a tautology, satisfiable but not a 
tautology, or unsatisfiable. Determine which and prove your answer. 
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PROGRAMMING PROBLEM 

A "generalized Gray code" of degree 4 is a cyclic permutation (Po, P I ,  . . . , of the sixteen 4-bit 
words 0000, 0001, . . ., 1 1 1  1 such that pi and P(;+I) ,,, 16 differ in only one bit position for all i. 
For example, one such code is 

(0000, 0001, 001 1, 0010, 01 10,0111,0101,0100, 1100, 1101, 1 1  11, 11  10, 1010, 101 1, 1001, 1000). 

Two Gray codes are considered equivalent if one is obtainable from the other by combining any of 
the following four operations: 

(a) Reversal, i.e. (po, P I ,  . . . , pI5) is equivalent to (PI5, PI4, . . . , PO). 

(b) A cyclic shift, i.e. (Po, P I ,  . . . , PI5) is equivalent to (PA, p ~ + ~ ,  . . . , PA-]). 

(c) Complementation of any set of bit positions, i.e. (Po, P I ,  . . . , PIS) is equivalent to (po@x, 
p I fB X ,  . . . , p 15CB~), where x is any bit pattern and $ denotes exclusive or. 

(d) Permutation of bit positions, using the same permutation on each of the p's. 

As  an example of operations (c) and (d), we can replace each bit pattern abcd by cadb B0110 = ciZb 
in the generalized Gray code shown above, obtaining 

(01 10, 0100, 1100, 1110, 1111, 1101, 0101,0111,0011,0001, 1001, 101 1, 1010, 1000, 0000, 0010). 

Write a well-structured computer program which lists all of the distinct generalized Gray codes of 
degree 4, giving for each equivalence class the code which is first in lexicographic order. 

For example, it is not difficult to work, out the case of degree 3 by hand, obtaining 

(000, 001, 01 1 ,  010, 110, 111, 101, 100) 

as the unique answer! 

For degree 4, there are 9 solutions, and they can be found in McCluskey, Introduction to Logic 
Design and Switching Theory, 1965, page 62. This information will help you determine whether 
your program is correct; obviously it is not sufficient for you to simply list the solutions. You should 
try to make your algorithm as efficient as possible, making use of symmetry and other work-saving 
ideas. 

All programs must be written in ALGOL W or SAIL. You will be given an account with $100. 
Programs will be evaluated according to the criteria of efficiency, clarity, documentation, correctness 
of results, structure, and the algorithm used in the program. Include the program run-time in your 
documentation. 
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H A R D W A R E  

1. Counter circuit. (20 points) 

T h e  four binary outputs of a circuit at time t represent the binary encoding of an integer q(t) in the  
range [0,151 . T h e  circuit has a single binary input. O n  receipt of an input signal, the circuit 
generates 

q(t + d t )  = 3 x q(t)  + 1 (mod 16) 

where x and + imply multiplication and addition over the integers. T h e  initial state is q(0) = 0 . 

Design such a circuit using not more than three memory elements. Include brief descriptions of the 
actions of any circuit elements you employ. 

2. Prime number circuit. (20 points) 

(a) Given four binary signals which encode the numbers 0 through 15 in an 8-4-2-1 code, 
construct a circuit whose output is 1 if and only if the number represented is prime. ( T h e  
integer 1 is not prime.) Assume that AND gates, OR gates, and inverters are available. T h e  
circuit should require a minimal number of gates. 

(b) Pick one of the leads to one of the gates. Assume that this lead breaks in such a way that  the 
gate thinks the corresponding input is always a 1. What is the behavior of the circuit now? 
Give a systematic procedure for detecting which gate is involved, under the restriction that  
you can only look at the final output of the circuit. 

P R O G R A M M I N G  LANGUAGES 

3. Precedence crammar. (10 points) 

Show that the grammar 

is an operator precedence but not a simple precedence grammar. Suggest a change to the grammar 
which leaves the strings generated by S unchanged but gives the grammar the simple precedence 
property. 
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4. m. (15 points) 

Consider an imaginary language in which calls can be by value, reference, or name, as specified in 
the procedure definition. Simulate the output of the following program. Assume the obvious 
conventions for print format, etc. (e.g. your simulation should begin: 

B E G I N  
INTEGER X, INTEGER W, INTEGER I 
MACRO SPEAK 

B E G I N  
I := 1+1 
P R I N T  (I, "X= ", X, "W= ", W )  
END 

PROCEDURE ONE ( W  INTEGER VALUE) 
B E G I N  
INTEGER X 
X := 7 
SPEAK 
W : = X + W  
X := W 
SPEAK 
END 

PROCEDURE TWO ( W  INTEGER REFERENCE) 
B E G I N  
INTEGER X 
X :=  7 
SPEAK 
W : = X + W  
X := W 
SPEAK 
END 

PROCEDURE THREE ( W  INTEGER NAME) 
B E G I N  
INTEGER X  
X := 7 
SPEAK 
W : = X + W  
X := W 
SPEAK 
END 

I := 0 
X := 4 
W := 225 
SPEAK 
W : = X + W  
SPEAK 
O N E ( X )  
SPEAK 
TWO(X) 
SPEAK 
THREE(X)  
SPEAK 
END 
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5. Error handler. (20 points) 

You are maintaining an implementation of a compiled high-level block-structured programming 
language In which the blocks have names. (SAIL is an example where the names are optional.) It 
has been decided that the run-time error handler should print out the names of the blocks which 
constitute the lexical (static) scope of the statement in which an error occurs. T h e  only information 
immediately available to the error handler is the value of the program counter at the place where 
the error occurred. 

(a) What  additional information must the compiler make available to the error handler? 

(b) Design a suitable data structure for the storage of the information. 

(c) Give an algorithm for the error handler to use for printing the block names. 

Example: 

B E G I N  "p rob lem"  COMMENT b l o c k  names i n  quotes;  
PROCEDURE F I R S T  (REAL VALUE X; INTEGER VALUE 10); 
BEGIN " p a r t  1" 

BEGIN "case 16a i  INTEGER I, J,K; 
WHILE TRUE DO 

I F  SQRT(X) > 10 THEN .. . 
END "case 16a"; .  . . 

END I ' p a r t  1 " ;  
PROCEDURE SUPERVISE; BEGIN "supe" 

F I R S T  ( - 15  ., 26 ) ;  ... 
END "supe"  ; 

SUPERVISE;  
END "p rob lem"  ; 

T h e  error message should include SQRT: n e g a t i v e  argument 
B l ock  s t r u c t u r e  i s  prob lem 

p a r t  1 
case lGa 

SYSTEMS 

6. Storape reclamation. (10 points) 

Briefly describe the advantages and disadvantages of the following two schemes for storage 
reclamation: 

(a) garbage collection 
(b) reference counts. 

Assume the following: the data structures involved are large and cannot be wholly contained in 
core; a virtual store is provided by a paging system; core space is at a premium; disk accesses a re  
expensive, but computational power is fairly cheap; the storage reclamation problem arises in the 
context of a LISP system which normally includes only a small number of self-referential structures. 
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7. Breakpoints. (20 points) 

T h e  doci~mentation below describes the memory reference instructions of a minicomputer (the Data  
General Nova). 

Describe the design of a mechanism for inserting breakpoints in programs in such  a machine. W h a t  
are the key issues? What must the code that is executed when a breakpo~nt is encountered do? 
How abou: :he code that executes the return from a breakpoint? 

l Z  bSEMOI:Y REFf fZESCK IN!Xf:UCI'IDhS 

" Bits 5-15 have th~lc cr;'.t f m a t  in eviry memory rcfcrtt~cc instruction whechcr tkc eXectivc adZ;r=r is 
uscd fcr s t o m s  or rctrimt of 3n operaild or to alter propun flaw. Liit 5 is the indirect l i i .  bits 6 nrld 7 zic 1?:c - .  

indcx bits, and bits 3-15 arc t\c displscc~~cnt. Thc cffectivc zddress E of thc instruction depends on thc valccs 
of I. X. and D. If X is 00. D addrcsscs m c  pf the first 256 memory locations, ic D is a r n e n o ~  address In r l~c 
rangc 00000-00377. Tl~is g o u p  of locations is rcfcned to as page zero. 

If xis notlzcro, D is a displacement t l~at  is uscd to prduce a nlemory aJdressby adding it to the conrcnfs 
of th: register specified by X. The displ~ccrncnt is a siged binary intcgcr in twos com~lcnrn t  notation. I%( 3 
is the s i p  (0 positive, 1 n*ga?ivc), and Lhc infescr is in the octal range -200 to + 177 (decimal -125 lo 
+ 127). If X is 01, the instruction addrcsscs a locztion relative to its own po'sXioq ic D is added to the a<drcss 
in PC, wbIch is thc addrcss of tkc instruc[ion bcing executed. This is rcferrcd 10 as relativc addrcssing. If X is 
1 0  or 11 respectiveIy, it seIccts AC2 or AC3 as a base rc:ister to which D is ad&& - - 

X Derivation of odd re^ 

00 Pagezero 2ddressing. D is an zddrcss in 
the r~nge  0000040377. 

01 Rclatibe zddressins. D is a signed displr.cc- 
ment (-200 to + 177) that is added in  1h.z 

address in P C  

lo. Base rc~istcr addressing. D is a s i ~ r d  d:s- 
placement[-200 to -I- 177) that is addcd 
to thc address in ACL. 

11 Base rcgistcr addressing. D is a slgncd dir- 
~laccment (-200 to + 171) tha:?: ac'cl'd 

to t11c address in A=. 

If  I is 0, nddrcssil~g is dircct. and thc address a!rcady dctemined from X and W is [lie cXccrivc rd2rcn 
used in tkc cxcculion of thc instrucrion. Thcs a n:cmc?ry rcfcrcncc inslrucrion e m  directly addrsss 102-1 ICCP- 
tions: 256 ill p:y.c zcro. and tlirce scts of 356 in thc octal r.rrtge 200 lcss lhan to I77 srcntcr #ha:\ [tic 2drlrc?.r in 
PC. XC2 anJ~\C3.  If I is I. addrcssing is ir12ircct. and thc proccssor rctric~cs nnotlrcr ddrcss  from thc !cc::lo~ 

s~ccificJ by thc ~dclress aIrc3d~ Jcfcnl~incd. In tl~is new word bit 0 i, thc indirsct bit: Sitsl-1 Snrc tkc cqcc- 
tivc sddrcss if bit 0 ic 0; r.~licr\r.isc thry yccily a loc3tion for ycl anjthcr lcvd or addrcss :c;ric.<-l. This . 
jrr-tcss cor'!i::.~cu until uxnc tclcrcnccd 1oc;:ion is fwund with n 0 in bit 0; bits 1-15 of Illis luc3:i.m er? t!lc 

c&%i*e a?Grt*is E. 
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fllcsc two ins~ruct~o~is move data bstwecn memory and tllc occurnulztors. In thc descriptions of d I  
mcnlcry rcfcrcr~cc insiiuetions, E represents the cffectiuc address. 

LDA Lead Accurnufabt 

LcaI tfr contents of location E into accumulator A. The contents of E are unaffected, th: original sontents 
of A arc lost 

SCA Stare Acmmuhtor 

Store tlic contents of accurnul~tor A in location E. l h c  contents of A are unaffectcd, the original contcnts 
of E arc lost. 

These two instmctSkrs sllct a mcmory location and test the resclt for a skip. Thcy arc uscd to c w s i  
loop iterations or~succssively modify a word for a scries of operations. 

- .  - 
IS2 Increment sad Lkip if Zera 

Add 1 to thc contents of locarion E and place thc rcsult back in E. Skip the next instruction in sequence if 
the result is zcro. 

OSZ Decrornefit and Skip if Zero . . 

Scb~ract I from t l~e conicnts of location E and place tllc rcsult back in E. Skip the ncxt instruc~ion in requcnrc 
if fhc rrsuft is zcro. 

, Thcse t\vo i~:structions allow thc prcgmmnrcr to sltcr the nonllnl pryrotn szquemc by jumping to an 
arbi~rrry loc;~tion. They arc cspccinlly useful for calling 2nd rctuming from subrootincs. 

. JidP Jump 

Load E into PC. Take nest ins!ruclion from location E and continue sequential opcratiorl fro= therc, 

JSR Jump to Subroutine 

Load ah address onc grc~ter than t11at in PC into AC3 (hcncc AC3 reeeivcs.thc address of the location fol- 
lowing the JSR ins~ruction). Lond E in:o PC. Titkc thc ncxt instruction from location E a n J  continue scquen- 
tial operation from tl~crc. Thc origil~nl contents of AC3 ore lost. 

NOIE: Thc clfcctivc address calculntion is complclcd before PC+ I is lo~dcd  into AC3. Thus a JSR 
that specifics AC3 as a b s ~ c  register docs cxccutc properly; ie the previous conten& of hC3 arc used in the 
oddrcss calculation. .. 
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NUMERICAL ANALYSIS 

8. Order of converEence. (15 points) 

We wish to solve the equation 

Ax) = 0 

by the following iteration formula: 

(a) Determine the constants a. and such that the convergence will be of highest possible order. 

(b) Give the order. 

9. Predictor-corrector. (20 points) 

For integrating the differential equation 

the following predictor-corrector pair of formulas has been proposed: 

Note that the first is just the Adams-Bashforth predictor of order 3. It can be shown that the 
second formula is also of order 3. Hence, both formulas would give correct results if y(x) were a 
polyno~nial of degree 3 or less. 

(a) T h e  following table was obtained by solving 

y '  = y , y(O) = 1 

using h = 0.1 . For each step (except the first two) the predictor was used and the corrector 
was used sufficiently often to obtain convergence (i.e. agreement to two decimals). Carry this 
solution forward one more step. 

(b) Explain the behavior of this solution. (Hint: Study the stability of the corrector formula.) 
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ARTIFICIAL INTELLIGENCE 

10. Representation. (15 points) 

T w o  aphorisms in Kernighan and Plaugher are "Say what you mean, simply and directly", and  
"Choose a da.ta representation that makes the problem simple". These are simple statements of key 
issues in A.I., but mask some interesting and difficult problems. Here you are asked to represent a 
problem it1 two ways and briefly describe the issues involved. 

T h e  problem: A robot truck driver, starting at Universal Plastics, Inc., must deliver baubles, 
bangles, and beads to Gump's, Macy's, and Saks', respectively. 

(a) Predicate calculus representation 

Assuming the simple operators drizje(x, y) and unload(z) and a.ny others that are necessary, 
with appropriate preconditions and results, show how to set up (axiomatize) the problem for  a 
theorem prover to find a sequence of operators producing a state satisfying AT(baubles, 
Cump's), AT(bangles, Macy's), and AT(beads, Saks'). 

(b) Procedural representation 

Write a procedural representation in ALGOL W of the problem solver for accomplishing the  
same task where the same simple operators are assumed above. Write the procedure to 
deliver articles to retailers from suppliers, where those names are specified on da ta  cards (the 
list of the day's jobs), and not necessarily known in advance. 

(c) Briefly discuss some of the circumstances under which descriptive and procedural 
representations seem most appropriate. 

1 1. Combinatorial explosion. (15 points) 

Donald Michie has written: 

" T h e  natural enemy of the worker in the field of artificial intelligence is the 'combinatorial 
explosion,' and allnost his entire craft is concerned with ways of combatting it." 

(a) Why  is the first clause generally believed to be true? (Be sure to describe what the problem 
is.) 

(b) List and briefly describe the techniques and strategies for heuristic control of search used in 
A.I. programs to combat the cornbinatorial explosion. 
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THEORY O F  COMPUTATION 

12. Merglng. (20 points) 

Consider the operation of merging words together. For example, two words ab and cd can be 
merged in six different ways giving abcd, acbd, acdb, cabd, cadb, and cdab. In general, a merge of 
N E C x  and y F C* is a word of length I x l t  ly 1 with both x and y  as disjoint subsequences in it. 

0 

For two languages L 1  and L2 their merge is defined as the set of all possible merges of two words 
X E  L ] ,  3 ) E  L2. 

Give  the basic ideas of the constructions you would use to prove that 

(a) T h e  family of regular languages is closed under merging. 

(b) T h e  family of context-free languages is closed under merging with regular languages. 

(c) T h e  family of context-sensitive languages is closed under merging. 

13. Grammar with a's and b's. (20 points) 

Give  an effective algorithm to determine, for an arbitrary context-free grammar, whether all words 
generated by it contain an equal number of occurrences of the letters a and b. 
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P R O G R A M M I N G  PROBLEM: A Scene Recognition System 

T h r e e  dimensional scenes are to be analyzed for the presence or absence of objects. 

W e  will decompose the scene as follows. Assume the space has dimensions A units by B units by C 
units. T h e  result is a parallelepiped composed of AxBxC unit cubes. Assi~me that we represent the  
space by a three dimensional array P. If a.n object in the scene occupies a cube at ( a ,  b ,  c) then 
P ( a ,  b ,  c) = 1 and otherwise P ( a ,  b ,  c) I. 0. Thus an "arch" in a space of 4 x 3 ~ 2  might occupy the  
following positions: 

section at y = 2 1 1 10 
1 1  10 

section at y = 1 10 10 
1010 

section at y = 0 10 10 
10 10. 

T h e  scene recognition system will search the space for interesting objects by picking a set of 
coordinates and inquiring whether that unit cube is occupied or not. T h e  systeln will attempt to fill 
out  the shape of the object by retrieving other (in general, adjacent) unit cubes to see if they are  also 
occupied. T h e  first part of your task is to design a data structure to represent arbitrary scenes, 
given that: 

(1) P will normally be a sparse array with a high degree of clustering. In other words, the  
number of occup~ecl unit cubes will be only a small fraction of the total number of such cubes. 
Furthermore, if a unit cube is occupied, then its six neighbors are very likely to also be 
occup~ed.  T h e  kind of scene your program will be asked to analyze will normally consist of a 
few connected objects with regular geometric shapes. 

(2)  T h e  computer nlernory is arranged in a two level hierarchy. For any given scene, assume that  
a significant portion of the data structure that represents your scene must reside in secondary 
memory. An automatic paging system is used that implements a least recently used page 
replacement algorithm. T h e  page size is PAGESIZE words. Assume that I N C O R E P A G E S  pases  
of your data  structure can be core resident at any one time. (Note that your program will 
have  to simulate the behavior of the paging system in order to properly accour~t for the  
paging faults it  incurs.) 

Devise a retrieval algorithm for your data structure. T h e  algorithm should take a coordinate triple 
(x, y, z )  as a parameter and return P ( x ,  y ,  z). 

For the next part of the problem, the scenes to be a.nalyzed are assumed to contain a single object 
which is a supercube of size SxSxS unit cubes. This supercube is randomly placed in the scene 
space, but is a.ssumed to be aligned with the x ,  y, and z-axes. Inside the supercube is a spherical 
cavity. T h c  center of the sphere coincides with one corner of one of the unit cubes, and the radius 
of the sphere, R ,  is an integer. T h e  sphere is completely contained but randomly placed within the  
supercube, and is not tangent to any side of the supercube. We assume that a unit cube is fully 
contained in the sphere if its interior and the interior of the sphere have a point in common. T h e  
task of the scene recognizer is to determine the total volume of the supercube minus the volume of 
the  sphere. 
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T h u s  the assignment has six parts: 

(1) Describe the data  structures you intend to use. 

(2) Program the unit cube retrieval algorithm for an arbitrary scene. Comment on the expected 
performance of your algorithm as a function of the scene i t  is presented with. 

(3) Assume that your scene consists of a supercube SxSxS placed with one corner at (IX, I Y ,  I Z ) .  
T h i s  supercube contains a spherical hole of radius R centered at (SX,SY,SZ). Generate the  
data  structure representing this scene and compute the number of pages i t  occupies. 

(4) Using the suppl~ed random number generator, select N unit cubes i n  the A x B x C  space. Tes t  
the retrieval algorithm of part (2) by determing whether these N unit cubes are occupied o r  
not. Compute the average number of page faults per unit cube retrieved. 

( 5 )  Assume that the sphere inside the cube is empty. Write an algorithm for computing the  
volume of the hollow supercube. In doing this the only way you can obtain information about  
the scene space is by using the unit cube retrieval program of part (2). Program the algorithm 
so that i t  prints out the number of unit cubes examined and the total number of page faults 
incurred, as well as the volume. 

(6 )  Run your program on the test data given below and print out the quantities described above. 

Tes t  data: 
A = B = C = 2 5 5  
S = 2 1  
I X  = 23, I Y  = 33, I Z  = 47 
SX = 31, SY = 42, SZ = 55 
R = 5  
N = 1000 
PAGESIZE = 64 
INCOREPAGES = 10 

Y O L I ~  programs will be graded on the criteria of correctness, clarity, and appropriateness of the d a t a  
structures. Your data  structures should try to minimize the following measures of cost: size of the 
structures; number of page faults incurred; number of unit cubes examined during. the co~nputat ion 
of the volume; and CPU time. Note: you should not use language features involving use of storage 
that  you cannot account for in your paging simulation. 
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SYSTEMS 

1. Deadlock. (5 minutes) 

T h r e e  parallel processes share four tape units which can be reserved or released only one at a time. 
Each process needs at most two tape units. Can a deadlock occur in this system? 

2. LISP ancl systems. (10 minutes) 

(a)  T h e  binclings of variables in a LISP program act quite differently from those in ALGOL. 
Describe briefly the basic difference in the philosophy of the two approaches to determining 
binding. 

(b)  Mow would a paging environment influence your implementation of the CONS (structure 
building) function? 

3. Pacine: - concepts. (20 minutes) 

(a,) A process refers to five pages, A ,  B, C, D, E, in the following order: A B C D A B E A B C 
D E. 

(1)  Assume the system uses a FIFO replacement algorithm. Find the number of page faults 
starting with an empty store and 3 page frames. Answer the saliie question for 4 page 
frames. 

( 2 )  Repeat part ( 1 )  assuming a LRU replacement algorithm. 

(b)  Using the hardware mechanisms of current machines that support paging, describe a practicat 
approximation to an LRU page replacement algorithm. 

(c) Uncler what circumstances will page sharing improve the performance of a paged 
multiprogramming system? 

4. Cornl~ilcr quickies. (20 minutes) 

(a) Discuss three ways of reducing the storage requirements needed for using precedence 
techniques. 

(b) Give  an example of why a compiler writer may want to combine two different parsing 
techniques in one compiler. 
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(c) Can  precedence functions be assigned to this matrix? (Justify your answer.) 

(d )  W h a t  are the pros and cons of typed and typeless languages? Give examples of each. 

5. Process synchronization. (5 minutes) 

Describe a primitive process synchronization mechanism, 

HARDWARE 

1. Cornbinational circuit problem. (20 minutes) 

T h e  boolean Fibonacci function f is defined to be T R U E  for the binary inputs x , ,  x2, x3, xq 
corresponding to { l ,  2, 3, 5, 8, 13) and FALSE otherwise except that we don't care what value it ha s  
for  inputs {7,  91. 

(a) Give  the n i in i~ i~a l  sum of products expression for$ 

(b) Give  the minimal product of sums expression for f. 

A multiplexor is a circuit that can select information from one of several inpirt channels and route 
that  input to a single output lead. T h e  input terminal is selected by a binary encoded address 
supplied to the circuit. A multiplexor can be used as a universal switching function by connecting a 
fixed 1 or  a flxed 0 to each of its inputs. 

(c) Implement f on this 16 input multiplexor. 

Address  
16 b i t  mul t ip lexor  

I 

(d) C a n  you implement f using only this single 8-input multiplexor and inverters? (If yes, d o  it.) 

0 1 2 3 4 5 6 7  

Address  8 b i t  mul t ip lexor  
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2. J-K flip-flop. (10 minuta) 

A logic diagram for a J-K master-slave flip-flop can be drawn in terms of two S-R latches as 
shown below. Draw the Q1 and Q p  outputs that are obtained from the J, K, and CK inputs shown. 

3. Binary counter. (IS tninutes) 

Give the logic diagram of a 4-bit synchronous binary counter using J-K master-slave flip-flops. 
(In a synchronous counter all of the output bits must change simultaneously.) 

4. A rchitecture concerlts., (15 minutes) 

Slow machines usually do things sequentially which faster machines can do at least partially in 
parallel. Explain briefly what each of the following terms mean and how their use can increase a 
computer's execution rate. 

(a) multiprocessing 
(b) mempry interleaving 
(c) wide buses 
(d) associative mernory 
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THEORY OF COMPUTATION 

1. Diacot~alization ~roblem. (30 minutes) 

Diagonalization is a technique made famous when Cantor proved that the real numbers are not 
countable. The technique assumes a list of items and establishes the existence of a new item which 
differs in some way from each item in the list and is therefore not in the list. 

(a) Use diagonalization to show that there can be no effective enumeration of the total recursive 
functions (defined for all inputs). (Hin t :  Start by assuming that there is such an 
enumeration.) 

(b) It is possible to give a listing {C,, CP, C3, . . . ) of all context-sensitive grammars. Show 
that there exists a recursive set which is not context sensitive. 

2. Finite automata. (20 minutes)  

Consider the finite state machine M below whose inputs can be interpreted as 

L - Letter 
D -  Digit 
X - Delimiter 
. - Decimal point 

and where Fnt1 is the set of final states: 

(a) Write a regular expression for the strings which end at state 6. For example, the regular 
expression {0,1)*(000)(0,1)' denotes the set of strings over the set {O,lj having three 
consecutive 0's. 
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(b) Construct a nondeterministic machine which recognizes the reversal of the language recognized 
by M. (Draw its state diagram.) 

(c) Construct a deterministic machine which recognizes the reversal of the language recognized by 
M. 

(d) Relate this problem to lexical analysis. 

3. Context-free lanpuage auickies. (10 minutes) 

Consider the language defined by the grammar 

S + n  A + b  B + AaS 
S + AbB A +  SBc B + U S A  

with start symbol S  and terminal alphabet {a, b ,  c}. 

(a) Prove that the 1angua.ge contains no strings of length 100. 

(b) Find all strings in the language of length 9, having the letter "c" as their middle (fifth) 
character. 

ALGORITHMS & D A T A  STRUCTURES 

1. Alrol 60 problem. (30 minutes)  

T h e  original A L G O L  60 report concluded with the example procedure R K  shown on the following 
page. After fifteen years have gone by, we think we know a little more about control structure and  
style. 

Suppose A L G O L  60 has been extended to include the following new syntax: 

<basic statement> ::= <loop statement> 
<loop statement> ::= loop <statement list> while <Boolean expression>: <statement list> repeat  
<statement list> ::= <statement> I <statement list>; <statement> 

and the semantics that, if S  and T are statement lists and B is a Boolean expression, the loop 
statement 

loop S while B: T repeat 

is equivalent to 

s; 
if B then begin 

T :  
loop S  while B: T repeat 

end 
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y .  9:. FKT, tps. <la. .a E. yE,]t)  : valuer, y: integ-ern; 
r, rps.cfu, x E :  array y,  YE; procedure FXT; 

comment: It'!; infcyulzs !I* s>).srn& r.;= / ,(re y,, y,, ... , y,,) (k = I ,  2, ... 91) 

4 L:f!crorliul c ~ u L ; m s  UTVI flrc ntctlrod of Rungr-Kuth udlr uufonzafic sc~rck for 
~ ~ o j v i a l ~  Iz~Jo!.~ of i f i l ~ g a f i o n  step. P~mmefcrs  arc: Tl~c inr!iul uulurs r and y [i?] 
/of x and 2/22 u n h o t r n  j.rrnc!ions y,(+). The mdcr n of l& sys!cm. Thz Proccdrrs 
+A-T(r, y. t r ,  2) nhzch r$rrscrrfs U s  syslcm Lo be i n k p z k d ,  i.c. fhc sci  ofjundionr 1,. 
.T3x hlvurrcc vrr?rrzs rps an2 cia zhich gmcm ths accuracy of fbd fiumtrical f n b ~ a -  
2-Grt. The m3 of :;a i-.kpdion i r t r m d  rE. Tl;e odpul +arameltr yE  wAich rc- 
pscrrts f1zt so!urion of x = r E .  TIrs Booicon variutrb /i, which musl d a y s  bc 
given the V ~ U C  true fw an isolalcii or first enlry i n f o  RK. If horucvcr I& fundions y 
rnusl LC az.uiLabLc al sm-lm' mcsLpoinfs r,. x,, ..., x,, then the $rocedsre tncrst bc 
cnlLcd repzatedly (s-ith r = x , ,  x E = x h 7 , ,  /or R=O,I. ..., n - ] ) a d  t;re,r :Xe 
culls may occvr zri:;r Ji =false which saucs computing time. T?:r inpul +aranrshs 
of FKT musl bc x, y, n. L i x  ouf$ut @arat>:tkrz ~cPrtse~LS the sct  01 d-?ivatii.cs z l k ]  = 
j k ( x ,  ? [ I ] ,  y [?I. .... y [ ~ j j  jor r ard tlac a c f d  y's. A prowdure cm.9 cn:m as a 
nonJocal idrntifirr; 

begin 
array I, yJ .  y3, y 3 j l : n l ;  real x i .  1.3, x 3 . H ;  Booleanoul ; 
integer k, j;  o w n  red s, H s ;  
procedure RKlST(r ,  y, f r ,  xe. ye); real x. h, xc; array y, yc; 

comment: R K l S T  i n f c ~ r u h  one single Rvngc-h'& s k p  zit,+ ini:ial 
oa!ucs x, yfk] tnirich yi& Gu &Put #urumtfos xa = % + A  and yr[i?J, 
f i e  &:er being IF& soldion at sc, 
Im+cdar.f: i p s  paramekrs n, FKT, z mkr RKlST  as na-hd edi f ies;  

kgin , 

'<nd R K l S T ;  __ _ _ _ _ - - - - - -  -- -------/ 
Begin o f  - y r m :  

IL then begin Z:=xE-x:s:=Oend else N : = H S >  (3 

BB: K K 1 3 T ( x ,  y, f f ,  xP, y-3); RKIST(x2 ,  y2,tf,x3, y3) ;  
for k : = I  step I until n d o  

. . i f  romp i y l  [k], y-?[k!, cbr) > c$s then g o  to CC; 
Y \ 

comment: comp(a, b. c )  is a ftrvcfion desi,vaixtor. the raluc 01 zuhich i s  t;c& 
alsrl[rcfc rntrlc of fite Aijfcrcnce oj  the tnanfissac of a and b. a f k  the expo- 

x :  =x3;  i f  otrl then go to DD; 

f i  : =. I step f until n d o  ?.[A! : = ~ 3 : k j :  
i f  s s 5 t h e n  b e ~ i n  \ :  = O ;  If:=?'r:Hend i f ;  , 

E 
s : * s - 2 1 ; g o  toA.'I:  - 

g6 .5  x f 1 ;  o u t :  =- false: t l  : =.r?: 
or 2: = I s t t r  I until TI do ? . J i R j  : --?'I F:(E go to B E ;  
-+-- 

DD:+~ k: -; 1 step 1 until n do y FLkj: = y.3[~-7)- 

? 
cod RK 
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Rewrite the Rh' procedure using the new loop statement, eliminating unnecessary go  to statements 
which tend to obscure the control structure of the program in its original form. 

Important note: Large segments of the program have been marked a, P, r ,  etc. so that you need not 
recopy them; s~mply give your answer in terms of these abbreviations. You need not understand 
precisely what goes on inside those chunks of code in  order to solve this problem. Don't make any 
changes to the actual sequence of computations, and don't try to do any tricky things like eliminating 
the Boolean variable "out". Simply remove as many of the go to statements and meaningless labels 
as you ca:: by taking advanwe of the new loop construct. 

2. Tree  traversa!.. (19 mintrtes) 

Traversal of a binary tree in comprehensive-qua1 order (CQorder) is defined as follows. 

procedure CQ{t); binary tree t; 
if t ;. A then begin 

if right(t) A then begirl 
CQ(left(right(t))>; visit(t); CP,((left(t)); 
vl:it(ri,oht(:)); CQ(right(right(t))) 

end else 
begin visi l ( r ) ;  C@eft(t)) end 

end. 

Here A denotes a null binary tree, and left(t), r ight ( t )  denote respectively the left and right subtrees 
of a non-null binary tree t. 

In what order are the nodes of the following binary tree visited, when it is traversed in CQorder? 
(State the single-letter names of the nodes as they are encountered.) 

3. Sparse matrix, (20 minutes) 

What  data st~.ucture would you use to represent a sparse 100 x 100 matrix (I word entries), if you 
are told that it contair~s 
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(a) At  most 5 non-zero entries 
(b) At  most 50 non-zero entries 
(c) At  most 500 non-zero entries 
(d) A t  most 5000 non-zero entries. 

The  operations you will have to do on the matrix are 

(1 )  fetch element A[i ,  j!, given i and j 
(2) store element A [ i , j ] ,  given i and j 
(3) f2rti-1 a;: non-zero e:enenrs of a given row 
(4) fetch all non-zero elements of a given column . 

NUMERICAL ANALYSIS 

1. Banded linear systems. (10 minutes) 

It is well known that linear systems A: = b_ can be solved using Gaussian elimination without 
pivoting if the matrix A has certain properties (e.g. A is irreducibly diagonally dominant or A is 
positive definite). Explain why this is an important practical consideration when dealing with 
banded maxices A = (aj,), aij = 0 if li-jl z m , say, where m is small compared with n,  the rank of 
the matrix. 

2. Arirhmetic and error analysis. (10 minutes) 

(a) Do floating-point and real arithmetic have the same arithmetic properties (e.g. associativity, 
commutativity)? Prove your point. 

(b) What  advantage does inverse error analysis have over forward error analysis? 

3. T h e  rank problem. (20 minutes) 

It is easy to verify that 
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(a) What  does this indicate about the conditioning of the matrix on the left hand side? 

(b) Does the above example say anything about the use of Gaussian elimination to determine the 
rank of a matrix? (Recall that Gaussian elimination can be viewed as transforming a matrix 
to upper triangular form.) 

4. Newton's method. (20 minutes) 

Newton's method is one of the best known iterative techniques for evaluating the root of a function. 
T h e  iterative step of the method is given by 

(a) T h e  graph below shows a function f near one of its roots. A program using Newton's method 
has just evaluated f a; x ,  as indicated. Show geometrically the position for the estimate x,,,. 

Can you predict any difficulty that will beset the program during the next few iterations? 

(b) Some polynomials, especially those of high degree, are unstable in the sense that small changes 
in the coefficients will lead to large changes in the zero. Show that the relative root change is 
given by 

x ? l - I  where p(x) = a,,x" + at , - ,  + . . . + a. is the polynomial, p(r) = 0 (i.e. r is a root), and a ,  is 
the coefficient being changed slightly. 

(c) New~on's method is sometimes recommended because of its quadratic convergence. Herman 
Newfellow has observed that the corrections p(xi)lp'(xi) were reduced by a factor of about 112 
for each of the first 10 iterations of his program. What order of convergence does this 
indicate? How would you explain this to Herman? 

ARTIFICIAL INTELLIGENCE 

1. "Understanding svsteins". (30 minutes) 

In recent years the A.I. research community has been describing much of its research as 
"understanding": viz. speech understanding, language understanding, and image understanding. 
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(a) Wha t  A . I .  concepts, capabilities, program organizations, representations, and :ools are used in 
"icnclerstanding" systems? Which of these are relatively domain spec~flc and which a re  
general? Illustrate and refine your answer by dealing specifically with one of the following 
areas of program understand~ng. For the area chosen, concentrate 011 one in detail or  survey 
the few systenis whlch exist in the area. Keep your answers brief and to the point. 

( I )  English language understanding 
(2) speech understand~ng 
(3) organic-chemical mass spectral data interpretation 

(b) Suppose we designed a n  image understanding computer system (ala A.1, vision systems) to ride 
along on a, future ERTS (Earth Resources Technology Satellite) orbiting mlssion and to radio 
back to scientists on earth what it "understood" about the scenes being viewed. From the A.I. 
scientist's point of view, what would be the essential design problem in making the system 
work? 

2. A.1. concepts. (20 minutes) 

Define each of the following problem-solving concepts and methods, and give a short (one o r  two 
sentence) ciescription of the sort of probleni domairi to which i t  is applicable. (For instance, "table 
lookup" might be defined as the selection of data elements from an irifornlatlon structure by 
processing keys associated with the data. It would be applicable in situatlot-1s where the set of 
possible answers is explicit; there are appropriate keys and selection functions; and the number of 
elements is small enough to allow the storage and retrieval to be reasonably efficient.) 

(a) heuris t~c search 
(b)  means-end analysis 
(c) hill climbing 
(d)  "dernol-IS" 
(e) production systems 

3. A.I .  quickies. (10 minu.tes) 

( I )  T h e  state-space approach to problem solving is a special case of the problem reduction 
appl.oach. T rue  or false? Explain. (If true, then why bother dealing with a separate concept 
of "state-space methods"?) 

(2 )  (Trite or  false). T h e  alpha-beta technique is often faster than the minimax technique but  it 
may achieve a less optimal answer. 

(3) It has been suggested that work on programs of a general problem solving nature has  been 
shelved temporarily. Supposing this is correct, what would be the reason for this trend? State 
your answer briefly. 
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P R O G R A  MMING PROBLEM: Simulation of a Packet-switching Network 

Compicter networks are becoming more widespread and are influencing the way people can use 
col7iputers. Although networks seein conceptually simple, some aspects of their design were not 
appreciated ~ i l i t i l  the networks were actually implemented. In this problem you will be able to 
experiment with some elements of network design as well as learn something about the programming 
of a, simulation. 

T h e  basic model for a network that we have in mind is a simplified version of the A R P A  network. 
T h e  network is made up of IMP's, which are minicomputers used for message switching and which 
are  connected to each other by transmission lines. Each IMP is also connected co a H O S T ,  which is 
a local coi-nputer where the user does his actual computations. Each IMP is in fact a computer and  
is busy managing the message traffic between HOST'S. For the purposes of this simulation, we will 
be mostly concerned about what is going on inside the IMP's and will use a relatively simple model 
for the activity of each HOST.  T h e  traffic on the network consists of variable length messages. A 
i-nessage enters the network at the source (or sending) HOST, which specifies a destination (or 
receiving) H O S T .  T h e  message is transmitted through an appropriate set of IMP's and finally 
leaves the network at a destina.tion HOST. 

Messages have the following attributes: 

sou,rct: H O S T  or IMP which sent it 
destination: H O S T  or IMP to receive i t  
ack7zourledge bit: bit which is set if the message is simply an acknowledgeinent of a previous 

message 
length: number of bits in message (specified by sender) 
sequ.ence nzrmber: set by sender (32 or 36 bits) -- used to ensure that messages are delivered in t he  

order that they are sent. 

For simplicity, we w ~ l l  assunie that there are only two sorts of messages: 

( 1 )  Aiknozoledgement messages, whlch have the acknowledge bit set and have length H E A D E R B I T S .  

(2) Dcrtn mcssngt-s, which come in two flavors: 
short (length = HEADERBITS  + SHORTBITS) or 
long (length = HEADERBITS  + LONGBITS). 

Short  messages occur with probability SHORTPROB and long messages occur with probability 
( I -SHORTPROB).  

Messages are carried on lines between IMP'S or between an IMP and a I-IOST. T h e  lines between 
IMP's carry messages at a fixed rate, LINERATE,  in thousands of bits per second. T h e y  a re  
full-duplex, that is, they can carry messages simultaneously in both directions (at L I K E R A T E  in each 
d ~ r e c t ~ o n ) .  

T h e  transmission time of a message is assumed to depend only on the message length. Furthermore, 
each llne connecting an IMP to another IMP is assumed to have a probability LOSSPROB * (length 
of message) of garbling a message so that it will have to be retransmitted. (Yes, we know this cannot 
be quite right, but accept i t  as an appl.oxiniation.) Error detection circuitry in the receiving IMP 
will detect broken messages. 

T h e  lines connecting an IMP to its H O S T  are assumed to have zero error and operate at HOSTRATE.  
In  addition, they have a special block signal by which the IMP can prevent the HOST from 
s e n d ~ n g  more messages. 
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H O S T S  

For our  pusposes, assume that each IMP is associated with exactly one HOST.  

Each H O S T  generates messages with a Poisson arrival time distribution. This  means that  t he  
intervals between the times that the HOST queues messages for transrnissior~ to its I M P  a re  
exponentially distributed. These may be generated for the sinlulation by the relation 

T, , , ,  = T,,  - TLAMBDA * In(r) 
T o  = 0 

where r is uniformly distributed on (0,1), and TLAMBDA = mean interarrival time. 

No H O S T  sencls a message to itself. The  distribution of each message from a H O S T  is equal to the  
destination of the previous message sent from the HOST with probability SAMEPROB; otherwise, the  
destination is randomly chosen from among the HOST's other than the sending H O S T ,  each with 
equal prol:)ability (including the H O S T  of the previous message). 

As messages are gerlerated, the H O S T  places them into an output queue to its corresponding I M P .  
T h e  I M P  accepts messages from the MOST at rate HOSTRATE unless the IMP is blocked (in which 
case, the messages just remain in the HOST's output queue). If the H O S T  runs out of buffer space, 
it stops generating messages until a buffer becomes free. 

If an  I M P  blocks a H O S T  while a transfer (into the IMP) is in progress, that transfer will be 
completed, but no new HOST-to-IMP transfers will be started u n t ~ l  the IMP unblocks the H O S T .  

W e  assume that the H O S T  is always able to accept a message from its IMP at the HOSTRATE. W e  
will not simulate what the H O S T  does with the messages it receives. 

I M P S  

T h e  I M P  is the basic message switching processor of the system. Each IMP is connected to some 
subset of the set of other IMP'S as determined by the topology of the network. 

Whet1 an I M P  accepts a message from its corresponding HOST, it adds a sequence n i ~ m b e r  telling 
the orcler (first, second, etc.) of that message in the streanl from the source to the destination H O S T .  
In other words, there is a separate set of sequence numbers for each HOST-HOST pair. 

Interna.lly, each IMP has a route. control table by which i t  determir~es how to route a message. T h i s  
is simply a table of line riumbers indexed by destination IMP or HOST.  

Every I M P  maintains a buffer pool from which it allocates buffers for its various processes. For 
simplicity, each buffer is assumed to be long enough to contain one maximum length message. 

A n  I M P  tries to keep a buffer available on each of its lines ready to receive input. When  an  
ungarbled message arrives, and there is a free buffer available, the IMP processes it by doing the  
following: 

(1) Send an acknowledgement. (This does not necessarily require a new buffer to create the  
acknowledgernen t message.) 

(2 )  I f  the message is for its HOST,  put the message 011 the output queue for transmission to t he  
MOST.  Otherwise, look up the destination line in the route control table and put the message 
on the output queue for that line. 

If there is no  buffer available when a message arrives, the message is lost. 
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After  a message has been sent off (to another IMP), the IMP cannot recla~nl the message buffer 
untll an acknowleclgement has been rece~ved from the IMP at the other end of the I~ne .  If no  
acknowledgemelit has been rece~ved for TIMEOUT seconds, the IMP should letransi.i>lt the message. 

T h e  IMP's processing time to allocate buffers, etc., is assumed to be zero. 

Note: SI I -~ce  some messages get delayed in the network due to line loss and retransmission delays, 
messages may arrive for an IMP's HOST out of sequence order. An IMP must deliver messages to 
its H O S T  in cosrect sequence order. (This implies that the destination I-IOST never receives the  
same message twice.) 

T h e  i ~ r o b l e s  

W e  have not specified here the order and the timing by which the IMP serids rnessages. Pa r t  of 
your design problem is to work out a scheme that avoids excessive delay. Be sure to explain your 
scheme in the documentation. 

You are  to build a simulator and simi~late the performance of a sample network (see below) from 
time zero until a simulated time DEADLINE.  At time zero, all buffers and queues are empty. Each 
HOST 'S  fisst message will be  to a destination and will occur at time T I  for that H O S T .  

(a) Assume that HOSTs  and IMPs have an infinite buffer pool. 

(b) Assuii1c that each IMP has only IMPSPACE buffers available arid every H O S T  has  only 
tlOSTSPACE buffers available. 

For parts (a) ancl (b) above, print out a distribution (histogram) and averages for each of the  
following quantities: 

(1 )  Average number of occupied buffers per IMP per unit time. (Combine together the statistics 
for  all IMPs, since each will have the same distribution in the network considered.) 

(2 )  Average number of occupied H O S T  buffers per un i t  time. (Again, COI-nbine together the 
statistics for each MOST.) 

(3) Delay time for messages between each class of HOST-HOST pairs. (In the sainple da ta  set, 
there are just three such classes.) Combine together all statistics within a given class. You 
should calculate delay time from when the message is created in the source H O S T  to when 
transfer into the destination H O S T  is complete. 

Pr int  out these statistics at every REPORTING-INTERVAL of simulated time. Clear out  the  
accumulated totals so that each interval has fresh statistics. 

Document your program. In particular, describe and explain your implementation of the following 
items: ( I )  representation of HOSTs and IMPs, (2) handling of time in the s~rnulacion, (3) da t a  
s t~~uc tu re s  used in the program, and (4) IMP buffer allocation schemes. 

H a v e  you thought about what you have done? Explain how you would redesign these network 
algorithms and your implementation of the simulation to overcome peculiar~ties and difficulties you 
ol~served in this problem. Did the test data set fully expose the capabilities and pathologies of your 
network algorithms? 

Programs will be graded according to correctness of results, clarity of program and documentation, 
and  ap1)ro~riateness of data structures. Partial credit will be given for incomplete solutions, but be 
sure to document fully what you have done, and indicate how you would do the rest. 
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Test data 

LINERATE := 50 kb HOSTRATE := 100 kb LOSSPROB := .0001 per  b i t  
HEADERBITS := 9 6  SHORTBITS := 128 LONGBITS := 1000 
SHORTPROB := - 9 5  TLAMBDA := .006 sec SAMEPROB := 0.75 
TIMEOUT := .05 sec  IMPSPACE := 25 HOSTSPACE :s 10 
DEADLINE := 2 sec  REPORTING-INTERVAL := 0 .5  sec 

L i s t  o f  ccnnections 

1 2 
1 3 
1 5 
2 3 
2 6 
3 4 
4 5 
4 ' 6  
5 6 

Classes o f  p a i r s  

A = ( 1-2, 2-3, 3-1, 4-5, 5-6, 6 ~ 4  ) 
B = { 1-5, 2-6, 3-4 ) 
C = { 1-4, 1-6, 2-4, 2-5, 3 ~ 5 ,  3-6 ) 

.Route control table: 
TO 

FROM 1 I 2 3 4 5 6 

1 
2 
3 
4 
5 
6 

- 2 3 3 5 2 
1 - 3 3 1 6 
1 2 - 4 1 2 
5 .  6 3 - 5 6 
1 6 4 4 - 6 
5 2 4 4 5 - 
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SYSTEMS 

1. A ssembler. (I0 minutes) 

Describe a way in which a one-pass, in-memory assembler could resolve forward references. 
Assume that the assembler accepts source assembly language and produces, in main memory, an  
executable Image of the program, If the one-pass assembler produces a relocatable object module, 
how would the forward references be resolved (assuming the object module could not fit  in 
memory)? 

2. Operating system. ( 5  minutes) 

W h a t  is the main job of an operating system? (Answer in at most 2 paragraphs.) 

3. In t e r ru~ t s .  ( 5  minutes) 

W h a t  is an interrupt? What  things are typically done by the hardware to service an interrupt? 
W h a t  additional things might typically be done by the operating system software when servicing the  
interrupt? 

4. Linker vs. loader. ( 5  minutes) 

W h a t  is the distinction between a linker (or link-editor) and a loader? 

5. Re-entrance vs. recursion. ( 5  minutes) 

W h a t  is the difference between re-entrant and recursive code? 

6. M u l t i p r o ~ r a m m i n ~  vs. multiprocessi~i~. (10 minutes) 

A r e  multiprogramming and multiprocessing logically equivalent or is one more complex than the  
other? 111 what ways are they the same and in what ways do they differ? As  a model of a 
multiprocessor, consider a collection of autonomous CPU's with shared memory. 

7. Pacing: vs. segmentation. (10 minutes) 

Distinguish between virtual memories provided by paging and those provided by segmentation. 
Suppose a library of subroutines is available which is to be shared (i.e. each subroutine is 
re-entrant, and only one physical copy is to be contained in the main physical store). Which  
method, paging or segmentation, would offer better flexibility? 
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S. Cooperatine. process synchronization. ( 5  minutes) 

Describe one way in which concurrent processes can be made to cooperate (i.e. will avoid concurrent 
execution of so-called "critical" sections). 

9. Inte~preters  vs. compilers. (5 minufes) 

W h a t  is the distinction between an interpreter and a compiler? 

N U M E R I C A L  ANALYSIS 

1. Numerical arithmetic. (22 minutes) 

Assume we are given a set of approximately equal numbers a , ,  a 2 ,  . . . , a,v, where N = 2". 

Define N, = ~ / 2 j  = 2"'-1. 

Consider the following alsorithm: 

(a) Determine s (M,  1). 

(b) Let t ( 0 ,  k) = a/; for 1 5 k I N and let 

t ( j ,  k) = fi(t(j- 1 ,  k) + t(j-  1 ,  Nj+k)  = (t(j- 1, k )  + t(j- 1, Nj+k))( 1 + €,,I:) 

where ~ c , , , ~ I  s 6, and c is a prescribed number. (The notation fl(x+y) indicates the floating 
point addition of x and 9.) 

Show that 

and give a bound for I?; I. 

For parts (c) and (d), assume ak > 0. 

(c) Give  a bound for the relative error 

(d) How does the bound given in (c) compare with a bound for the relative error when s (M,  1) is 
coinputed in the natural way? 
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2. Svtelns of equations. (38 minutes) 

W e  wish to solve the system of equations 

for x and y. In matrix notation, we have x_ = h_(zJ, where 

W e  seek 2" such that ;* = h(z_"). Assume that 

for  all ;, E R, 5: E R where R is a subset of m2 and furthermore Q(9 E R if g E R. For simplicity, we 
use the maxi~nurn norm, which is defined by 

Assume that L < 1 .  

(a) Show that if we define 6'' E R and dA+')  = h ( d A ) ) ,  N N  then d k )  .v + g* as k -t co. 

(b) Derive a bound of the form 

1 1  w 
- g* 11 s hl 1 1  s ( ' )  - &O) 1 1  

and give an explicit expression for M (in terms of L). 

(c) Consider the system of equations 

with la1 < 1 ,  Ibl < 1 .  

Show that this system has a solution. 

(d) For the system given in (c), consider the iteration defined by 

, ( k + l )  = 1 - ($0 
3' 

( I : +  1 )  = 2 - bx'k) 

where x ( O )  and Y ( O )  are arbitrary. 

Determine L (as defined above) and prove convergence. 

( e )  Now consider the iteration defined by 

% ( A + ] )  = 1 - 
= 2 - b X ( k + l ) .  

Show tha.t this algorithm converges for an arbitrary choice of y(0). 
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ARTIFICIAL INTELLIGENCE 

Consider the following epistemological problem aboard the starship Enterprise. 

Anyone with pointed ears that is aboard the Enterprise is a Vulcan. Vulcans, of course, are rational 
beings. Filrthermore, both Spock and Kirk are on the Enterprise. Finally, Spock has pointed ears. 
T o  speculate on whether non-Vulcan, featherless bipeds are truly rational is beyond the scope of 
this commentary. 

1 .  Formal systems. (20 minutes) 

Restate the situation in a formal system so that one may infer the existence and identity of a rational 
being. 

(a) Formalize this knowledge in first-order logic. 

(b )  Draw a relational-structure ("Quillian-like" net) to represent equivalel~t knowledge in a more 
visual form. 

2. Deductive systems. (20 minutes) 

T h e r e  are  several ways of implementing a deductive system that can make the inference stated in 
question (1). 

(a) Describe an inipleme~itation in one of the new A.I. language systems. Your i~nplementation 
shoirld use the features of the system to good advantage. Your description may be a precise 
program in Planner, Micro-planner, QLISP, QA4,  Conniver, or Popler; or i t  may be a more 
abstract program in your own syntax that clearly shows you understand the essence of the  A.I. 
language features. 

(b)  Describe an implementation in either LISP or ALGOL-W. In particular describe how you 
would represent and store your relations and inference mechanisms. T h e  implementation 
description must be convincing enough so that a typical fellow graduate student could 
implement it. Spend more than ten minutes at your own risk. For example, your 
implerneritation description might read like, "Each letter of the relation will be stored in  
sirccessive words of the array. We will find a stored relation in our data base by shifting a 
'pattern array' along a data array until it matches." 

3. Evaluation. (5 minutes) 

Comment on the relative advantages and disadvantages of the two systems defined in problem 2 
above. 
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4. Strategy. (5 minu.lcs) 

Does your A.I. system implementation (question 2(a)) work via a depth-first, breadth-first, heuristic 
progressive deepening (best-first), or other strategy? 

5 .  Extensions. (10 minutes) 

How (if not there already) could you extend your LISP or ALGOL-W implementation (question 
2(b)) to a heuristic progressive deepening (best-first) strategy, assuming an evaluat~on function is 
given? 

ALGORITHMS 

1. Priority queues. (15 minutes) 

A cliscrece event simulation, as discussed by Hoare in Structured Programming, makes use of a 
"sequence set". This  set contains the events which will take place at specified times, usually known 
as "event notices". As the sihulation proceeds, future notices are filed in the set according to their 
time of occurrence. Each time the simulator completes the processing of an event notice, i t  takes t he  
cizronologically next event from the sequence set of event notices. T h e  sequence set thus forms a 
priority qu.cue of event notices. 

(a) Wha t  advantage would a binary tree data structure have over a linear list for representing the  
priority queue of event notices for a large number of pending events? 

(b) Suppose that the priority queue is to be represented by a binary tree. Everit notices are filed 
in t h ~ s  tree so that the first node visited by the traversal method selected will be the next 
event which should occilr in the simulation. After an event occurs, its notice is deleted from 
the tree. We expect that the method of traversal will in some way determine the algorithm for  
adding event notices to the tree. 

Using four notices with the event times t = 1 ,  t = 2 ,  t = 3 ,  and t = 4, show that the method 
of traversal does not uniquely determine the shape of the tree to be constructecl. Do this for 
two t y ~ ~ e s  of trees: one to be traversed in inorder and one in postorder. (Postorder traverses 
the root after both subtrees have been traversed; inorder traverses the root after the left 
subtree has been traversed.) 

(c) Assume that notices with equal event times are represented as a right branch working as a 
FIFO queue. What  advantage does a postorder tree have over a inorder tree? 
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2. D e ~ u e s  and lists. (20 minutes) 

(a) Explain how a doubly-linked list can be represented using only a single pointer field (one 
word) for each data  carrying node in the list, and a head node contaming two pointers. 

(b) Suppose that the solution to question (a) is used to implement an input and output restricted 
deyiie. T h e  head node contains two pointers, WRITE and READ : 

Normal deque entries have a pointer word and a data word: 

HEAD + 

pointer t;.i 
Write down insertion and deletion algorithms for this 110 restricted deque: 

I N S E R T  ( X ,  HEAD)  puts X at tail of deque 
X :=  DELETE (HEAD)  sets X equal to head of deque and deletes the head 

WRITE  
. 

READ 

(c) Assilnie that three data elements named X, Y, and Z, at locations 57, 19, and 124 respectively, 
have  been entered into an initially empty inputloutput restricted deque. Draw an illustration 
of the deque, including the values in HEAD and all pointer fields. Assume HEAD is at location 
100. 

S - +  pointer to last node written into deque (input end) 

9 - +  pointer to next node to be read from deque (output end) 

(d) Illustrate the state of the above deque after the insertion of a new node W (location 67). 

3. Data structures. (10 minutes) 

Describe briefly an appropriate data structure for each of the following situations (one or  two lines 
indicating that you understand the issues will be sufficient for full credit): 

(a) Tridiagonal matrix (greater than 10 x 10) on which matrix multiplication will be performed. 
T r y  to save space. 

(b) A n  alphabetized list (length >> 10) requiring fast insertiori but only occasional ordered 
readout. 

(c) T w o  stacks (limited available space). Suggest two representations. 

(d) Sparse inattbix (100 x 100 with at most 10 non-zero entries). Store, fetch, and listing of 
non-zero entries of a particular row or column will be required. 

(e) Symbol table (length >> 50) requiring fast readlwrite access. 
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4, A lg.orit1~1i1 ar~alysis. (15 minutes) 

(a) Suppose we are given n real numbers x i ,  x p ,  . . . , x,,. Show that 

is minimized when 

9' = M, where a = mJn x i ,  /3 = max x i .  
2 1<l<ti 1 st's11 

(b) Carefully describe an algorithm for compi~ting O* efficiently with respect to the number of 
comparisons. You may assume that n is even. 

T H E O R Y  O F  C O M P U T A T I O N  

I .  Haltinc problem. (30 minutes) 

T h e  undecidability of the halting problem may be used to show that certain programs cannot be 
written thus saving one the time and effort of attempting such programs only to eventually give u p  
in failure. Use the halting problem to do one of the following two problems. 

(a) Given a language which allows recursive procedures, show that there is no algorithmic 
method to test whether a given procedure will ever call itself at run time (i.e. whether or  not 
there is an input value which will cause the procedure to call itself). 

(b) Show that there exists no algorithmic method to test whether or not two programs have  the 
same I/O characteristics (i.e. whether or not there is an input value such that one program 
halts on this input and the other one doesn't or they both halt but give different output). 

2. Lane.11ao.e classification. (20 minutes) 

Classify each of the following languages according to whether they are: 

(a) regular 
(b) context-free 
(c) context-sensitive 
(d) recursively enumerable 
(e) not recursively enumerable. 

(Partial credit will be given for correct classifications even though they are not the most specific 
classification possible.) 



COMPUTER SCIENCE COMPREHENSIVE E X A M  

{ O H I " '  I n r m r O  ) 

{ o i l . i o k  i=j or j=k j 

{ OS1? I x + y is divisible by 3 ] 

( (x, g, z) I the xth algorithm running on input y terminates in z steps j 

{ 1" I a is a prime } 

the set of all palindromes in {O, 1)' 

{ u E {O,  1]* ) there exists an integer n such that u is the binary representation of n2 j 

{ x I the xth algorithm terminates on all input ) 

( u E {0, I ]*  ( there exists an integer n such that u is the binary representation of 5n ) 

the set of names of all graduate students in the Computer Science Department 

3. T r u e  or false. (10 minutes) 

For each of the following statements, state whether it is true, false, or unknown (still an open 
problem). 

(1)  All regular languages can be recognized by a finite automaton. 

(2 )  [(Vx)(3y)[P(x)>lZ(y)Il = [[(3x)P(x)l~[(3y)Q(y)ll is a tautology. 

(3) All context-free grammars can be recognized by a deterministic pushdown automaton. 

(4) P - N P  

(5) T h e  problem of whether or not there are ten 4's in the infinite expansion of rt is undecidable. 

( 6 )  Any language which can be recognized by a nondeterministic linear bounded automaton can 
also be recogn~zed by a determinisitic linear bounded automaton. 

(7) [(Vx)[P(x)vQ(x)ll a [[(Vx)P(x)lv[(Vx)Q(x)Il is a tautology. 

(8) [(Vx)[P(x)~Q(x)ll 5 [[(Vx)P(x)l~[(Vx)Q(x)ll is a tautology. 

(9) T h e  intersection of two regular languages is still regular. 

(10) T h e  intersection of two context-free languages is still context-free. 
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H A R D W A R E  

1. BCD to S S 3  notation. (30 minutes) 

Design a combinational circuit to convert one BCD (8421) digit to the corresponding digit 
representation in excess-3 code. Assume that non-code input combinations do  not occur at the  
circuit ir-iputs. Use as few gates as possible (assume double-rail inputs). 

(a) Design a two-stage circuit using AND gates and OR gates. 

(b) Design a multi-stage circuit using AND gates and OR gates, 

(c) Design a two-stage circuit using NOR gates. 

2. J K  rir)ple counter. (I5 minutes) 

(a) Draw a circuit for a three-stage r~pple  counter constructed from JI< flipflops. 

(b) Show the complete sequence of 3-bit output values (corresponding to both stable and unstable 
states) which appear as the counter passes through a complete cycle. 

Define each of the following terms and give an example. 

(a) destructive read-out memory 
(b) volatile memory 
(c) random-access memory 
(d) control menlory 
(e)  decoder 
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P R O G R A M M I N G  PROBLEM: Pattern Transformation Compiler 

Pattern directed computation has proven to be very useful in many areas of computer science. It 
ha s  been used in natural language processing, algebraic simplification, and is the basis for the idea 
of compilation, to name only a few. Any pattern directed computation may be represented as 
transformation rules of the form 

where the pattern is matched against the input and replaced by the substitution. Given a procedure 
which applies the rules in a certain order and decides when to stop, a list of these transformations 
will define a computation. (In fact, if the procedure is general enough, then any effective 
computation can be expressed as a list of such transformations.) However, a computation stated in 
terms of a list of transformations often proves to be very inefficient. One  possible improvement 
would be to compile the transformations into code which may be directly executed. 

You are to write a program which will take a list of transformations and compile them into any 
reasonable language of your choice (e.g. ALGOL W or SAIL). 

I ~ P L I ~  syntax 

In general, ir is very difficult to compile a list of transformations into a usable form because the  
strings i r ~  the transformation may take any form. T o  make the problem more interesting, we shall 
restrict the form of the rules. We assume that the strings in the rules are in  fact LISP lists for  an 
expression of binary operators, according to the following syntax 

<exp> ::= <number> I <variable> I (<operator><exp><exp>) 
<number> ::= any unsigned integer 
<variable> ::= any string of alphabetic characters 
<operator> ::= any string of alphabetic characters 

T h e  allowable operators may vary with the list of transformations being considered. In attacking 
this problem, you may make as much use of the syntax as you see fit. 

Transformations 

In order to make transformatio~~s useful, one needs to have some kind of general pattern matching 
capability available. T o  keep the compilation at a reasonable level, you need only consider t he  
following mechanisms for pattern matching. 

( I )  T h e  pattern and the expression being matched must satisfy the syntactic form for an cexp> as  
described above, with the exception that ?X--- and ?N---, where the --- is replaced by a 
number, may be used any place an <exp> is required. 

(2) T h e  form ?N---, with the --- replaced by a number, will match any <number>. 

(3) T h e  form ?X---, with the --- replaced by a number, will match any <exp>. 

(4) For any part of the right hand side of a transformation where an cexp> is syntactically 
correct, there may be an arithmetic expression of numbers and forms ?N---, with t he  
interpretation that the expression is replaced by the value of that expression. You need only 
implement addition, subtraction, and multiplication. 
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Although the forms ?N--- and ?X--- match general forms, they will essentially be given a value on 
the  flrst time they match in a pattern and will then only match the same expression they matched 
the first time. Thus ,  the pattern (PLUS ?X 1 ?XI)  will match (PLUS ALPHA A L P H A )  and ( P L U S  
( T I M E S  2 V )  (TIMES 2 V)), but will not match (PLUS ALPHA (TIMES 2 V)). Furthermore, 
once one of these iorms matches on the left side of a transformation, it will have the same value any 
place it is used on the right side of that transformation. Thus  if the transformation ( P L U S  ?X 1 
?N 1 )  + (PLUS ?N 1 ?X 1) is applied to the expression (PLUS (TIMES 2 V)  5), the result is ( P L U S  5 
( T I M E S  2 V)). 

Interpretation of a list of transformations 

For the purposes of this problem, it will be assumed that any list of transformations ha s  the  
following il-nplicit control structure. T o  apply a list of transformation to an expressiorr E ,  first apply 
the  list of transformations to each subexpression of E .  After the subexpressioris have been fully 
transformed, take the first transformation whose left side matches with E and apply that  
transformatlon to E. Repeat this last step until no transformation has a left side which matches E 
(i.e. after applying a transforniation to E, do not try to reapply the list of transformations to the  new 
subexpressions of E ,  however, do start at the top of the list of transformations to f ind a 
transformatlon to apply to the new E). Thus, if one were to apply the transformations 

(i) (PLUS 0 ?X 1) -, ?X 1 
(ii) (PLUS ?S 1 ?N 1) -t (PLUS ?N 1 ?X 1 )  

to the  string (PLUS V (PLUS 0 O), a trace of the execution would go as follows. 

consiclering V 
none of the rules match so nothing is done 

considesing (PLUS 0 0) 
considering 0 

riorie of the rilles match 
considering 0 (the second subexpression) 

none of the rules match 
rule (i) matches: (PLUS 0 0) + 0 
considering 0 (the result) 

none of the rules match 
(the expression is now (PLUS V 0)) 

rule (ii) matches (but not rule (i)): (PLUS V 0) -, (PLUS 0 V) 
rule (i) matches: (PLUS 0 V) -t V 
none of the rules match 
done 

T h u s ,  the above transformations change (PLUS V (PLUS 0 0)) into V. 

Problem 

Using the language of your choice, write a program which will take a list of transforniations as 
described above and compile them into code for the procedure inherent in those transformations. 
T h e  code for the transformations which your program produces should run as fast as possible. 

In additlon to a listing of your program, you should turn in a listing of the code your program 
produces when run on the transformations listed below, and listings of the expressions produced 
when the code you compiled is run on the expressions listed below. 
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Sample transformations 

(PLUS 0 ?X 1) -3 ?X 1 
(PLUS ?N 1 ?N2) -, ?N 1+?N2 
(PLUS ?N 1 (PLUS ?N2 ?X 1 ) )  -t (PLUS ?N 1+?N2 ?X 1) 
(PLUS ?X I ?N 1) -, (PLUS ?N 1 ?X 1) 
(PLUS ?X 1 ?X I) -, (TIMES 2 ?X 1) 
(SUB ?X 1 ?X2) + (PLUS ?X 1 (TIMES -1  ?X2)) 
(T IMES 1 ?X 1) + ?X 1 
(T IMES 0 1 x 1 )  -+ 0 
(T IMES ?N 1 ?N2) + ?N l*?N2 
(T IMES ?N 1 (TIMES ?N2 ?X 1)) -t (TIMES ?N l*?N2 ?X 1) 
(T IMES ?X 1 ?N 1) -, (TIMES ?N 1 ?X 1) 
(PLUS ?X 1 (TIMES ?N 1 ?X 1)) -, (TIMES 1+?N 1 ?X 1) 
(PLUS (TIMES ?N I ?X I) (TIMES ?N2 ?X 1)) -+ (TIMES ?N l+?N2 ?X I) 

Sample expressions 

( P L U S  (TIMES -19 V) (TIMES 2 (PLUS (TIMES V 7) (PLUS (TIMES V 3) 
(T IMES V (TIMES U (SUB U U))))))) 

(SUB (SUB (SUE (SUB VA VB) (SUB VC VD)) (SUB VE VF)) 
(SUB (SUB (SUB VA V E )  (SUB V C  VD)) (SUB VE VF))) 

Your programs will be graded according to the following criteria: correctness, clarity of prosram 
and  documentation, appropriateness of data structures, and efficiency of both the compiler code and  
the coinpiled code. 
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T H E O R Y  OF C O M P U T A T I O N  

1. Repular sets. (30 minutes) 

(a) Are  the following sets regular? Prove your answers. 

(i) ( x I x E (0+ I)", where x has a 1 in the exact center j = { (0+1)"1(0+ n>O 1 
(ii) ( xyx I X ,  y E (0+1)* where x is non-empty and begins and ends in 1 ] 

(b) Given f ~ n i t e  a.utomata M i  and M 2  accepting regular sets R1  and Ra, show that it is decidable 
whether R 1  R2. 

2. Bad function. (30 minutes) 

A LISP predicate term is called a termination tester if for any S-expression e ,  termre] = T if and  
01-lly i f  the LISP evaluation of e terminates; otherwise term[el = F or is undefined. T h u s  we must 
have  tern~[(CAR (QUOTE (A)))] = T, and term[((LABEL FOO (LAMBDA ( X )  ( F O O  X))) NIL)] 
[nay have the value F or may be undefined. Let term* be the S-expression representation of term. 

(a) W h y  can't there be a termination tester that is always defined? 

(b) Write a LISP fur~ction bad such that for any termination tester term, bad[termal is defined, 
but  tcrm[bad[term*]] is undefined. Show that your bad works. (Partial credit will be given for  
an  informal description of bad.) 

Hint:  A two line answer is possible using the LISP system function 

subst [x, y ,  zl = if atom z then [if z eq y the11 x else zl 
else cons[subst[x, y, car z l ,  subst[x, y, cdr zll 

and the function quine[xl = subst[x,X,(X (QUOTE X))]. 

N U M E R I C A L  ANALYSIS 

1. Qi~aclratic roots. (15 minutes) 

Suppose that the equation x2 + alx + a 2  with real coefficients possesses real roots a, 0. Show that  if 
xo is chosen sufficiently close to a, the iteration 

converges to a if la  1 > 10 1, the iteration 
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converges to a if I a 1 < 10 1, and the iteration 

converges to a if 21aI < Icc+pI. 

2. Floatir~g-point sums. (45 minutes) 

Consider 2-digit base-0 floating point arithmetic. Given two floating point numbers x, y, we denote 
by 

fl(x+y), fl(x-y), fl(x*y), fl(xly) 

the results of floating point addition, subtraction, multiplication, and division, respectively, where the  
result is rounded. We define fl(x+y+z) to mean fl(fl(x+~)+z). Similarly, if a;, i = 1, 2,  . . . , N are  
floating point numbers, we define 

S 

to mean floating point addition of the terms in the order from is1 to i=N. 

(a) Let u = (112) P I - '  and suppose that Nu 2 0.01. Show that 

where IB;I r 1 

(b) Suppose that you are asked to write an ALGOL W or FORTRAN program to obtain an 
approximation to the function 

You decide that you will sum the first 10000 terms of the series. Does the order of summation 
of the terms make any difference in the accuracy of your result? Explain. 

(c) Consider the two sums 

Use the result (or method) of part (a) to find bounds for the round-off errors committed in 
each case, in terms of N, t ,  Q for 0 5 x 5 I. Assume that N is small enough so that N * can b e  
found without round-off. Then for n s N, 

fl(n2+x) = (n2+x)(1+S), 18 1 5 u. 
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(d) Evaluate al~proximately both of the bounds found in part (c) for the case of single precision 
arithnietic on the IEM 360 (0 = 16, t = 6) with N=10000. Do these bouncls confirm the  
conclusion you reached in part (b)? 

(e) For x=O and N=10000, using single precision arithmetic in an ALGOL W program it was 
found that S ,  = 1.643517, S 2  = 1.644833. The  true value of f(0) is given by f ( 0 )  = n2/6 = 
1.643934.. . . By obtaining upper and lower bounds for the truncation error resulting from 
the use of S ,  or S2 in place of f(O), estimate the actual round-off error in each of the above 
two results. How do  these errors compare with the bounds found in part (d)? 

Note: the following may be useful in parts (d) and (e): 

SYSTEMS 

1. S r o r a ~ e  allocation. (20 minutes) 

In a higher level language, i t  is necessary to allocate storage of several types, including variables, 
arrays, strit-~gs, records, etc. This  allocation can be done at co~npile time, at run rime using a stack, 
o r  at run time using a more general storage allocator, for which the order i r ~  which blocks of storage 
a re  freed is not a simple function of the order in which they were allocated. For each of the  
following features, indicate the sinlplest kind of allocation which will suffice (assuming compile time 
is simpler than run time, and stack simpler than general). Give a brief justification for your choice 
(1 o r  2 sentences). 

(a) values stored for variables in a language with the free variable lookup environment 
determined on the basis of the run-time calling environment (as in  LISP) 

(b) values stored for variables in a language with the free variable lookup environment 
determined on the basis of the source code block structure (as in ALGOL)  

(c) records and references (as in ALGOL W) 

(d)  arrays, whose bounds are determined on block entry (as in ALGOL) 

(e) strings of arbitrary length (as in SAIL) 

(f) a R E A D  statement which converts tokens into unique A T O M  references (as in LISP) 

(g)  overlapping arrays (as in FORTRAN's COMMON) 

(h )  concurrent processes (as in SAIL) 

(i) variables which refer to procedures (as in SAIL PROCEDURE va.riables) 

(j) rccurslve call by value (as in ALGOL and LISP) 
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2. Microcode usape. (20 minu.ies) 

You are a systems programmer at a laboratory which has just gotten a new micro-programmed 
machine which has ellough micro-code menlory to simulate your old machir-~e w ~ t h  a good deal left 
over  to spare. You want to make use of this additional power to speed up the execution of your 
favorite higher level language (in answering, you can use whichever one you are familiar with, e.g. 
LISP, SAIL,  A L G O L  W). 

(a)  Wha t  could you use the micro-code for? Think of several different ways in which it could be 
used. 

(b)  How would you go about evaluating the relative benefit to be gained from different uses? 
11-iclude measurements which demand simulating program operation, and those which don't. 

(c) How would you expect the choice of micro-code to be different if you were on a machine 
whose major li~nitation for typical programs in your language was not in instruction execution 
speed, but in core size? 

3. Memory mai~r~ing;. (20 minutes)  

T h e  essential characteristics of a certain computer's memory mapping hardware can be described as 
follows: 

1. Programs generate 16-bit virtual addresses, which are conceptually divided into fields as  
shown: 

15 13 12 0 

2. T h e  3-bit value VH selects one of eight mapp ing  registers MR0-MR7. (The  mapping registers 
occupy f ~ x e d  locations, which are normally accessible only to the monitor.) Each MR has  the 
following fields. 

AF (address field) - 18 bits, low order 6 are zero (positive integer) 
LF (length field) - 13 bits, low order 6 are zero (positive integer) 
E D  (expansion direction) - 1 bit ("up" or "down") 
N R  (non-resident) - 1 bit ("true" or "false") 

If NR="trueW then this mapping register describes no physical memory. Otherwise, the other 
fields describe a block of contiguous physical memory as shown: 

L F t G 4  bytes 

ED = "down" 

I I 8K-LF bytes 
A F 4  inaccessible 
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3. Accesses proceed as follows: the mapping register selected by V H  is inspected. If NR="trueW 
then the access traps. The  physical address PA=AF+VL is formed. I f  i t  lies oiltsicie the block of 
addresses defined by AF, LF, and ED, the access traps. Otherwise, the access is made to 
physical address PA. 

(a)  Describe how this hardware can be made to simulate a single set of base-bounds registers. 

(b) Describe how this hardware can be the basis of a paged address space. 

(c) Describe how this hardware can be the basis of a segmented address space. Is i t  possible to 
achieve Multics-style segmentation on this machine? How or why not? 

(d) When this hardware is used for paging, the pages are very large. What  are the advantages 
and disadvantages of this? 

D A T A  STRUCTURES 

1. Implen~entation of structures. (24 minutes) 

W h a t  data structure would you use to carry out the following sets of operations? Describe one good 
w a y  you could implement the data structure, and the operations, on a computer. Give the  best 
order-of-magnitude bound you can on the average time for each operation, using your data 
structures. (You need not prove your time estimates.) 

(a) Insert an item. 
Delete the most recently inserted item. 

(b) Insert an item. 
Delete the least recently inserted item. 

(c) Insert an item with an associated floating-point value. 
Delete the item with the smallest value. 

(d) Insert an item with a floating-point value. 
Delete all iterns with a given value. 

2. &, tree checker. (36 minutes) 

A n  S , ,  tree is an ordered tree having a key associated with each node. T h e  class of these trees is 
defined for n ? O  as follows: An So tree consists of a single node with a n  arbitrary key. A n  S,,, ,  
tree, for n 2 0, consists of two S,, trees combined by adding a single new branch, as shown at the top 
of the  next page. T h e  S,, tree of the pair whose root node has the larger key is made the leftmost 
son of the root of the other S,, tree. (Ties between the roots can be decided arbitrarily.) 
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For example, the two trees below are S, tree% 

and  combining them as described above gives an S2 tree: 

(Note ,,what we've actually defined is an "ordered S, tree with heap-ordered keys"; we'll continue to 

use the  briefer, if less accurate, description "S, treew.) It is easy to see that any S, tree has  zfi nodes, 
and  that the smallest key value is in the root. 

(a) Suppose that an S, tree is represented internally as a binary tree using the natural 
correspondence between forests and binary trees. That is, each node has the internal format: 

where KEY is the key value of the node, and L C H I L D  and R S I B  are pointers to the leftmost 
child of this node and the next sibling to the right of this node, respectively. Show the  
representation of the S2 tree using nodes in the above format. 

(b) Write a procedure CHECK which, given a pointer S and integer N, determines ; ~ h e t h e r  o r  
not S points to the root of an SN tree in the above binary tree representation. T h e  procedure 
should return normally if it accepts S; otherwise, it should call proced~fre ERROR with a 
string argument describing why it rejects S (e.g. ERROR("Parent larger than child")). 

T h e  procedure may not modify the input tree during execution. CHECK should require a t  
most time proportional to zN and space proportional to N. (You should assume that S points 
to a nonempty binary tree with nodes in the format given in part (a); there is no need to check 
for circularity in the structure.) You may write CHECK in an Algol-like notation, and  
explicit recursion is allowed. 
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H A R D W A R E  

T h e  following example demonstrates the behavior of the D-latch and the D-flip-flop, which are 
l-bit memory elements: 

CLOCK I 

P R E S E T  

DATA - I U I 
C L O C K  
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1. Shift registers. - (30 minutes) 

Design a four-bit serial-in, serial-out shift register using 

(a) D-flip-flops 
(b) D-latches. 

2. Number representations. (30 minutes) 

(a) Modify the shift register of question I(a) so that is possible to shift out the ones' complement 
of the stored magnitude. 

(b) Repeat part (a) for shifting out the two's complement of the stored magnitude. 

ARTIFICIAL INTELLIGENCE 

1. Resolution proof. (15 minutes) 

Prove by resolution that 3x Vy (P(x) 3 POI)) is a theorem of first order logic. 

2. Tower of Hanoi. (45  minutes) 

In the tower of Hanoi problem, there are three spikes and on spike 1 there is a stack of n disks of 
successively decreasing size. The problem is to move one disk at a time from one spike to another 
and end up  with all n disks on spike 2, observing the restriction that no disk is ever on top of a 
smaller disk. 

(a) Describe an algorithm that solves the problem in 0(3n) steps. 

(b) Describe an algorithm that solves the problem in 0(2n) steps. 

(c) Describe an algorithm that "solves" it in n steps. What is meant by "solve" in this case? 

(d) Discuss what is required for a computer program to "honestly solve" it in O(1) steps. 
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P R O G R A M M I N G  PROBLEM 

Write  a program to solve a large sparse system of linear equations by Gaussian elimination. Recall 
that  a.n n x n  system of linear equations is a matrix equation 

Ax_ = b_, 

where A IS  an n x n  real-valued matrix, g is a n x l  vector of variables, and b_ is a nx l  vector of 
constants. 

T h e r e  are  two steps to Gaussian elimination: 

( 1 )  Convert the matrix A to upper triangular form by means of row operations. A row operation 
consists of adding an appropriate multiple of a row of A to another row of A ,  with the same 
transformation being applied to the vector b; 

(2 )  Backsolve: if A is in upper triangular form, the equation for x,, is a,,,,xtL = b,,, which can be 
solved directly. Substituting the value for x, ,  into the other equations, we can solve for x , , -~ ,  
then for x , , - ~ ,  and so on. 

T h e  standard method for performing step ( 1 )  is to use a l  to zero all other entries in the  first 
column by adding to row i the multiple -ailla] of row I ;  then to use az2  to zero ail other entries 
below i t  in col~imn 2; and so on. This  is called Gaussian elimination without pivoting, and it only 
works if the diagonal entries are nonzero when they are needed for elimination. Also, they must be 
large enough so that the method is stable. For this problem, you may assume that Gaussian 
elimination without pivoting will work. (You may consult other references for a further discussion 
of Gaussian elimination.) 

T h e  n~ajoi .  difficulty with this method is the problem of fill-in, that is, the creation of new nonzero 
matrix elcrnents by the elimination process. You must devise a data structure which will take 
advantage of the sparseness of A by not storing or performing unnecessary arithmetic on matrix 
elements which are zero, and keeping track of the fill-in. You are to assume that A is large and  
very sparse (e.g. 300x300 with 2000 nonzero entries), but that A has no other perceivable structure 
(i.e. A doesn't necessarily have a small bandwidth). 

It may help to use a two-pass method, first computing the possible fill-in locations and then doing  
the  arithmetic. It may also help to use roru elimination, in which the first row is zeroed, then the  
second, and so on; instead of column elimination. 
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SYSTEMS 

1. Systems quick&. (30 points)  

(1 )  Explain the concept of a SIMULA class. How does it contribute to program structuring and  
resource protection? . 

(2) Wha t  are the advantages, if any, of semaphore operations over "test-and-set" operations as a 
high-level concept? 

(3) Suppose you have to multiply two large square matrices A and B using a virtual memory 
system. How would you lay the matrices out so as to minimize your program's working set 
size, assuming that your program can generate the elements of A and B equally conveniently 
in any order? 

(4) State an undesirable aspect associated with each of the following scheduling algorithms: 

(a) first come, first served 
(b)  shortest job next 
(c) round robin. 

( 5 )  Suppose hierarchical resource allocation is enforced, i.e. the resources r , ,  . . . , r,i are ordered so 
that no process can request resource r j  if it already holds resource r;  for some i > j. C a n  
deadlock occur? (Explain informally, either constructing an example of deadlock or sketching 
a proof that deadlock is impossible.) 

2. Compiler issues. (30 points)  

Suppose you are writing a compiler for a new language, and you have some say in the design of the  
details of certain features. Describe in general terms how you would deal with the following issues 
in a recursive Algol-like language. (Please don't quibble with the syntax in the examples below; just 
take them as a guide to the semantic problem being raised, and not as a rigid requirement for your 
language.) 

(a) (7 p o i n t s )  Suggest a run-time inlplementation for string variables of arbitrary, dynamically 
varying lengths. Would this differ from your implementation of string variables whose 
lengths are given as part of their declarations? 

(b) (8 p o i n t s )  Suppose the language is to have extensible data types, where declarations can be  
freely intermixed with statements. How would you represent at compile time the definition of 
type "vector" in the fourth line of the following example source program? 
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begin 
integer length; 
lozgth := 3; 
type  vector = integer array [I::lcngthl; 
length := 25; 
vector x; 
length := 75; 
vector array y [ 1::lengthl; 

Give two answers to this question, depending on how the language is defined, where type 
"vector" involves the value of length either 

(i) at the time "vector" is declared, or 
(ii) at the time "vector" is used in another declaration. 

T h e  example program under interpretation (i) declares x to be a vector of length 3 and y to be  
an array of 75 vectors of length 3; but under interpretation (ii) x has length 25 and y consists 
of 7 5  vectors of length 75. 

(c) (15  points) Suppose the language is to have procedure variab!es, i.e. variables whose "value" 
denotes a procedure. (i) Discuss what language constraints you would put on the set of 
procedure values which a procedure variable might assume. What effect d o  such constraints 
have  on compile-time vs. run-time error checking, especially with respect to parameters? (ii) 
Explain briefly how you would impletnent procedure variables at run time, paying particular 
attention to problems you might encounter with static vs. dynamic environments as found in 
coroutines or in the following example: 

beg i 11 

procedure-var any; (a procedure variable) 
procedure foo (procedure-var result q); 
begin 

integer )n; 
procedure baz; 

print (m); 
t n : = 3 ;  . 
q := bux; 

end; 
foo (anj); 
any; 

end. 

NUMERICAL ANALYSIS 

1 .  Polyalgorithms for nonlinear equations. (5 points) 

Most of the "state of the art" progranis for finding real zeros of a general scalar equation f i x )  = 0 
use the bisection method initially and switch to something like Newton's method or  the secant 
method for the final iterations. What motivates this strategy? 
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2. N o r ~ l ~ n e a r  ecliiation solvers. (5 points) 

W h y  is the secant method often more efficient than Newton's method even though its order of 
convergence is smaller? 

3. T h e  ~n f l~ t ence  of arithmetic on algorithms. (20 points) 

T h e  ~nodulus  of a coniplex number z = x + iy is usually defined by 

2 2112 (1 )  l z l = ( x  +y ) . 
Suppose we want to comllute lzl using floating-point arithmetic on a computer where the  
representations of nonzero real numbers are constrained to lie between Ad and h.1-I in absolute 
value. Results with magnitude greater than M will cause overflow and those w ~ t h  magnitude less 
than M-I will cause underflow. Suppose further that we want to deterniiric lz I maintaining as much 
significance in the flnal result as possible and avoiding underflow or overflow unless l z  I lies outside 
the interval [ h f - '  MI.  

(a) ( 2  points) What problem do  we immediately encounter if we attempt to use formula ( I ) ?  

I t  has  been siiggested that ( 1 )  be reformulated as follows if x,  y z 0. Set u = max(lx 1 ,  ly 1) and v = 

min(lx 1 ,  ly 1) and use 

2 112 (2) 12 1 = u( l + (vlu) ) , 

where vlu is replaced by zero if this division causes underflow. This  formulation overcomes much 
of the difficulty encountered using ( l ) ,  and i t  is generally satisfactory if binary arithmetic is used. 
However, i t  is itnsatisfactory if hexadecimal arithmetic is used. Suppose you have the hexadecimal 
represen tation 

where E is an integer exponent and f is a binary fraction containing t bits (where r is divisible by 4) 
normalized so that 1/16 s f  < 1 . 

(b) ( 9  {mints) At  most how many significant bits can be expected in the fractional part of the  
representation of ( 1  + (7.~1~)~)  ? 

T h e  formulation 

has  been siiggested to correct the situation in part (b). There are values of z for which a 
computatiol-I based on (3) is solnewhat less accurate than one based on (2) ,  but statistically (3) is a 
significant improvement. 

(c) ( 9  points) If ru = 0.25 + (v12u)~, at most how many correct bits can we expect in the fractional 
part of ru? 
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4. T h e  solution of sparse linear systems. (30 points) 

(a) (25 poinrs) Describe a modified Gaussian elimination algorithm to reduce an n x n matrix of 
the form 

to upper triangular form. Assume that pivoting is not necessary. Such matrices often arise - 
they result from periodic spline approximations and periodic boundary-value problems for 
ordinary differential equations. Make sure that your algorithm requires only the storage of 
three vectors of length n (say a i  . . .a,,, b l . .  .b,,, and ci  . . .c,,),  and a small additional working 
area whose size is independent of n. You need not write a program, but you must give all 
relevant formulas. Note that your operations only operate on the macrix elements, not on any 
assumed "right-hand side" of a matrix equation. 

(b) ( 5  po i~ ts )  Give a condition on the matrix above which ensures that Gaussian elimination 
without pivoting will work. 

ARTIFICIAL INTELLIGENCE 

1. A.I. terms. (8 points) 

Match each item in column A with the one from column B that is most related to it. 

AND/OR trees 
add and delete lists 
consequent theorems 
cooperating knowledge sources 
symbol-mapping problem 
Skolem functions 
unification 
set-of-support 

COBOL 
backward reasoning 
effects of operators 
forward reasoning 
HEARSAY-I1 
inheritance of properties in "isa" hierarchies 
matching 
problem reduction 
removal of existential quantifiers 
resolution strategy 
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2. Enylish to loyic. (12 points) 

Write  predicate calculus expressions to represent each of the following three sentences, using the  
predicates do;(r), dogcatchsr(x), torun(x), lives._in(x, g), and has-bittsn(x, y).  

(1 )  Every town has a dogcatcher who has been bitten by every dog in town. 

(2 )  N o  town has a dog who has bitten every dogcatcher in town. 

(3) A t  least one town has a dogcatcher who has been bitten by none of the dogs in town. 

3. Blocks. (10 points) 

Suppose three blocks are stacked A on B on C, where A is green, C is blue, and the color of B is 
unknown ( i t  might be green with blue polka dots). 

List the axloms needed to prove by resolution that there is a green block immediately on top of a 
non-green block and show the resolution proof. I-lint: Include, for example, the axioms on(A, B ) ,  
",gl'""n(C). 

4. Wffs  vs, clauses. (15 points) 

In pure resolution proof procedures, wffs are represented as clauses. What  are some of the  
disadvantages of this approach? Give examples of wffs which we might not wish to convert to 
clause form, and explain why the c l a ~ ~ s e  form is undesirable. 

5. Semantic information ~rocessing. (15 points) 

Good arguments have been given in support of each of the following statements. Select one of the  
statements and present as much evidence for it as you can, considering typical implementations of 
semantic information processing systems. 

( 1 )  I n  terms of representational power, there is really very little difference (if any) between the  
pred~cate  calculus and the better semantic network formalisms. 

(2) Semantic networks provide a much richer representational formalism than the predicate 
calculus does. 
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A L G O R I T H M S  

1. Binary search trees. (45 points) 

A bilznry zree T either is empty or consists of a root node (containing info[Tl) and two binary trees 
/ e f i [ T ] ,  right[T]. We can represent an empty tree by T = 0 and we can let T be a positive integer 
in the other case, so that a btnary tree structure can be represented by means of three integer arrays 
info[ 1 ,  left[ I, righl[ I .  (We coi~ld also, of course, use records and references if we don't have  to 
program in FORTRAN.)  T h e  set nodes(T) is defined recursively as follows: 

@ if T is empty; 
nodes(T) = { {T ;  u nodes(lefi[T]) u nodas(righi[T1) , otherwise. 

A bina.ry scnrch tree is a binary tree T for which there is an ordering "<" defined on all the elements 
info[Tl,  and we have 

info[T] < info[TI for all t E nocles(left[TI) , 
i?tfO[Tl > info[Tl for all t E nodes(right[Tl) . 

Furthermore if T is not empty both left[Tl and right[TI must be binary search trees. 

T h e  followir~g algorithm is co~nmonly used to insert new elements x into a binary search tree T : 

reclrrsive procedure ins (integer x; reference integer T ) ;  
if T = 0 then begin 

T t neru notie; info[Tl t x; 
l ~ f t [ T l  + 0; right[TI t 0 

c 11 ct 
else if x < info[Tl then ins(x, left[Tl) 
else i f  x > info[Tl then ins(x, right[Tl); 

Here  " r e f c r e~~ce"  is essentially the same as the ALGOL W specification "value result"; and  
"nszu-node" is an integer procedure which returns the value of an ur~used position in the  arrays 
info[ I ,  left[ I ,  and right[ I. 

Let B S T ( x l ,  x2, . ... , x I 1 )  denote the binary search tree obtained by the sequence of operations 

T c 0; ins (x l ,  T ) ;  ins(x2, T ) ;  . . .; ins(x,,, T )  . 

For example, 

BST(S,  38, 32, 40, 13, 26, 4 ,  41, 17, 20, 14, 5 ,  33, 29, 22, 1 ,  10, 25) 

is a binary search tree which may be drawn as shown at the top of the next page. 

(a) ( 5  points) Draw the binary search tree 

BST(23, 8 ,  38, 32, . . .  , 25)  , 

where the elements after 23 are the same as in the example above. 
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(b) (25 poinr~) ("Insertion a: the top.") Fill the blanks in the following program so that "fopins" 
constitutes a valid inssr:;on procedure for binary search trees. After toPins(x,T) has been 
applied to T = BST(xl, . . . , x,,), the new value of T should be BST(x, x l ,  . . . , x,,). T h u s  the 
sequence of operations 

T t 0; topinsix,, T); topins(x2, T); .  . .;topins(x,,, T) 

should produce B S T ( x , , ,  . . . , x p ,  xi). 

procedure topitis (iateger x; reference integer T); 
begirl integer u; 
tl. t nezu-.node; info[ul t x; 
magic (T,  x ,  left[ul, right[ul); 
T e u  
end; 

recursive procedure magic (integer T ,  x; reference integer L ,  R); 
if T = o t11e11 I I 
else if  x < info[Tl tire11 

begin magic (left[TI, x, -1. k 
R c T  

end 
else if x > info[Tl tl~erl 

else begin colninent 1 1 ;  
I 1 

Suggest a better name for the procedure "magic": I 1 .  
(c) (15 points) Sketch an informal proof that the program in your answer to part (b) is correct. 
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2. Mlorst case cost. (15 points) 

Each node ti of a (finite) tree has been assigned a nonnegative cost c(u) in such a manner that  the  
sum of all costs on nocles of the path from the root to a is less than or equal to the number of nodes 
on this path. For example, in  the tree 

we must have 

Given this condition, what is the maximum possible value of the total cost of the tree (i.e., the sum 
of all ((ti))? State and prove your answer i n  terms applicable to an arbitrasy oriented tree, not just 
the tree shown. 

THEORY OF COMPUTATION 

1. Unification. (10 points) 

W h a t  is the most general unifier of cc and P, where 

T h a t  is, find the most general substitution which makes c i  equal to 6. 

2. Three  three machines. (25 points) 

Consicler an infinite tape containing the symbols 

. . . X , , + j X , , .  . . " ] X 0  

where there is some n r 0 such that x ,  is 0 or 1 for 0 < j  5 n but 5 = -. (blank) for all j > n. If the tape 
represents a binary number, the following "finite-state transducer" adds three to that number and  
halts: 
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Initially j = 0, state = q ,  

and if x .  = =-L then set x j  = and then set j t j + 1 
and go to state 

q 2  

9 3  

q 2  
halt 

9 2  
halt 

q 2  

9 2  

9 2  

(a)  (10 p o i n t s )  Construct a similar statelaction table for a finite-state machine that m u l t i p l i e s  the  
given number by 3 and halts. Use only as many states as necessary. 

(b )  (10 p o i n t s )  Is it possible to construct a similar machine that multiplies by any given (fixed) 
positive integer m? If not, prove the impossibility. If so, what is the minimum number of 
states required, as a function of m? (The device must start with j = 0 and increase j by 1 at 
every step.) 

(c) (5 p o i n t s )  Answer part (b) for a machine that produces the cube of the input number. 

3. Context-free prammars. (25  points)  

Let L be the context-free language def~ned by the two productions 

where E clenores the empty string. The  terminal alphabet is {a,bj and the only nonterminal symbol is 
S. Let M tsc the context-free language defined by the above two production plus a third one: 

S  + b S a S .  

(a) (5 p o i n t s )  Show that the context-free grammar given for M is arnbip'uous, by exhibiting a 
string of M which has two different leftmost derivations. 

(b) (5 points) Give a context-free grammar which defines the language consisting of all 
nonempty strings of L. 

(c) (10 p o i n t s )  Give a context-free grammar which defines the language consisting of all strings 
of L whose length is a m~lltiple of 3. 

(d) (5 p o i n t s )  Explain how to generalize your construction in part (c) so that any context-free 
grammar can be converted into a grammar for the same language but restricted to strings 
whose length is a multiple of 3. 
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H A R D W A R E  

1. Definitions. (8 points) 

Define each of the following terms: 

(a) dynamic memory 
(b) cache memory 
(c) P R O M  
(d)  direct memory access. 

2. BCD-to-7-segment decoder. (30 points) 

Design a combinational circuit to convert a BCD (8421 code) digit to the corresponding 7-bit digit 
to  dr ive a 7-segment L E D  display. T h e  display is shown below, with each input requiring a "1" to 
turn the coi.responding segment on. Try to use as few gates as possible in your design. 

Example: A BCD "zero" (0000) is 
clisplayed by turning on 
segments a ,  b, c ,  d, e ,  
and f, as shown below. 

- 
I I 
I I - 

7-segment LED dlsplay 

(a) (25 points) Design a two-level tree circuit for the decoder using. A N D ,  OR, NAND,  or  N O R  
gates. Assume that double-rail inputs are available, and that non-code inpirt cornbinations d o  
not OCCLII. a t  the decoder input. (Note: there is a worksheet on the next page.) 

( b )  (5 points) Suppose the specifications for the decoder are changed to require that the circuit 
reject false input data, that is, non-BCD inputs should turn off all the segments. How would 
you redesign the circuit? (Just state briefly what changes you would make to the design in  
part (a).) 
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00 01 ll' 10 
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3. Multi-phase clock desipn. - (22 points) 

A multi-phase clock having 5 timing pulses, T ,, T P ,  . . . , T 5 ,  is desired as a clock for a computer. 
T h e  timing diagram is shown below, where the clock outputs Ti are generated from an input  signal 
C. 

(a) ( 2  p o i n t s )  What  is the minimum number of flip-flops which must be used? How many states 
does the c~rcui t  have? 

(b) ( 3  p o i n t s )  Draw a state diagram assuming a state transition at each C pulse. Make a state 
assignment. . 

(c) (17 poinrs)  Using the minimum number of J-I< flip-flops with positive-edge clock inputs, 
realize the 5-phase clock circuit. (Please use the worksheet below.) 

Transition table Excitation table 
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P R C > G R A M M I N G  PROBLEM 

You are working (temporarily) for a medium-sized software firm. A bright young manager ha s  
decided that your company should offer a package to keep track of patients' histories for small teams 
of' cloctors In private practice. Marketing thinks this is a great idea because ( 1 )  there are a lot of 
doctors out there, (2) they can easily afford to buy a small computer system, or to get time on a 
time-shared systern, and (3) the current systein for keeping records is awful. (A history is taken from 
the  patient each time he comes into the office and is added to the top of the patient's file. T h i s  can 
result in a very large amount of paper in which relevant information can get buried. Also, the  
patient is not always a reliable source of information for the history.) 

You are  to write a small prototype system to fill this need. You ha.ve the latitude to decide whether 
the target systein will run on a microcomputer with floppy disk memory or on a time-sharing system. 
You Inay also decide what sort of terminal to assume. T h e  prototype sys:em should be written in a 
high-level language such as ALGOL W or SAIL on some available computer, but you hope to be 
able to transfer most of your code directly to the target system, only chang~ng a few modules. 

T h e  prototype system is not expected to handle all data the doctor will want to store and access, but  
it will provide a basis around which the eventual system can be built. It will certainly establish the  
style of communication that will be used and the internal data structures, so care should be used in 
designing these. O n  Tuesday, 1 February, the system will be presented to a committee of 
inanagernel-~t and marketing personnel, and, if approved, it will be released for field tests. A n  
additional consideration for you is the fact that you strongly suspect that you wi!l not be with the 
company by the time the field tests are completed. (A grant allowing you to do  your own research 
looks like it will come through, or a friend has approached you about setting up your own 
consu1ti1-ig firin.) Therefore, on Tuesday the program and documentation should be in such a state 
that  any random programmer klutz should be able to take over what you've done and make all 
necessary modifications with a minimum of bother and rewriting. Finally, you should have a set of 
test da ta  which "adequately" demonstrates that the program works. 

Every time a patient comes into the office the doctor takes a history and physical examination. T h e  
history consists of the patient's description of the chronological events lead~np; up to the visit to the  
clocto~'. T t ~ i s  m a y  span days or years: a cold or the f l u  may have started only a clay ago, while 
"ulcers" may have smoldered for years. The  history is supplemented by a review of the patient's 
general well being, ranging from changes in weight or appetite to changes i n  lung function, urinary 
habits, etc. I n  addition there may be more distant medical history or prior hospitalizations or  major  
illnesses which nlay or may not already exist in the patient's file. (You may assume for now that  all 
dates are  known exactly.) Finally, the doctor perfornls a physical examination of the patient. T h i s  
will vary in completeness depending upon the presenting complaint, but can include examination of 
the head, eyes, ears, nose, and throat (HEENT), neck, chest, heart, abdomen, genitalia, rectum, and  
extrel-i>ities, along with evaluation of the neurological system. 

T h e  above description was provided for you by your doctor consultant; use whatever of it you think 
appropriate for the task. You know for sure though that your systein should be able to provide a t  
least the following information on request: 
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(1) Current and past diseases or conditions the patient has had within a given bodily system. 
(Syste~iis include nervous, musculo-skeletal, head-eye-ear-nose-throat, gastrointestinal, 
cardiovascular, respiratory, endocrine, and genitouretal.) You may ignore for now the problem 
of cross-referencing a condition belonging to one system which may cause problems in another 
system, e.g. diabetes (endocrine) producing blindness (HEENT). 

( 2 )  Medications and associated dates and results. 

(3) Allergies. 

(4) Relevant information from previous examinations, including signif~cant test results. 

Note: T h i s  problem is clearly very straightforward to program in a hapl-iazard way. T h e  goal here 
is not just to get the job done, or even to get the job done efficiently, but to d o  it within the  
constraints of the situation proposed. The user interface should be designed carefully: the program 
should neither step on the doctors' ego nor waste their time. Design decisior~s and program 
description should be laid out well for the person who will be modifying and maintaining the  
program. Any tradeoffs you consider in writing this program should be decided using these a n d  
other real-world criteria, and should be documented. 



Spring 1977 comprehensive Exam 

ALGORITHMS A N D  DATA STRUCTURES 

1. Threaded binary trees. (25 points) 

Suppose i t a t  i b a left and right threaded binary tree as in Knuth Vol. I ,  and that P points to 
some node in i. Recall that each node of T contains two link fields and two one-bit tag fields as 
well as any relevan: data fields. The conventions are 

' LTAG( P )  = "+" : L i i N K (  P) points to P's non-null left child. 

LTAG(P) = "-" : P has a null left child, and LLINK(P) points to P's predecessor in symmetric 
order. 

RTAG ( P ) = "+" : RLINK(P) points to P's non-null right child. 

R T A G ( P )  = "-" : P has a null right child, and RLINK(P) points to P's successor in symmetric 
order. 

There  is also a header node at location H E A D  with the conventions as shown in the following 
example tree!, where the fieids of the nodes are drawn in the form 

LTAG RTAG 

Write an algorithm which moves upward in such a tree; that is, write 

Algoritl~rn Parent: If P points to a node in a threaded binary tree, this algo:~itiim sets Q to point to 
P's parent. If P points at the root, Q is set to point to the header node (i.e. Q + HEAD). 
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W r i t e  t h e  algorithm in Icnuthian style. Do not access the DATA fields of the nodes, a n d  d o  not  al ter  
ttie d a t a  structure in any way. Your algorithm should use bounded storage; that  is, i t  should  not  use  
a n  aus i l l a ry  stack explicitly or by recursion. Your algorithm should also be relatively efficient; it 
shou ld  run  at  worst in time proportional to the height of the tree, where the  h e ~ g h t  of  a tree is 
de f ined  to be  the  number  of the deepest non-empty level. 

Also,  state why your algorithm is correct. 

2. NR(k.) - C N F  satisfiabil~ty. (35 points)  

T h e  following is s tandard  nomenclature for boolean expressions: 

A lltt3rnl is ei ther x o r  -x where x is a variable. 
A clalise is a sum (disjunction, O R )  of zero or more literals (the empty clause has u u t h  value  fa l se ) .  

A boolean expression is in conjunctive normal form (CNF,  "product of sums") if it is a p roduc t  
(conjection, A N D )  of zero of more clauses; the empty product has truth value t r u e .  T h e  problem of  
test ing boolean expressiot-is in CNF for satisfiabil~ty is well-known to be NP-complete. 

C a l l  a C N F  boolean expression k-negat ion restricted (NR(k)) if every clause contains a t  most  k 
negated variables.  For example, 

+ x2 + x3)(x3 + Xq + X5)(X1 + x2) 

is NR(2)  bu t  is not NR(1). Note that an expression which is NR(0) carlrlor contain any negations;  
t hus ,  if all clauses a re  non-empty, it is trivially satisfied by letting all variables be true. 

(a)  (10 p o i n l s )  Show that  the satisfiability problem for NR(2) - CNF boolean expressions is 
NP-conlplere. H i n t :  Remember that CNF satisfiability with at most three literals pe r  clause 
is NP-complete. 

It is not  h a r d  to see that  the problem of satisfiability for expressions in NR(1) - CNF is in P. N o t e  
t h a t  if every clause contains at least two literals, the expression can be satisfied by letting all 
variables be  t r u e .  Troub le  can only come from the empty clause, or from a clause consisting of  a 
single negated variable. 

So ,  suppose an expression of ler~gth m is written in the standard encoding on o n e  t a p e  of  a 
1-11ulti-tape Tul . ing  machine. W e  scan looking for a trouble-making clause; i f  none a r e  f o u n d ,  we 
o u t p u t  sat is f iable  and  halt. If we find an empty clause, we output unsat ls f iahle  and  halt. O the rwise ,  
suppose  we f ~ n d  a clause of the form (2;); our only hope is then to make xi fa l se .  So,  we scan the 
en t i r e  tape,  performing the  following operations. 

(1)  I f  x;  appears  in a clause, delete x ;  from that clause. 

(2) If F; appears  in a clause, delete the entire clause from the expression. 

Now,  by c o p y ~ n g  onto  a work tape, we can eliminate the gaps caused by deletions in O(m) t ime a s  
well. T h u s ,  we h a v e  reduced the problem by at least one literal in time O(m). T h e  total t ime cost o f  
th i s  determinist ic T u r i n g  machine is hence 0(m2), and we conclude that  NR(1) - CNF satisfiability 
is in P. 
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(b) (25 points) Design a "fast" a1gorithl-n to solve the NR(I) - CNF satisfiability problem on a 
rar-~dom access machine. For definiteness, suppose that the problem is iniclally represented as 
follows: variables are represented by integers in the range from 1 to n, "riot" is represented by 
aritl~metic negation, a clause is represented as a sequence of literals in sequential locations 
surrounded by "( )", and an expression by a sequential sequence of clauses surrounded by "C I". 
For ex ample, 

would initially be represented as follows. 

Let m denote the number of words in the expression in this representation; we will assume 
that m 2 n. 

Des~gn  an algorithm and data structures which will test the satisfiability of an NR(1) - CNF 
expression inputted in the above representation in time at most proportional to m on a 
random access machine (RAM with uniform cost criterion). 

Explain your data structures, drawing pictures if appropriate. Write your algorithm at a high 
level; for example, you may assume that the grader knows how to insert into a doubly-linked 
list. 

Hint: Start from the Turing machine presented above, and restructure things so tha t  
everything can be done in "one pass". 

T r y  your algorithm on the example 

which is not satisfiable. 
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ARTIFICIAL I N T E L L I G E N C E  

1. Rer)resentatioti. (40 points) 

T h e  following report  describes a situation which you will be asked to formalize, as described below. 

Repor t  42-7003hI to the  intergalactic anthropologists: 

On a recent visit to the planet Xmxcv, we noied an interesting developmci-it in the i r  use of 
coniputers to help in the  managemetit of their society. A s  you may reinelnter f rom o u r  ear l ier  
repor t  (40-6891L), the  inhabitants of Xmxcv reproduce communally, so there is no identification of  
o f f s p r i n g  with an  individual parent. In order to provide a family structure, they follow a set of  
adop t ion  ci~stolns which have  been passed down from antiquity, and are strictly obeyed. 

( 1 )  Every child n-iust be the adopted offspring (called kyd in their language) of otie a n d  only o n e  
adul t .  

(2 )  A t  all times, each family must have exactly one kyd which is designated as a bygshot. A 
bygshot is said to sqysh each of the other kyds (if there are any) in the  family. A kyd w h o  is 
I-lor a bygshot can trade roles with the bygshot in the same family through a custom called 
sruyching. T h e  one who was the bygshot becomes an ordinary kycl in the family, a n d  t h e  
o the r  kyd becomes the bygshot. 

(3) A n y  adul t  may adopt a kyd out of its current family, by carrying out a custom called 
glomming. T h e  result is that  the kyd is in the family of the adult who  glotnmed a n d  n o  
longer in the  family it was in previously. A kyd's status as a bygshot (or not one) canno t  b e  
c t ~ a n g e d  as the  result of a glorn. 

(3) Each village has  a single adult (called the burokrat) who is in charge of all g lomming a n d  
swychitig. H e  will only d o  one ceremony per day, carried out at precisely midnight  in f r o n t  of  
t h e  assen~bled elders. T h e  ceremony can be either a glom or a swych. 

( 5 )  Life  pt.oceec1s so slowly on Xnixcv that for all practical purposes, no  new adults  o r  kyds e v e r  
need be  accounted for, and "once a kyd, always a kyd". 

T h i s  set of  customs has  worked for many years, but is beginning to bog down under  t h e  pressure  of 
t h e  population explosion (see our  report 40-6802L). As  families get larger, a n d  there  a r e  m o r e  o f  
them,  it h a s  become more complicated to figure out the proper sequence of glorns a n d  swyches to  
reach a desired arrangement.  A s  a result, the elders have formed two committees, one  of logicians 
ancl o n e  of programmers,  to help clarify the situation. T h e  logicians are  attempting to p r o v i d e  a 
fo rmal  axiomatization of  the  system, in order to be able to decide whether certain k inds  of processes 
a r e  possible or  ii-iipossible, while the programmers are building a computer program which will h e l p  
p lan  t h e  r ight  sequence of ceremonies to get a family arranged in a desired way. W e  will r epor t  
later  on  t h e  success of these ventures. 

Exploration Tealxi 93A43, In tergalac t ic  Counc i l  
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Read the report carefully and choose one of the follow~ng two problems: 

(a) 1'011 are a member of the logicians team. Write a set of axioms iti first order predicate 
calculus which formally characterize the relevant parts of the customs described above. From 
these axioms outi~tie a proof (using any proof methods you like) that h'o ksyd c a n  be a bygsho t  
o n  2/26 d a y  bcfore or following tile niidnight at  which i t  is plovimed f rom one f a m i l y  i n t o  a n o t h e r .  
You d o  not need to go through all of the symbolic manipulations of the proof, but it should 
be clear from your description of i t  exactly which axioms will be used when. 

(b)  You are a member of the programmers team. Write a goal-reductioii scheme which plans a 
sey uence of ceremonies which will achieve a specific goal. Your answer can be either in t he  
form of a program in an A1 language like MicroPlanner, or as a set of operators with a 
d~ffererice-operator table, sets of preconditions, and add and delete lists, as for a GPS or  

. STRIPS-like scheme. T h e  goal given as input to the program is always of the form: Get 
spec i f i c  kyd x to  sqysh specific kgd y i n  a family  ruhose adlilt  is z .  Demonstrate (with a n  
inforrnal trace of its behavior) how your program would work on the following situation: 

Farn~ly 1: adult = Axcvbv Family 2: adult = Excvbv 
bygshot = Excvbv bygshot = Fxcvbv 
other kyds = Cxcvbv, Dxcvbv other kyds = Gxcvbv 

Goal: Bxcvbv sqyshes Fxcvbv in family of Excvbv 

2. System in te~ra t ion  in A1 proFrams. (10 points)  

11-1 organizing A1 systems for language, speech, arid vision, there has beern a debate between those 
who  want to keep a strictly structured hierarchical organization, in which each component can be 
described and run independently, and those who favor a more heterarchical organization, in which 
component boundaries are not as strongly structured. 

(a) For the problem areas of speech understanding and visual scene analysis, describe the most 
common division into components. 

(b )  Briefly list the advantages and disadvantages of the two conflicting approaches. 

3. Ap~licabi l i ty  of A 1  techniques. (10 points) 

Cot is~der  three different kinds of A 1  programs: a chess player, a language understanding system, 
and  a travel route chooser. For each of the following techniques, answer two questions: 

(1 )  11-1 which of these programs does the technique seem most applicable? Give examples, if you 
know of places where it has been applied. 

(2) In which does it not seem applicable, and why? 

Techniq ucs: 

(a) the alpha-beta minimax strategy 
(b)  the A *  search strategy 
(c) goal reduction 
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H A R D W A R E  

1. Architecture.  (10 poin t s )  

(a)  W h a t  is a cache (buffer)  memory? Wha t  properties should a program have  to gain  t h e  most 
benefi t  f rom a cache? 

(b )  W h a t  is a pipelined execution unit? When does pipelining work particularly well? 

2. So17-~bitiatorial circuits. (20 points)  

On t h e  following page is circuit F, with 3 inputs a ,  b ,  c and 3 outpilts x ,  y ,  2. T h i s  circuit is 
constructed f rom N O T  gates, and A N D  and OR gates with either 2 or  3 inputs. 

(a)  ( 5  p o i n t s )  Describe the behavior of the lines u and v as functions of a ,  b ,  c. Hint: Note  
tha t  the  values of ZL and v are symmetric functions of a, b, and c; that  is, they depend  only o n  
t h e  number  of inputs which are 1. 

(b)  (10 p o i n t s )  Construct a circi~it  G which has the same input-output behavior as F b u t  uses a t  
most 5 gates. Beware, it is easy to make careless mistakes on this. 

(c) (5 p o i n t s )  Suppose  that  different varieties of gates cost d~f fe ren t  amounts; when would circuit  
F be  superior to circuit G? T h a t  is, what is interesting about circuit F? 

(d )  ( 0  p o i n t s )  Describe your reaction to the existence of circuit F; are you surprised? 

3. Sequer~ t i a l  circuits. (15 points) 

Design a or-ie input ,  one  output sequential circuit with the following behavior: 

I N P U T  

U s e  two negative-edge triggered J K  master-slave flip-flops as your memcrry elements. Describe t h e  
sequence of state changes that  your c i rcu~t  will go through. 

Design t h e  circuit so that  it does not need initialization; that  is, if the flip-flops begin in  a n y  
combinat ion of states, the  circuit will eventually behave as shown above. 

Hint: Begin by implementing a period three counter with INPUT as the clock. 
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a b c  

C i r c u i t  F 
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4. Excess-3 adder. (15 points) 

Excess-3 code is used to represent the decimal digits from 0 to 9 using 4 bits as follows: 

0 0011 
I 0 100 
2 0101 
3 0110 
4 0111 
5 1000 
6 1001 
7 1010 
8 1011 
9 1100 

(a) (3  points) Name a good characteristic of excess-3 code. 

(b) (12 points) You are given the following circuits as building blocks: 

(i) 4-bit binary adder: takes two 4-bit binary numbers as input and a I-bit carry-in, and 
produces a 4-bit binary sum and a 1-bit carry-out. 

s t .  x + y + c  mod 16 i 
C i c0 = X+ y+ ci div 16 

. . 
' Co 

(ii) 2-to-! multiplexor: takes two 4-bit quantities and selects one of them according to switch r.' 

Using the above building blocks, design a circuit which takes as input two 4-bit decimal digits 
represented in excess-3 code and a 1-bit carry-in, and produces as output the 4-bit sum digit in 
excess-3 code and a I-bit carry-out. 
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NUMERICAL ANALYSIS 

1. Solution of linear systems. (5 points) 

Give  at least two reasons why one might prefer an iterative scheme such as Jacobi, Gauss-Seidel, o r  
successive overrelaxation (SC)R) over a finite algorithm like Gaussian elin~ination (LU 
decomposition) for solving Az = bN. 

2. Cond~ t ion  of lineat. systems. (5 points) 

Consider the linear system A% = b, We consider the perturbed system A(z,tSz) = (ktS6J. It can be 
shown that ] I  Sz IJ/II I ]  s rc(A)11 S b  w llllli) % 11 where u ( A )  is the condition number of A. What  does "scaling" 
the  matrix A mean? How can scallng help to decrease the sensitivity of the system of linear 
ey uations to perturbations in the right-hand side b_! 

Let f be a given continuous function on [-1,lI. Let P,, denote the space of polyr~omials of degree n. 

Further  let E,,(f) = inf (11 f-P 11, I P E IP,,). Suppose you are given {(x.;,f;)jfio, where f; = f(x;) Let P,, 

E IP,, interpolate {(.ui,f;)]. In general, P,, will not approximate f very. well because of Runge's 
phenomenon. What  is Runge's phenomenon? Suppose you are allowed to select the xi's. C a n  you 
give a practical scheme for picking the xi's so that the resulting P,, is close to being optimal, i.e., 
11 P,,-f 11, is not much larger than E,,(f)? 
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4. Norl-linear equations. (21 points)  

Re~netnber  that Newton-Raphson iteration can be derived using Taylor's theorem in the following 
fashion 

( 1 )  0 = f ( a )  = f , ,  + E ,  J ' ( X , ~ + B ~ ~ ~ ~ )  ( O < B 1 < l )  

= f I ?  + ~ l L f , l  ' 
where E , ,  = N,,-a,  x0 and f  are given, and cc is a root o f f .  Hence E , ,  = - f , , l f I l ' ,  x , , + ~  = x , ~ + E , ~  is an  
obvious algor~thm. 

T h e  secant method is often used when f' is unavailable or is expensive to evaluate. Sometimes 
however, cheap h ~ g h e r  order derivatives of f  are available and it is relevalit to consider higher  
order  methods. 

(a) ( I6  p o i n t s )  Construct an lrerat~ve scheme uslng f ,  f' and f" In a manner analogous to the  
Newton-Kaphson approach above. Your scheme should be of the form E , ,  = @ ( f l 1 ,  f , l ' ,  f i t  ' ') 
where 4 1s a rational function of ~ t s  arguments (no square roots!), tli12t: Cons~de r  (1 )  and  
note that f  ' ( x l l + ~ i ~ l I )  = fit' + E ~ J " ( X ~ ~ + $ ~ E , ~ ) / ~  where O < B 2  5 1. 

(b) ( 5  p o i n t s )  Cons~der  f (x )  = l l x  - 1 .  Set xo = 312. Apply three steps of Newton-Raphson and  
three steps of your scheme from (a) to this f, with the given lrritlal guess. Remark on the  
observed convergence behavior (your scheme should be better than Newton-Raphson!). 

5. Periocl~c splines. ( 23  points)  

Let { ( X ; J , ) ) ~ ~ ~  be given. Consider a cubic spline S with knots at the x;'s which satisf~es S(x; )  = fi (i = 

1 ,  2, . . . , n). Let a ;  = S"(xi)/6 (i = 1 , 2 ,  . . . , n). For xi 5 x 5  x ; + ]  we know from the linearity of S" 
that  

6 s "(N) = - [ ( x ; , ~  - ~ ) a ;  + ( x - x ~ ) Q ~ + ] ] ,  where h; = x;+l-x; 
hi 

It can be shown that for xi < x 5 

(xi+ 1 - x ) ~  (M-x;)  2 

s ' ( x )  = - 3  oi+3--- f i . 1 - f ;  ~ i , ]  t - - ( ~ i + ~ - ~ i ) h i  
hi hi hi 

and  

(x;, ] - x ) ~  ( x - x ; ) ~  ( x ; ,  1-4 (x-xi)  
S ( X )  = a ;  + - oi.1 + (fi-oih?) - + ( f i -" i+~h?)  7. h;  It i hi 

From these results it is possible to write down a system of linear eqirat~ons for the p i ' s  given 
boundary cond~tiotis such as S " ( x i )  = S " ( x , , )  = 0 for natural splines. 

Considel the so-called periodic boundary conditions for S given by D M S ( x i + )  = Dc'S(x,,-) for cc = 

0,1,? and L) = (dldx).  Write down the resulting linear system for the 0;'s in the equidistant case, i.e., 
each h; = h > 0. Would Gaussian elimination without pivoting be stable for solving the resulting 
linear system? (Ee sure to verify all of the proper continuity conditions.) 
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SYSTEMS 

1. Storaw manawment. (5 points) 

A recursive program is available to multiple processes on a reentrant basis. Present an adequate 
storage rnanageinent scheme for parameter values and local variables. 

2. Structured pro~ramminc. (10 points) 

Restructure the flowchart beicw according to the precepts of structured programming. 
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3. F r a ~ n ~ e n t a t i o n .  (10 points)  

In a paged system some memory is unusable due to internal fragmentation and due to the need to 
have  a resident page table (one word per page). Programs and data occupy segments of average 
lengths s which begin at page boundaries. 

(a) Wha.t is the optimal page size p given only the above memory usage considerations? 

(b) Wha t  other factors should be considered and what cost factors need to be known in order  to 
obtain a, more realistic evaluation of an optimal page size? 

4. Pars inr  of exr~ressions. (15 points)  

(a) Wsire in BNF syntax rules adequate to describe realistic arithmetic expressions containing: 
v a r +  - I  u t o .  

(b) Sketch the passe tree for your system for the expression: 

A * ( E + C ) + D - ( - E + F ) t C  

(c) Is this expression parsable using operator precedence? 

5. Exponential service time. (5 points)  

What criteria should be a.pplied to observations of service times to warrant the frequently made  
assumption in scheduling that service times have an exponential distribution? 

6. Deacilock. (10 poin t s )  

T h e r e  are p processes competing for r identical resource units. Each process needs a maximum of m 
resource units (nl 5 T ) .  

(a) Under  what co~idition can no deadlock occur? 

(b) Give  an example of a request sequence leading to deadlock. 

(c) Write a resource a.llocation algorithm which will prevent deadlock. 

7. Error recovery. (5 points)  

W h a t  aspects of grammars contribute to good error recovery? 
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T H E O R Y  OF COMPUTATION 

1. Inductive assertion. (10 points) 

T h e  Fibonacci numbers are a famous sequence of integers defined by the recurrence 

Fo = 6. F1 = I ,  and 
F , l + 2  = F,,, + F, ,  for n r O. 

Thus,  the sequence begins 0, I ,  1, 2, 3,  5 ,  8, 13, . . .. The following is a flowchart program 
over the integers which computes the Fibonacci numbers; the input is n, the output is z, and 
variables t ,  a, and b are temporaries. 

Supply an inductive assertion for the loop cut-point B which will enable a proof of partial 
correctness. 



SPRING 1977 

2. Decidability truelfalse. (10 points) 

A re the following problems decidable? (answer true or false) 

(a) ( 3  points) For any word ru and type-0 grammar G, whether or not w E L(G). 

(b) ( 3  points) For any Turing machine M and any input word ru of length n,  whether or  not M 
will halt within n5  steps. 

(c) ( 4  points) For any lnteger m,  whether or not for all n in the range 3 5 n < m,  the equation x" 

+ y "  = ztl has no solution in integers x,  y, z; that is, whether or not Fermat's Conjecture 
holds for all exponents less than m. 

3. Monotone machines. (15 points) 

W e  will define a Monotone automaton to be a machine with a finite state control and finite input  
tape. T h e  head can move both ways on the input tape. Initially the input has  the form $zu@ where 
70 E ( O , l j X ,  and the $ and  Q symbols serve as end-markers. In addition to reading, the head can also 
change a 0 Into a 1 ,  but not a 1 into a 0. 

Note that the end-markers allow the machine to avoid moving off the ends of the input  tape 
unawares. T h e  symbols $ and $ are used always and only for this purpose. 

Remark: Two-way read-only automata are known to be no more powerful than normal, one-way 
finite automata. 

(a) (10 points) Find a langua.se L ,  {0,1jX which is not regular, but which is recognized by a 
Monotone automaton. Sketch the actions of an automaton which recognizes your L , .  

(b) (5 points) Find a language L2 E {O,l}* which is not recognized by any Monotone automaton, 
but which is context free. You may use the following lemma without proving it. 
Lsrrlmn. Let k bc any nonnegative integer. If L c {O,lj* is a language that is recognized by 
some Monotone machine, and all words in L have at most k zeros, then L must be regular. 

4. Context-free g.rammar. (25 points) 

Let G be the context-free grammar with start symbol S, nonterminals IS, A ,  Bj, terminals {0,1), and  
productions 

S + A I B  
A  + 0 I BOB 
B +  1 I A I A  

(a) (15 points) Prove that G is ambiguous. 

(b) (10 points) Conjecture: No string in L(C) contains four consecutive 0's or four consecutive 1's. 

Either give a proof of this conjecture, or find a counterexample. 
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P R O G R A M M I N G  PROBLEM 

Let t be a positive integer. An arithmetic progression of length t is a sequence of the form < a ,  a+d ,  
n+?d, . . . , a+t- Id>,  where a and d are integers and d >  0. For example, 

< 1, 3, 5, 7> is an asithmetic progression of length 4, 
<?, 11, 20> 1s an arithmetic progression of length 3, 
<6> is an arithmetic progressio~i of length 1, and 
<5,  '7, 10> is not an arithmetic progression. 

Let n be a positive integer, and let S , ,  = { l ,  2 ,  3, . . . , nj. Consider colorir~g each of the integers in 
S , ,  either red or blue; an assignment of exactly one of these two colors to each elenletit of S , ,  will be  
called a two-coloring of S , , .  Note that two-colorings of S , ,  correspond to part~tions of S , ,  into two 

disjoint and exhaustive subsets, the red elements and the blue elements. In particular, there are  2" 
two-colorings of S , , .  

Let r and b also be positive integers. A two-coloring of S , ,  will be called ( r ,  b)-constrained if and  
only if both of the following conditions hold: 

(i) there is no entirely red arithmetic progression of length r, and 
(ii) there is no entirely blue arithmetic progression of length b. 

For exaniple, consider the following two-coloring of S g :  

1 2 3 4 5 6 7 8  
red red blue blue red red blue blue. 

Note that i t  is (3,3)-constrained. However, it is not (4,2)-constra.ined, since there are six entirely blue 
arithmetic progressions of length 2. 

W e  will say that S , ,  is ( r ,  6)-colorable if and only if there exists an ( r ,  b)-constrained two-coloring of 
S , , .  T h e  above example demonstrates that S 8  is (3,3)-colorable. Now, i t  1s not too difficult to check 
by hand  that S9 is not (3,3)-colorable; that is, any two-coloring of S 9  must contain a monochromatic 
arithmetic progression of length 3. T h e  proof is a case analysis, and the reader is encouraged to try 
her hand at it, to improve her grasp of these concepts. 

Note that,  for r and b fixed, it becomes increasingly difficult to find an ( r ,  6)-constrained 
two-coloring of S , ,  as n gets larger. As more and more arithmetic progressions appear in S , , ,  it 
I~ecomes harder and harder to avoid making long ones monochromatic. 111 fact, in 1925, V a n  der  
Wacrden proved that, for every r and 6, there exists an integer n such that S , ,  is not ( r ,  b)-colorable. 
Hence, for each r and 6, there exists a smallest integer n such that S , ,  is not ( r ,  b)-colorable; call this 
integer f i r ,  6). For example f(3,3) = 9. 

If n 5 m then S , ,  S, , , ,  and any two-coloring of S,,, can be restricted to a two-coloring of S,,.  
Furthermore, if the two-coloring of S,,, is ( r ,  6)-constrainecl, the restricted two-coloring of S,, will be 
( r ,  b)-constrained also. Thus,  if n 5 m and S,, ,  is ( r ,  b)-colorable, so is S, , .  From this, we can see that, 
for any r, 6, and n, the set S ,  is (r,  b)-colorable if and only if n < f(r, 6). 
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Some of the known values off  are given in the following table. 

Wri te  a program to compute fl3,4), fl3,5), f(3,6); you may of course check your answers against the  
above table. I n  addition, in each of the three cases, output at least one ( r ,  6)-constrained coloring of 
S/O~,b,- I * 

Your programs will be graded for correctness, clarity, and efficiency. Give some thought to various 
algorithms and data structures before beginning to code; there is usually more than one way to 
organize combinatosial computing. In the program's documentation, include a description of your 
algorithm and data  structures, and a justification of their appropriateness. 

T h e  languages of choice for the project are Algol W or SAIL. 
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A L G O R I T H M S  A N D  DATA STRUCTURES 

1. Sortinp. (25 points) 

You are given an array of length N of records, each with a field containing a key chosen from an  
ordered set, and you are asked to sort the array into nondecreasing order. Assume a record is large 
compared with a key or a pointer field. In each of the problerns below, you are given fur ther  
characteristics of the problem, such as the nature of the keys, the size of N ,  the amount of auxiliary 
storage allowed (beyond a small fixed amount for bookeeping), and the desired behavior of the  
algorithm. 

Suggest a sorting algorithm, describe how it works, and explain why it is appropriate to the task. 
You need only say enough to convince the grader that you understand the issues; d o  not write 
compl~cated programs. 

(a) Arbitrary keys, large N (say N z 1000), no auxiliary storage, good worst-case time. 

(b) Keys are 5-digit integers (zip codes), large N, ( N  + a fixed constant) pointer fields allowed, 
linear time. 

(c) Arbitrary keys, large N, O(log N )  words of auxiliary storage allowed, good average-case time 
(assuming the input is in random order). 

(d) Arbitrary keys, N = 4, no auxiliary storage. 

(e) Arbitrary keys, large N ,  no auxiliary storage, good average-case time (assuming each record is 
expected to be very close to its proper place). 

2. R B  trees. (35 points) 

A n  R B  tree (discovered by L.G.R.S. Arby, inventor of the roast beef sandwich) is a binary tree 
whose edges are colored red or black such that 

(i) Every internal node has two descendants. 
(ii) Every edge leading to a leaf is black. 
( i i i )  No path from the root to a leaf passes through two consecutive red edges. 

Define the B-level of a node to be the number of black edges on the path from the root to the node. 
A n  RB bu.lnnced tree of height h is an RB tree whose leaves all have B-level h. For example, t he  
tree shown below is an R B  balanced tree of height 2. 
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(a) Suggest a representation for this data structure. Draw a picture of a model node, label its 
fields, and indicate any conventions. Draw a pictule of the above example using your 
representation. ( 5  points) 

(b) Write a Pidgin-Alp1 procedure which, when given a node as input, checks the form of the  
. tree rooted at that node. (You may assume that it really is a tree, i.e. there are no cycles and 

no multiple in-edges.) Your procedure should produce one of the following outpucs: 

(i) "There is a node with only one descendant." 
(ii) T h e r e  is a red edge leading to a leaf." 
(iii) "There are consecutive red edges." 
(iv) "There are teaves of B-levels m and n." 
(v) T h e  tree is RB balanced of height h." 

where m, n and h are integers whose values should be given. (20 points) 

(c) What are the minimum and maximum number of leaves in an RB balanced tree of height h? 
(10 paints) 

ARTIFICIAL INTELLIGENCE 

I. .Vision. (40 points) 

Suppose we wish to analyze a blocks world scene. Since we know that nolse, sub-optimal lighting 
conditions, etc. often make it impossible to process an image correctly, we have decided to integrate 
knowledge from three sources. In addition to the usual digital camera, we have also installed a laser 
range finder (in the same position as the camera) to provide depth information, and directly 
overhead we have installed a sonic range finder, to provide information about the height of objects 
above the table. 

Our blocks world consists of one or more blocks sitting on a table top with one or more walls in the 
background. T h e  scene can contain any of the following objects, and the object may appear in any 
orientation: 

Block: Wedge: Pyramld: . . 
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(a) T h e  following table consists of the lig.ht intensity values returned by our digital camera 
(normalized in some weird fasion). Use the tracing paper provided to produce a line drawing 
using this data. We suggest that you mark the corners of your drawing so you can overlay 
your line drawing on the tables of values returned by the range finders. Is there enough 
infol.mation in this data to determine exactly what is in the blocks world scene? Why or  why 
not? (10 points) 
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(b) T h e  following table is the data returned by the laser range finder. (The  smaller numbers  
denote points closer to the source) What contribution does this knowledge make to analyzing 
the image? Add any new information to your line drawing. (5 points) 
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(d) Is there a shadow in the scene? If so, point out which line or lines are actually pseudo-edges 
due  to the shadow. Give two examples of how a shadow can provide useful information in 
analyzing an image. (5 points) 

(e) Label the edges and vertices in the line drawing using the Huffnian-Clowes vertex and  edge 
labeling scheme. 111 general, why is this information useful? (5 points) 

(f) Which of the three possible objects is in the scene? How would a program figure out which 
object it is? (10 points) 

2. Short  answer questions. (10 points) 

For each of the following terms, briefly explain what it means, and say why the concept has  been 
useful or important to A1 research. 

(a) pattcrn directed ~nvocation 
(b)  augmented transition networks 
(c) frame problem (as discussed by McCarthy and Hayes) 
(cl) blackboarci 
(e) means-ends analysis 

3. Robotics (of sorts). (10 points) 

T h e  following is an excerpt from an article appearing in STARLOG magazine, issue no. 11, dated 
January, 1978: 

If Anthony Reichelt has his otun ruay, there will soon be a robot i n  every home. A s  
president of Quasar Industries, Reichelt is planning on marketing a 5'2" domestic helper 
tha t  ~ u o z ~ l d ,  an1ong other things,  serve dinner, ansruer the door, babysit, vacuum and  polish 
flools, nloru larons and trim hedges. And that's just the beginning, accordtng to Reichelt. 
" W E  haz~c modifications i n  store that allow him to read fairy tales to children, teach 
French,  clinlb stairs, monitor for smoke and fire and serve as a burglar alarm. T h e  only 
t h i n g  he ruon't do is  windozus. But then again, he ruon't take Thursdays o f f  either." 

The  ambz~~latory machine, ruhich has been i n  researcit and development for eight years, will 
r t ta i l  for about $4,000 and be ready for stores in less that truo years. 

Qiiite ilncierstandably, even people who are not acquainted with the field of artificial intelligence 
have  been rather skeptical about their claims. When pressed for details, the salesmeri usually back 
down slightly, and talk about their robot's "limitations". They say that it  can understand speech, bu t  
it is restricted to a vocabulary of 250 or so words. It can see, but its vision becomes a little fuzzy 
about  10 feet away. 

Even given the stated "limitations", is this robot capable of doing a reasonably competent job of, say, 
teaching French, given the current state of the art in artificial intelligence? Discuss what problems 
would be encountered by a robot working in that domain, and which problems currently can and  
cannot be solved. 
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H A R D W A R E  

1.  Short-answer questions. (10 points) 

Describe br~efly: 

base address register 
Gray code 
P R O M  
direct memory access (DMA) 
progra~ninable logic array (PLA) 
bit 
tri-state logic 
rni~ltivaliie logic 
microcode 
CMOS (complementary metal oxide semiconductor) 

2. Describe two hardware techniques which can be used to increase the information transfer rate 
between memory and processor. (6  points) 

3. What  is the 1's complement of 1010? (1 point) 
What  is the 2's complement of 1010? (1 point) 

4. List four types of addressing modes. (4 points) 

5. Given that computers do indeed fail because of hardware failures, briefly discuss two methods 
to protect computers against these events. (4 points) 

6.  Give two two-input gates, each one forming a complete set by itself. (A set of gates is 
complete if any Boolean function can be realized using only gates from that set.) (4 points) 

7. In  the larid of the little green men from Mars, the following statement is true: 

one of the roots of x 2  - 129x + 716 is 123. 

How many fingers do  they have? (5 points) 



WINTER 1978 115 

8. Assutne you want to build a digital lock. T h e  first method is to build a combinational lock. 

You want the lock to be shut whenever the input combination does not match the key. 

For added protection, you want a n  alarm to ring whenever somebody keys in an input  
cotnbination that differs from the key by at least one digit. 

However, since you do not want to keep the alarm ringing, you provide the lock with a "rest 
state", for which the lock is closed and the alarm is silent. 

T h i s  can be represented as: 

Key: x ,  = 0, x 2  = 1, xg = 1, x4 = 0 
Z = 1 w lock open 
Y = 1 @ alarm on 
Rest state: x ,  = 0, x 2  = 0, x3 = 0, x4 = 0 

X4- Logic: Lock open e input combination = key 
Alarm on w input combination differs 

from either key or rest state 
A 1  a r m  by at least one digit. 

How would you realize such a circuit with N A N D  gates? (You may use gates with any 
number of inputs; note that a single input NAND gate = inverter.) (10 poinls) 

9. It is also possible to use a sequerrtial lock. Here, there is only one input line and the correct 
sequence of input signals (the sequential key) must be keyed in. T h e  f ~ g u r e  on the next page 
gives an example of such a sequential digital lock. Eefore sending any input, the Start button 
is depressed, producing a logic one on the line marked Start. Then the key is sequentially 
keyed in on line x. One  key digit occurs at each clock pulse. Line x is high if the digit is a 1, 
otherwise it is low. Th.e lock opens when a logic one is received on line z. 

(a) When is the count line high? (5 points) 

(b) When does the alarm go off? (5 points) 

(c) What  is the shortest key? (5 points) 
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Remark: this counter increments 

i t s  content by one when COUNT i s  

1 and the clock goes high .  
r> 

NUMERICAL ANALYSIS 

1. General principles. (5 points) 

Consider a procedure which has been suggested for computing exp(x) on a computer with standard 
floating arithmetic, using the everywhere convergent Taylor series: 
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T h e  proposed computation is to be carried out as follows: Initialize the partial sum s to 1. Then  
for i = I ,  2 ,  . . . ,  

(1) compute x  ** i 
(2) form i! 
(3) compute their quotient 
(4) add the latter to s. 

Stop when s does not change as a result of the last addition. 

Explain at least three defects of the suggested procedure from the viewpoint of numerical analysis. 

2. Iterative approximation. (30 points) 

You are asked to produce a software routine, called sqrt(c), that attempts to compute -/7 for any 
floating-point number c 2 0, as quickly and accurately as possible. The routine will be executed on 
a newly designed small computer with binary-based normalized floating-point arithmetic (assume 
that floating-point division is available in hardware). 

(a) Describe the procedure that you would implement, discussing at least the following topics: 

(I) the choice of iterative procedure to be used (justify your suggestion in terms of speed 
and reliability), and 

(2) obtaining an initial approximation (explain how to compute it, and how it may 
influence the efficiency of the sqrt routine). 

(b) Let sqrt(c) denote the value computed by your routine, and f i  denote the exact value. 

(1) Can you say that, for a niachine-representable c, sqrt(c) = fi? Why or why not? 
(2) Can you say that (sqrt(c)) *a 2 = c? Why or why not? 

3. Linear systems. (25 points) 

(a) Suppose that we wish to solve the linear system Ax = b, and that x  is an alleged solution. Does 
a "small" residual vector (that is, Ilb - A x / /  is small) guarantee that x is an accurate solution 
(that is, I l x  - ~ - ' b l l  is small)? Why or why not? 

(b) Explain the following statement: In solving the linear system A x  = b  numerically, Gaussian 
elimination with partial pivoting is guaranteed to produce a "small" residual vector if no 
"growth" occurs in forming the factorization. 

(c) In solving the linear system A x  = b, suppose that we first apply Gaussian elimination with 
partial pivoting (assume that no growth ocurs), followed by iterative improvement. Does the 
solution produced by a convergent iterative improvement procedure necessarily have a smaller 
computed residual than the unimproved solution? Why or why not? 
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SYSTEMS 

1. Compilation. (25 points) 

Given the following grammar: 

<expression> + <expression> or <term> 
<expression> <term> 
<term> -t <term> and <factor> 
<term> + <factor> 
<factor> + not <primary> 
<factor> + <primary> 
<primary> -t identifier 
<primary> + (<expression>) 

Use the following string in parts (a), (b) and (c). 

X or (Y or Z alld not V )  

(Hint: for parts (a) and (b), construct a parse tree first.) 

(a) Give the sequence of production numbers to be applied for this string in a bottom up parse 
which is left to right and a rightmost derivation. 

(b) Give the sequence of production numbers to be applied for this string in a top down parse 
which is left to right and a leftmost derivation. 

(c) Suppose this expression appears in a condition to be tested. Using the branch instructions 
B T operand, label  /*branch t o  label  i f  operand i s  t rue*/  
BF operand, label  /*branch t o  label  i f  operand i s  f a l se* /  

generate the optimal code to transfer to L1 if the expression is true and L2 if it false (where 
the values of X ,  Y ,  Z and V are true or false with equal probability). 

2. Short questions. (10 points) 

(a) Describe one drawback of 

(1 )  FIFO page replacement strategy 
(2) LRU page replacement strategy. 

(b) Give an example of a deadly embrace. 

(c) What are the advantages of spooling? 

(d) Describe a set of hardware features which make it possible for an operating system to protect 
one user's program in memory from access by another user's program. 
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3.  Parallel processine;. (15 points) 

When  the only indivisible program operations are reads and writes of memory, the critical section 
problem is tiifficult to solve, Suppose we add one additiorlal illdivisible operatiois "add-to-store" 
which adcls a value (positive or negative) to a memory location, at the same time copying the sum 
into a private register of the processor. This operation will be denoted by add (x,y); it returns a 
value equal to the sum of x and y, and as a side effect stores the sum as the new value of x. T h e  
following is then a possible solution to the critical section problem: 

Process i: wlrile true do 
begit) 

~ v l ~ i l e  add (x, 1) + 1 do junk := add ( x ,  - 1); 
critical section; 
junk := add (x, - 1); 
non-critical section 

end 

where x is a global variable with an initial value of 0. 

Does the above procedure solve the critical section problem? That  is, is it true that 

(i) At  most one process at a time can execute its critical section. 
(ii) If no process is in its critical section, and one or more processes are trying to enter their critical 

sections, then eventually some process will enter. 

Carefully justify your answer. 

4. Linking. (10 points) 

Suppose an A L G O L  compiler permits external procedures and variables to be declared. T h e  
keyword external indicates that a variable or procedure is defined elsewhere, and entry indicates it 
is used elsewhere. Each unit of compilation is called a module. 

Suppose two modules which reference each other are separately compiled. 

(a) Describe what information must be output by the compiler with each module to link them 
together. 

(b) Describe a typical implementation of the linking process. 

(c) Suppose you also desire to do type checking among modules. Describe what information the 
compilers must supply. Briefly describe how you would check type compatibility. (Remember 
you should check the types of parameters to procedures as well.) 
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T H E O R Y  O F  COMPUTATION 

1. Proof of a program. (30 points) 

T h e  following program allegedly computes both the minimum and maximum elements of an  array A 
of length 2N. 

B- 

D I I -  - - ?  

r )HALT 
E l  

I 
I 

m i n  - ~ [ i l  (1 5 i (2N 3 

F I ~[i] 2 min A A [ i ]  2 nax) 

v A F 

where F = 3 i , j  (1 < i,j 2N 

A ~ [ i ]  = min 

A A ( j 1  = m a )  
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(a) Attach assertions at points B, C, and D suitable for a proof of correctness for this program by 
the method of inductive assertions. 

(b) Prove (informally) that assertion B is maintained throughout the loop. 

( c )  Prove that assertion C follows from assertion B. 

(d) Assuming assertion C, prove that assertion D holds initially and is maintained throughout the 
loop. 

(e) Prove that assertion E follows from assertion D. 

2. NP-comi>leteness. (30 points) 

T h e  zero matrix problem ZM is defined as follows: 

Given an n x n  matrix A whose elements are 0 or 1 and an integer k, does there exist a k x k  
submatrix of A full of zeros? That is, are there distinct indices i,, iP, . . . , ifi such that all the 
elements in rows i ,  , . . . , ik and simultaneously in columns i , ,  . . . , ik are zero? For example, if k = 2 
and 

a zero submatrix of order 2 exists because the elements 

are all zero. 

(a) Is ZM in NP? Briefly justify your answer. 

(b) Which of the following known NP-complete problems would you use to prove by 
polytiomia.1-time reduction that ZM is NP-hard? 

Ha~niltonian circuit 
set cover 
clique 
satisfiability 

(Definitions of these problems appear on p. 378 of Aho, Hopcroft and Ullman.) 

Woilld you reduce this problem to ZM, or ZM to this problem? 

(c) Briefly sketch the reduction mentioned in part (b). 
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PROGRAMMING PROBLEM: Warehouse Location Problem 

T h e  Adams Dornick Manufacturing Company has just built a new factory and now must decide 
where to build warehouses to distribute dornicks most effectively. The marketing department has  
prepared a list of cities to supply; each city is supplied through the warehouse nearest to it. T h e  
demand for dornicks in each city is proportional to the population of the "metropolitan area" of the 
city. T h e  cost of shipping a dornick is proportional to the distance it is shipped; however it costs 
more per mile to ship by truck from the warehouse to the customer than it does to ship by rail from 
the factory to the warehouse. 

Adams has enough capital to build a certain fixed number of warehouses; it only needs to know the 
best place to put them in order to minimize shipping costs. As the EDP manager of Adams, you are 
to design and write a program to solve this problem. 

T h e  problem is characterized by the following parameters: 

(1) N = the number of cities to be supplied 
(2) M = the number of warehouses to be built 
(3) source  = the city number of the location of the factory 
(4) t r R a t e  = the ratio of truck cost to rail cost 
(5) pop[ i 1 = the population of the ith city, 1 5 i 5 N 
(6) d[ i, j 1 = the distance from the ith to the jth city, 1 s i , j  r; N. 

Your program should select M cities in which to build warehouses so that the total distribution cost is 
low. It stiould produce a report suitable for presentation to Edward Neufville Adams, 111, the 
president of Adams, describing the situation. This report should include at least the following 
information: 

(1) the location of the factory 
(2) the location of each warehouse 
(3) the cities supplied by each warehouse 
(4) the cost of supplying each city 
(5) the total cost of the traffic through each warehouse 
(6) the total cost of the solution. 

It could also include any other information you feel may be relevant or desired. For example, 
E.N.A. may want to know the total trucking cost, the distance from the factory to each warehouse, or 
portions of the original input. 

The catch. If there are a large number of cities and a moderate number of warehouses, the number 

of potential solutions (:) is too large to permit an exhaustive search in a reasonable amount of 

time. Therefore, you must devise heuristics for finding good solutions. 

Whatever technique you use, it should be general, that is, it should work roughly as well for a 
different set of parameters from the one given in the sample data. For example, if you make use of 
the fact that Boston and Manchester are so close together that it would be senseless to put 
warehouses in both cities, it should be because your program "deduced" this fact rather than because 
you somehow included this external knowledge in the code. 
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Test data 

A moderately large example of this problem is provided for you to solve. A listing of the data 
appears on the following two pages. The distance matrix was prepared by George Dantzig many 
years ago for a travelling salesrnan problem; it has a city in each state, except that it assumes a 
salesman would travel from Boston to Washington through Rhode Island, Connecticut, New York, 
New Jersey, Pennsylvania, Delaware, and Maryland. The population table is taken from an 
almanac. 111 the example, populations are divided by 100,000 and rounded to the nearest integer. 
"Metropolitan Boston" includes Rhode Island, Connecticut, Massachusetts, and New York; 
"metropolitan Washington" includes the District of Columbia, Maryland, Pennsylvania, Delaware, 
and New Jersey. The  "metropolitan area" of every other city is the state including that city. 

T h e  data has the following form: 

( l i n e  1 )  
( l i n e  2 )  

(1 iAe ~ + 1 )  
( l i n e  N+2) 
( l i n e  N+3) 
( l i n e  N+4) 

( l a s t  l i n e )  

N M source t rRate  
POP[ 1 I name[ 1 I 

 pop[^ 1' name[N] 
- 1 
d[2,1] -1 
d[3,1] d[3,2] -1 

. . . d[N,N-11 -1 -1 

You may write your program in any "Algol-like" language (including ALGOL W, SAIL, PASCAL, 
PL/1) or in your favorite dialect of LISP. Your program will be graded according to the criteria of 
correctness, efficiency, clarity, aptness, justification, and human factors. Besides merely getting it to 
work, you should spend some effort to make i t  understandable, efficient, easy to use and modify, and 
general. Since there are many ways of attacking this problem, you should be careful to explain your 
choices of algorithm and data structure and why you believe them to be appropriate. 
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Listing o f  test data file (COMP.DAT[l,SWB]): 

4 2 6 3 2  
7 Manchester 
4 Montpelier 
8 9  Detroit 
107 Cleveland 
17 Charleston 
32 Louisville 
52 Indianapolis 
111 Chicago 
44 Milwaukee 
38  Minneapolis 
7 Pierre 
6 Bismarck 
7 Helena 
34 Seattle 
2 1  Portlandore 
7 Boise 
11 SaltLakeCity 
5 Carsoncity 
200 LosAngeles 
18 Phoenix 
10 SantaFe 
22 Denver 
3 Cheyenne 
15 Omaha 
28 DesMoines 
47 KansasCi ty 
22 Topeka 
26  OklahomaCity 
112 Dallas 
19 LittleRock 
39 Memphis 
22 Jackson 
36 NewOrleans 
34 Birmingham 
46 Atlanta 
68 Jacksonville 
26 Columbia 
5 1  Raleigh 
46 Richmond 
241  Washington 
278 Boston 
10 PortlandMe 
- 1 
8 -1 
39 45 -1 
37 47 9 -1 
50 49 2 1  15 -1 
6 1  62 2 1  20 17 -1 
58 60 16 17 18 6 -1 
59 60 15 20 26 17 10 -1 
62 66 20 25 3 1  22 15 5 - 1  
8 1  8 1  48 44 50 4 1  35 24 20 -1 
103 107 62 67 72 63 57 46 41  23 - 1  
108 117 66 71  77 68 61  51 46 26 11 -1 
145 149 104 108 114 106 99 88 84 63 49 40 -1 
181  185 140 144 150 142 135 124 120 99 85 76 35 -1 
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Spring 1978 comprehensive Exam 

ALGORITHMS AND DATA STRUCTURES 

1. Bin oacking. (20 points) 

Let X - { x l ,  x2, .: . , x,~) be !he weighrs of n objects with 0 < X j  < 1. We wish to pack the objects 
into a minimum number of bins, subject to the following constraints: 

(i) At most true objects can be put in the same bin. 
(ii) All bins have unit capacity, that is, xi and xj can share a bin if and only if xi + x j  s 1. 

(a) Design an O(n log n) algorithm that produces an optimal packing for any X with n objects. 

(b) Prove that the packing produced by your algorithm indeed uses the minimum number of bins 
possible. 

2. ' Maximum flow. (20 points) 

Let T be a directed bifiary tree with n leaves. Associated with each arc (FATHER(v), v) in T is a 
non-negative capacity c(FATHER(v),v) for the amount of water that can flow from node 
FATHER(v) to node v. We assume  ground, root) = or, that is, there is an infinite supply of water at 
the root. A flow in T is a non-negative function f on the set of arcs such that 

(i) f(F ATHER(v), u) 5 c(FATHER(v), u) 
(ii) f(FATHER(v), v) = f(v, LSON(v)) + f(u, RSON(v)). 

The  value f(ground,root), which is equal to X, AFATHER(v),v) because of condition (ii), is 
called the value of the flow f, denoted by WV). A flow f is a maximum flow in T if W ( f )  is as large 
as possible. 

(a) Give an algorithm to compute the value of a maximum flow f for any binary tree T with its 
associated capacity function c. 

(b) Give an algorithm to generate a maximum flow f by computing the arc assignments 
f(FATHER(v), v), for any binary tree T with its capacity function c. 

(Both (a) and (b) have O(n) algorithms. Partial credit will be given to less efficient algorithms.) 

ground x 
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3. Data structures. (20 points) 

You are to design a data structure which implements the following operations efficiently (in the 
average case) using a hashing scheme: 

ENTER(a,  b) Enters the pair (a, b) into the table. 
FIND(a,  b) Returns the pair (a, b) or indicates a failure if it is not present. 
FINDALL(a, 8 )  Returns a list of all pairs whose first element is a. 
FINDALL(*, b )  Returns a list of all pairs whose second element is b. 
REMOVE(a, b) Removes the pair (a, b) from the table. 
REMOVEALL(a, *) Removes all pairs (a, u) from the table. 
REMOVEAL L(*,  b) Removes all pairs (*, b) from the table. 

Briefly describe how each of the operations is implemented using your data structure. 

ARTIFICIAL INTELLIGENCE 

1. Formal representation. (I8 points) 

Consider the following problem: 

(1) There are five houses, each of a different color and inhabited by men of different 
nationalities, with different pets, drinks, and cigarettes. 

(2) T h e  Englishman lives in the red house. 

(3) T h e  Spaniard owns the dog. 

(4) Coffee is drunk in the green house. 

(5) T h e  Ukranian drinks tea. 

T h e  green house is immediately to the right of the ivory house. 

T h e  Old Gold smoker owns snails. 

Kools are smoked in the yellow house. 

Milk is drunk in the middle house. 

T h e  Norwegian lives in the first house on the left. 

T h e  man who smokes Chesterfields lives in the house next to the man with the fox. 

Kools are smoked in the house next to the house where the horse is kept. 

T h e  Lucky Strike smoker drinks orange juice. 
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( 14) The  Japanese smokes Parliaments. 

(15) The Norwegian lives next to the blue house. 

T h e  problem continues, "Now, who drinks water? And who owns the zebra?" 

Your problem is not to "solve" this puzzle, but to express the conditions of this problem in first 
order logic. You may invent whatever individuals, predicates and functions you need, but make 
clear what each is to represent. You do not have to translate every statement to a WFF in your 
representation; rather, you need do only enough so that the rest of the translation is transparent. It 
should therefore be necessary to translate only statements 1, 2, 3, 4, 6, 10, 12, and 15 to convince the 
grader that you understand the material. 

2. A.I. systems. (24 points) 

People often tend to emphasize the positive in describing abilities and capabilities of their A.I. 
programs and systems. In particular, from reading Winston one might get the feeling that A.I. 
jumps from one flaming success to the next. Unfortunately, there are deficiencies and inabilities 
with every proposed formalism and system, even if it takes a critical "reading between the lines" to 
notice them. 

For s ix  of the following programs or ideas, state the key failings and problems of that system. 
Typical answers might point out problems with the particular methodology, domain problems that 
the system cannot solve, or difficulties in a particular approach. 

Evans' Analogy program 

Winston's Concept Formation system 

Waltz's Vision system 

Newell and Simon's GPS 

Fikes and Nilsson's STRIPS 

production systems 

Winograd's Shrdlu 

Minsky's Frames 

Buchanan et. al. DENDRAL 

Hewitt et. al. Planner 
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3. . Natural lanrrua~e. (10 points) 

(a) What is an Augmented Transition Network? How does it differ from an ordinary transition 
network? 

(b) Name four possible mnotesa for the arcs of an ATN which is to be employed in parsing 
En*= 

(c) Given the following transition network describing a sentence (where'+ represents a possible 
Ynitial node, and e a possible terminal node), state an English sentence that is syntactically 
. ambiguous in this grammar. Be sure to state the possible word classes of each of the words in 
your sentence. 

SEN'TEIdCE: 
/Noun Group- -Verb -Noun Group 

-0 -9 3 - 3 3  

Noun Group: - - 

De terainrr - ,.--bun 

Prepositional phrase: 

/Prcposi t ion >/Noun Group 

40 . . .  

4. Alpha-beta search. (8 points) 

(a) Search the game tree below from left to right using the alpha-beta technique. Assume the top 
level is a maximizing level. Underline the nodes where static evaluation will occur, and draw 
a circle around the terminal node of the principal variation. 
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(b) If you had searched the tree from right to left, many more nodes would have been visited. 
What technique might a program employ to minimize the number of nodes visited in an 
alpha-beta search? 

(c) Now search the tree again with initial conditions a = 20, 6 = 25, underlining the nodes where 
static evaluation occurred. How might a game playing program be written so as to usually 
visit this smaller number? 

HARDWARE 

1. 6-phase clock. (13 points) 

Design a circuit to provide a 6-phase non-overlapping clock. Given input I, provide outputs 
0 ,  , 02, . . . , 06, as shown below. 

Try to keep it glitch-free. 

2. . Implement a b ~ +  a6c + iibc + Z c  in as few gates as possible. (4 points) 

3. Design a circuit to provide odd parity for an ASCII character. That is, given a 7 bit input, 
provide a 1 bit output so that there are always an odd number of the 8 bits on. (10 points) 

4. Expand the following acronyms: (8 points) 

CCD, FIFO, LSTTL, CMOS, ECL, SOS, UART, PROM. 

5. Discuss the advantages and disadvantages of microprogramming as compared with 
hard-wired control. In particular, when would you use one rather than the other? (5 points) 
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6. You have recently purchased an b b i t  microcomputer with a 16 bit address bus, and you want 
to connect 641C bytes of RAM and 64K bytes of PROM, leaving room for future expansion. 
Pick some technique for doing this, and justify your choice. (10 points)  

7. Control word design. (10 points)  

You are given: 16 registers, an ALU with 16 logic and 16 arithmetic functions, and a shifter with 8 
operations, all connected to a common bus. 

(a) Formulate a control word to specify the various micro-operations for the CPU. 

(b) Specify the number of bits for each field of the control word, and give a general idea of the 
encoding scheme for each field. 

(c) Show the control word($ for the operation: R7 := R 1 + R 14. 

NUMERICAL ANALYSIS 

1. ~ter'ation. (20 points)  

(a) Three well-known methods for solving a non-linear scalar equation fix) = 0 are the bisection 
method, Newton-Raphson method and the secant method. Describe each method briefly and 
discuss their advantages and disadvantages. Mention order of convergence, amount of 
computation, and global and local characteristics. 

(b) As an alternative method for the solution of fix) = 0, one might seek an iteration formula 
involving the second derivative off. You decide to find an iteration formula of the form 

where f,, =fix,,), f n '  = fr(xn.)t fn" =f"(~11>. 

Determine the constant (? so that the convergence will be of highest possible order, and give 
the order. 
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2. Minimax approximation. (10 points) 

(a) How would you recognize that you have obtained the nth degree polynomial that is the 
minimax (Chebyshev) approximation to a function fix) in C[a,  bl? 

(b) Use your answer to (a) to find the straight line that is the best Chebyshev approximation to 
the quadratic ax2 + bx + c in [-1,ll. 

(c) Find the answer to the problem in (b) by expanding the quadratic in a series of Chebyshev 
polynomials To(x) = 1 ,  T ,(x) = X, T2(x) = 2x2- 1.  State the general theorem you are using. 

3. Linear systems. (20 points) 

Define the condition number of a nonsingular matrix A in the Lp-norm by 

u p )  = I I  A ilb I I  A- ' Ilk 

(a) Prove that if the perturbed matrix (A + 6A) is singular, then we must have 

(b) Show that with the L2-norm, equality holds in (a) when 

where y is a vector for which 11 A" 1 1 2 1 1 ~  112 = 11 A-'J 112. 

(c) Use the inequality in (a) to get a lower bound for u,(A) for the matrix 

4. Arithmetic and error analvsis. (10 points) 

(a) Do floating-point and real arithmetic have the same arithmetic properties (e.g. associativity, 
commutativity)? Prove your point. 

(b) Briefly explain the idea of backward error analysis in the context of the solution of a linear 
system Ax = b. 

(c) What advantage does backward error analysis have over forward error analysis? 
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SYSTEMS , 

1. LR(k)- ramm mars. (12 points) 

T h e  following grammar "abstracts" the statement structure of BEGIN blocks in PASCAL: 

(a) Is the grammar ambiguous? Provide some argument to justify your answer. 

(b) T h e  grammar is not LR(1). Why? ( H i n t :  think about the nontrivial parsing decisions; you 
should not have to construct the characteristic finite state machine to answer.) 

(c) Is the grammar LR(2)? Justify your answer 

2. Symbol table. (10 points) 

A symbol table entry for a simple variable in PASCAL contains the following information: 

name, l e v e l ,  o f f s e t ,  type,  d i r e c t  or ind i rec t  

For each item of information, give a use for that item in the compilation process. Be sure to include 
an explanation of how addressing of the variable is done. 

3. Optimization. (6 points) 

What  kind of optimization is illustrated in the examples below? Give the name commonly used for 
each optimization transformation. 

(a) FOR I := 1 TO 3 DO rj A [ l ]  := 1; 

(b) Z := A +  B * C ;  , * TEMP8881 := B * C; 
X : = B * C + D ;  Z := A + TEMP8001; 

X := TEMP8881 + D ;  

(c) FOR I := 1 TO N DO a TEMP0002 := 5 ;  
A [ I ]  := 5 * I; FOR I := 1 TO N DO BEGIN 

A [ I ]  := TEMP0002; 
TEMP8082 := TEMP8082 + 5 

END ; 
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4. Recister allocation. (I0 points) 

When writing a code generator for a register machine, it will at times be necessary to generate code 
using a register for some purpose, although the register contains information which is potentially 
useful for other computations within the basic block. This problem is similar in many ways to the 
page replacement problem for virtual memory systems. 

(a) Compare the register problem with the page replacement problem in the case of a strictly one 
pass compiler. Mention similarities and differences. 

(b) What is the principal difference between the two problems in a multipass compiler? 

5. Protection. (12 points) 

A general protection scheme can be thought of as a matrix with rows for users and columns for 
resources. T h e  matrix entry specifies the rights of the user with respect to that particular resource. 
Thus ,  the matrix entry might contain flags for read permission, write permission, and append 
permission. 

(a) Suppose that the matrix were maintained in columns by the operating system. A given 
column is associated with each particular resource. Provide a scenario showing how the 
operating system might enforce protection. 

(b) If the matrix is maintained by rows associated with users, it may be considered a capability 
list for a given user. Sometimes a user wants to permit another user, who is trusted to be 
careful, to operate on a resource which the first user has a capability to operate on. Describe 
an extension to the matrix model which will make i t  possible to pass a capability to the second 
user so that he may use it, but prevent him from passing i t  on further. 

6 .  Linking - loaders. (10 points) 

Linking loaders perform two distinct operations. They resolve external references and relocate 
object code to run in specific machine locations. 

(a) A "linker only" would take sections of object code and produce one large section of object code 
plus some tables to be used by the loader. Describe the function of this table and a data 
structure which implements it. 

(b) A "loader only" would take sections of object code and produce one large section of object 
code (possibly in core), plus some tables to be used by the linker. Describe the function of this 
table and a data structure which implements it. 
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T H E O R Y  O F  COMPUTATION 

1. Regular languages. (13 points) 

Consider the language 

L = {a2t1,+la2tt,b,tl~2,n-~a2ft,12bt,I11.. .alaobo I ail b; c {O, I), m 2 0, and the two binary numbers 

x = a2,,, + l a2m.  . , ao, y = b,,lbm- . . bo satisfy x = y 2). 

For example, 01 1 lOOul is in L since x = 01 1001 = 2!iI0 and y = 101 = 510. 

Is L a regular language? Prove your answer. 

2. True  or false. (12 points) 

Answer true or false for each of the following statements. Give a brief argument to justify your 
answer. 

( I )  T h e  intersection of two recursively enumerable sets is still recursively enumerable. 

(2) It is undecidable whether a Turing machine over the alphabet (0,l) accepts at least one word 
that begins with a 1. 

(3) For a language L, define Transpose(L) = {u2uI  / lul  I = Ju21, and u lu2  e L). If L is 
context-free, then Transpose(L) is always context-free. 

3. Lopic. (15 points) 

O n  the farflung Islets of Langerhans, a peculiar form of logic is employed. There are only two 
sentential connectives, a unary operator, N, and a binary operator, 8, and one rule of inference, 
Reductio ad nauseum (or R for short): 

R l  N A ~ B  (Here we follow the Langerhan traditior~ of letting wA*B mean (wA)mB. 
R 

There  is also a single axiom schema, Producia desde nil (or P): 

PI N ( ~ A * B ) * ( B U C )  

Prove each of the following WFF's of Langerhanish logic, using this axiom schema and rules of 
inference. Proof of the last WFF is, of course, sufficieiit to guarantee credit for the entire problem. 

(a) wD* #(-A* B )  

(b) N E * N D  

(c) E 
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4. Verification. (5 points) 

Consider the pidgin-algol program fragment: 

for i t 1 step 1 until n do 
begin 

t t a[il; 
a[il c ah- i+ 13; 
a[il c t; 

end; 

What  does this program fragment do to the array a? Letting ao[jl denote the initial values of the 
array, write an invariant of the loop that will suffice to prove your answer. 

5. Verification. (15 points) 

(a) Write a pidgin-Algol program fragment to rearrange the elements of the array a[l:n] so that 
all elements less than the real number c precede the others. 

In parts (b) and (c) you may use the relation permutes(A, B), which states that the array A is a 
permutation of the array B. 

(b) State as a formula of logic the relation between the initial and final arrays that insures the 
correctness of the program. 

(c) Attach suitable invariants to one or more suitable points in your program so that you could 
prove the partial correctness of your program. You need not prove the invariance, but the 
partial correctness of your program must follow from it. 
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PROGRAMMING PROBLEM: Production System Interpreter 

Part  1: T h e  Interpreter 

T h i s  programming problem centers around the implementation of a production system interpreter. 
Production systems are a form of automata, just as Turing machines and random access machines 
are automata. More recently, they have been suggested as a model for human information 
processing (see, for example, Newell & Simon's Human Problem Solving). The production system 
you are to program has elements from both of these domains. 

For our purposes, we define a production system as follows: 

A production system consists of two pieces, a Working Memory (WM) and a Production Memory 
(PM). T h e  working memory is a series of strings, and the production memory, a series of 
productions. Using a semicolon (;) to separate the elements in a series of strings, we get the following 
B N F  for working memory and production memory: 

<working memory> ::= <memory string> I <memory string>; <working memory> 
<production memory> ::= <production> I <production>; cproduction memory> 
<memory string> ::= (any string of characters except an unquoted semicolon) 

Note that in describing the BNF of this system, we are describing the external representation, that is, 
the format in which the productions are to be read and written. You may want to find some more 
appropriate data structure to represent the internal form that your interpreter is to manipulate. 

In all of the following examples, you may find it convenient to read and write productions with 
additional spaces following the separating semicolons (;) and greater-than signs (>) and keywords in 
actions. Tha t  is, your system should recognize the input of the working memory 

ABCD; BCDE; EFG 

and the working memory 

ABCD; BCDE;EFG 

as referring to the same internal form. However, spaces are to be considered as significant in all 
other contexts. 

A production consists of two parts, a pattern and an action, separated by a greater-than sign: 

Patterns and actions are themselves series of pattern and action elements. 

T h e  production system interpreter operates in a two phase cycle. First, the patterns of the 
production are matched to the elements of working memory. A match will either succeed or fail, and 
a successful match will bind certain elements to certain strings. If the match succeeds, the production 
is excited. Then, one of the excited productions is selected for execution, and the action elements of 
that production are evaluated in order. All productions are then unexcited. Note that a single 
production can become excited with several different variable bindings. 
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Patterns are made up of two elements, variables and constants. Variables are to be distinguished by 
preceding them with the character ? (question mark). Variables are single alphabetic characters. 
Thus ,  the form ?X is able to match any substring (including the null string, <null>). T h e  form ?3X 
implies a match of any three character string. 

T h e  second and subsequent occurrences of a variable in a pattern imply repetition of the original 
string matched. Matching a variable to a substring binds that variable to that substring for the 
subsequent action evaluation. 

Thus ,  the following are successful matches: 

memory string pattern binds to ?X binds to ?Y 

A B C  
ABCDEFGHI 
ABCABCAB 
A B C  
A B C  
A B C  
A B C  
A B C D  
ABCDEFGHI 
ABCDEFGHIJKL 
?A B C  

ABC 
A BC?XHI 
?X?Y?X?Y?X 
?X?Y 
?X?Y 
?2X?Y 
?X?Y 
?X?Y 
A BC?XHI?Y 
? 1 OX?Y 
'?A?X 

DEFG 
AB 
AB 
A 
AB 
ABC 
<null> 
DEFG 
ABCDEFGHIJ 
BC 

C 
C 
BC 
C 
<null> 
ABCD 
<null> 
KL 

and the following are unsuccessful matches: 

memory string pattern reason 

ABCABCAB ?lX?Y?X?Y?X As ?1X binds X to A, the rest of pattern won't match. 
A B C  ?2X?2Y Not enough characters. 

, A B C  D?X D doesn't match A. 
A B C  ABCD Ran out of memory element. 
ABCDE ABCD Ran out of pattern element. 
A B C  '?A ' is the quoting character. 

In general, the pattern side of a production may consist of several elements; for that production to 
become excited, each element of the pattern must be successfully matched to a different element in 
the working memory. Variable binding transfer over the match. Thus, the working memory 

ABC; ABD; BCE 

will match with the pattern 

?2XD; ?XC; ?Y 

binding X to A B  and Y to BCD, but will not match with the pattern 

Matching the pattern side of a production to working memory also binds another type of variable, 
the dollar variables. Generally, if a pattern of the form X; Y; Z; matches to a working memory of 
the form A; B; C; D, with X matched to B, Y matched to C and Z matched to A, then $1 is bound 
to the element B, $2 to the element C, and $3 to the element A. Performing NOTICE $2 would 
make working memory appear as C; A; B; D. 



SPRING 1978 139 

Actions consist of three types of elements, those that move things around (including delete) from the 
working memory, those that add new elements to either working memory or production memory, and 
those that interact with the outside environment. 

Implement the following actions: 

DELETE $n 

N O T I C E  $n 

Delete $n from working memory. Thus, the working memory 
element matching the second element of this production's 
pattern would be deleted if the command had been DELETE 
$2. 

Move working memory element $n to the front of working 
memory. 

PLACE <string expression> Compute the value of <string expression>, and place an 
element at the front of working memory with that value. T h e  
BNF of string expressions is defined below. 

BUILD <string expression> Construct a new production memory production, the same 
production that would have resulted from reading <string 
expression> in as defining a production. 

PERFORM <string expression> This action is for interaction with the outside environment. 
Your simulator should then update its model of the outside 
environment, and perhaps place some new element at the front 
of working memory. Systems that employ PERFORM (such as 
problem three of part two) must also build the environment for 
their performance. 

H A L T  Guess what. 

Just as in > and ; , spaces after one of the action keywords should be ignored. 

String expressions are defined: 

<string expression> ::= <string variable> I <string constant> I <string variable> (i, j )  
<string expression> ::= <string expressionz<string expression> 
<string variable> ::= $n ( <?variable> 

If $n is used, it refers to the entire string matched by production pattern element n. Naming a 
variable (as ?X) inserts the bound value of that variable into the expression. The  parenthesized i ,  j  
is for substringing; it refers to the ith through jth characters of <string variable>. Everything else is 
a constant. 

O f  course, it is sometimes necessary to quote a character, such as I ,  $, (, and ) which would have 
some other meaning to the production system. For that purpose, the quote character ' should be 
implemented. ' can, of course, itself be quoted. 
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Note that  activation of a production does not necessarily insure that that production will fire. If 
several productions match a working memory, there must be some conflict resolution method for  
deciding which production to fire. Typical methods include: 

Production order. T h e  first active production on the production list is selected to fire. 

Greatest latency. T h e  active production that has not been fired for the longest time is selected. 

R a n d o m  selection. A production is selected from among the active productions, at random. 

Best match. T h e  active production requiring the fewest variable assignments is selected for firing. 

W o r k i n g  memory order. T h e  active production matching the earliest element of working memory is 
selected. 

O f  course, not all of these methods are complete; that is, some of them will not necessarily resolve 
conflicts. 

In  your system, implement production order and at least one other conflict resolution scheme. Let the 
resolution scheme be selectible .by switch. 

You should also provide adequate tracing facilities so that, for each step, the graders can see which 
productions were excited, which fired, and what effect that firing had on working memory. Trac ing  
should also be switchable on and off. If you mana.ge to avoid checking every production that might 
be excited, you don't need to trace the "excited" productions. 

In summary, the first part of this problem is to write a production system simulator that will read in 
(1)  switch settings, (2) a series of productions, and (3) a working memory, and simulate those 
productions until either a preset limit is reached, or a halt statement is encountered. 

If this is too confusing, perhaps an example will help. We want a production system that will take 
expressions using three types of bracketing (), (1 and [I, which will place the element T R U E  at the 
front  of working memory if the expression is "well-formed", FALSE otherwise, and then halt. W e  
also want a second .expression in working memory, of the form C O U N T  
<parentheses>,<brackets>,<braces> which will state, in unary, the number of matching parenthesis, 
bracket and brace pairs we removed. 

W e  assume the input will be a string containing an equals sign (=), and then then some arrangement 
of the characters {) [I and (). We also assume that we are switched to "production order conflict 
resolution". In all problems, you can mark the initial input with some special marker. 

O u r  production system should read in the productions (the numbers on the left are for reference, 
they are not part of the productions): 

=?X> DELETE $1; PLACE ?X; PLACE COUNT,, 
(); COUNT?A,?B,?C> DELETE $1; PLACE COUNT ?A l,?B,?C; PLACE TRUE;  H A L T  
[I; COUNT?A,?B,?C> DELETE $1; PLACE COUNT ?A,?Bl,?C; PLACE TRUE;  H A L T  
I); COUNT?A,?B,!C> DELETE $1;  PLACE COUNT ?A,?B,?Cl; PLACE TRUE;  H A L T  
?X()?Y; COUNT?A,?B,?C> DELETE $1; PLACE ?X?Y; DELETE $2; PLACE C O U N T ? A  l,?B,?C 
?X[I?Y; COUNT?A,?B,?C> DELETE $1; PLACE ?X?Y; DELETE $2; PLACE COUNT?A,?B 1,?C 
?X{)?Y; COUNT?A,?B,?C> DELETE $1; PLACE ?X?Y; DELETE $2; PLACE COUNT?A,?B,?C I 
?X>  P L A C E  FALSE; H A L T  



SPRING 1978 

Thus,  if we read the working memory 

={rlo[l] 
we would get the following simulation: 

Step Excited Firing Bindings New Working Memory 

1. 1,5,6,6,8 1 ?X+{[l0[]) {[I()[]); COUNT,, 
2. 5,6,6,8 5 ?X+{[l ?Yc[l} {[][I}; COUNT I,, 
3. 6,6,8 6 ?Xc{ ?Ye[]) {[I]; COUNT 1,1, 
4. 6,8 6 ?Xc(  ?Yt} (1; COUNT 1,11, 
5. 4,8 4 TRUE; COUNT 1,11,1 

T h e  system has halted after step 5. Note that in steps 2 through 4, there are two different ways that 
production 6 can match the working memory. 

Part  2: Sample Production Systems 

Having created this production system interpreter, you are now to write several simple production 
systems to demonstrate its features. 

1. Write a simple production system to convert from balanced ternary to unary. Write another 
simple production system to convert from unary to balanced ternary. See Knuth, Vol 2. pp. 173-175 
for a definition of balanced ternary. 

2. Write a simple production system to take boolean expressions and compute their value. Your 
boolean expressions should follow the grammar: 

and have the following semantics: 

3. Write a production system that can find its way through mazes such as the one shown in 
figure 1 on the next page. The PERFORM action will be important here. There are eight things 
your production system can PERFORM; i t  can LOOK or MOVE in any of the four directions 
(NORTH,  SOUTH, EAST, WEST). Executing the action PERFORM LOOK WEST inserts as 
the first element of working memory either the string BLOCICED or the string OPEN depending 
upon whether there is a wall separating the cell you are in from the cell to your west. T h e  action 
PERFORM MOVE WEST will either move you to the cell lo the west, if there is no wall 
separating you and that cell, or be a no-op, if there is. Notice that you must also build an outside 
"environment", to represent the maze, in writing this production system. Run your production 
system on the maze in figure 1. 

4. (Optional.) Write some other interesting production system that exercises some of the nice 
features of your interpreter. Be sure to make clear what exactly you have done. 
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It is acceptable to pragram the production system in ALGOL, PASCAL, LISP, SAIL, or PL/l (or 
even F O R T R A N  or BASIC should you be so foolhardy.) It is nor acceptable to do this problem in 
SNOBOL, or other languages with special string pattern matching facilities. 

A complete solution of this problem includes not only the interpreter, but also the sample production 
systems, traces of their execution, and copious documentation. Your work will be graded on several 
criteria, such as programming style, program structure, breadth (which of the additional features you 
coded), efficiency (both of code and data structures), and, most important, clarity. 
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1. 

2. A(0) := 1 . (When the program runs, A(0) gets set to 1, then 0, then 1 .) 

3. Charles Babbage designed a computing machine in the first half of the nineteenth century; it 
used decimal arithmetic, with about 1000 words of 50 digits each. His "Analytical Engine" was 
never built, but it was well-known in England as a possibility; frequent references to it appear in the 
literature during the 1950's. 

About 1935 George Stibitz at Bell Labs constructed a small calculator out of relays, capable of 
doing complex-number arithmetic in the binary system. He demonstrated it at the Math Society 
meeting in 1940, hooked up via teletype between Dartmouth College (New Hampshire) and Bell 
Labs (New Jersey). 

Meanwhile John Atanasoff at Iowa State was working on a computer with electronic 
arithmetic. This machine (also binary) was designed specifically to solve linear equations (it wasn't 
general-purpose). 

Konrad Zuse of Germany was working on a general-purpose computer, using relay circuitry, 
floating-point binary arithmetic and a program controlled by punched movie film. His machine 
became working in 1941, but it was unknown outside Germany (due to the war) and details are just 
now becoming known in America. 

T h e  next general-purpose computer to be built was the Harvard Mark I, built by IBM and 
Howard Aiken and completed in 1944. It also used relay technology. The program was punched on 
paper tape; it used 24-dlgit decimal arithmetic and had 72 storage registers for memory. 

T h e  first electronic computer (much faster than relay speeds) was the ENIAC, developed 
principally by J. P. Eckert and John Mauchly at the University of Pennsylvania during 1943-1946. 
(Many other people, notably J. G. Brainerd and H. H. Goldstine, were significant contributors to 
this project.) ENIAC had a plugboard controlled program and decimal arithmetic, with parallel 
processing going on in twenty 10-digit-plus-sign accumulators. 

T h e  same group, with the help of John von Neumann, designed EDVAC, the first 
stored-program computer, during 1944-1946. This machine was binary and was to have about 2000 
words of mercury delay-line memory with 32 bits per word. The circuitry was serial with a speed of 
one bit per microsecond. The EDVAC was not completed until 1951, but its initial design was 
published in 1945 and stimulated the development of many similar machines. 

T h e  first stored-program computer to be actually working was Wilkes's EDSAC at Cambridge 
University, finished in 1949. Other noteworthy early machines based largely on EDVAC were 
Williams-ICilburn's Manchester machine (with index registers and electrostatic memory), the IAS 
machine (built largely under von Neumann's supervision at Princeton; it was the ancestral 7094)' 
and J. Forrester's Whirlwind at MIT (introducing core memory). Eckert and Mauchly went on to 
build BINAC, and later its decimal counterpart UNIVAC, which introduced simultaneous 
read-write-compute. 
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(The corresponding "OR of AND'S" would require one more literal.) 

5. (a) Heuristic problem-solving, whether depth-first or breadth-first, is essentially based on 
constructing a tree in which the nodes represent problems or subproblems. As a special case, the 
nodes of game-playing trees represent positions in a game. Trees are also useful for representirig 
formulas, e.g. in predicate calculus or for symbol manipulation. Similarly they can be used to 
represent structure in the sentences of natural languages. Tree structures also facilitate information 
retrieval from large files by having each page of the file be either a "leaf" or a node with a high 
branching factor. 

(b) Binary trees are often used to maintain symbol tables so that they may be easily kept in sorted 
order. Cornpiters often represent algebraic formulas or parse diagrams as trees. Equivalence 
declarations can be neatly handled using oriented trees. Also, priority queues have a convenient 
representation as binary trees. 

(c) Adding a sequence of minimal error propagation is readily viewed in terms of binary trees. 
Multivariate polynomials are sometimes best represented as trees. 

(d) Trees are used in the representation of environments or control flow in MULTICS-like 
systems and also in the representation of networks for design automation. 

(b) A -+* abC +* abcAb 
A +* aBc +* abcAc 
A +* abC +* abcaB +* abcabcA 
A -+* abC +* abcaB +* abcabCa +* abcabcaBa 4' abcabcabcAa 

From the last derivation and using the third derivation with the first two, we find that A +* 
( U ~ C ) ~ A X  for x E (a, b, c}. Hence the result follows by induction after we also show that A 4% abcabcx 
for x E (a, b, c). 
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(c) Procedure A, beginning at position PI will return TRUE if and only if xp = a. T h e  variable P 
will move toflP) on exit from A, where 

P ,  if xp z a 
f l P l =  1 P+I,  i f x p =  aandxp , l  z b 

P+1,  if xp = a ,  xp,, = b, and x p t l )  z c 
( f ( t l ~ + l ) ) ,  if xp = a ,  x p + ~  = b, and xfiptl) = c. 

Similar statements apply to B and C. Therefore the action of the program can be diagrammed by 
drawing nested intervals from P tof(P) as follows: 

A B C A B A B C A B C A C  
UUU 

UUU u - - - 
T h e  program therefore executes M A T C H ( " . " )  when scanning the second character. Because it does 
not have the ability to back up and reconsider all of its previous decisions, it fails to discover the 
parse A +* aBc + abCAc where C +* cab and A +* abcabca. 

(d) T h e  f ( P )  argument in part (c) implies that if A is called with P = Po and exits TRUE with P = 

PI, the sequence xpo.. .xpI- '  is derivable from A. (Proof by induction on PI-Po.) Hence the 

program can't ACCEPT without having effectively discovered a valid parse tree. 

7. Resolve p v ~q with p v q v r  getting p v r .  
Resolve this with r v ~p getting r. 
Resolve p v ~q with ~p v ~q v getting ~q v Hr. 
Resolve this with q v HT getting ~ r .  
Resolve r with Hr getting pl. 

Five steps are necessary because it takes two steps to single out any one literal and then two more to 
get its negation. 

8. (a) [ lo7 + 107c + .5J > lo7 implies E 1 5x10-~. Answer: 5 ~ 1 0 - ~ .  
(b) L108 - lose + .5J < lo8 implies c > 5x10-'. Answer: 5.0000001 x10-~.  

9. (a) T h e  dictionary defines "buffer" as something used to lessen a shock. In computer terminology 
it generally stands for a place where data is held or gathered by one process before being used by 
another. Intuitively it stands "between" two programs, two devices, etc. 

(b) A buffer is often used between a CPU or memory unit and an 110 device. For example, the 
data  from the device is assembled into words, then written into memory. 

(c) Data may be read into an area of memory (used as a buffer) and processed serially from that 
area while reading into another. Similarly, data may be stored into a buffer after which it is written 
out from the buffer. Also, in Algol-like languages, a run-time stack serves as a buffer to hold 
values of parameters from the main program. 

10. T h e  final value off  is zero. Working backwards we can determine that, just before k was set 
to 4, the configuration must have been 

j = I 2 3 4 5 6 7 8  
x [ j ] = R N M O E G V C  
p [ j ] = 6 7 6 8 5 6 8 0  

f = 2 .  

(Note that f = 2 since it must have been 2 then 7 then 8 and then 0 because p [ f l  = 8 and p [2 ]  = 7.) 
T h e  answer is 
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j ~ 1 2 3 4 5 6 7 8  
x [  j] s M C G V E R N 0 (misspelling intentional) 
p [ j ] : 8 0 4 2 3 7 1 5  

f = 6. 

WINTER 1973 COMPREHENSIVE EXAM 

1. The  expected number of probes is different depending on whether the item is known to be 
present or not present. 

When the item is not present, the expected number of probes is 

where KIN is the probability of a collision on the first probe, K(K- 1)1 N(N- 1) is the probability of 
a collision on the second probe, etc. The sum is 

1 + K 
,e 

1 
s5- 

K where a = - . 
N-K+ I 1 - K/(Nt 1) 1 - a '  N 

When the item is known to be present, then the expected number of probes to find it is the 
same as the expected number of probes to place it in the table, as determined above. We get 

K K 
1 - 1 , L C  1 .-[ N d - - - -  dx log (1 -a)  . 

- - +  K k , i - k , N  K 0 1 - x  a 

Thus, the final answer is approximately 

- - -  K I - '  ' log(1-a), wherea = - . 
1 - a  a N 

2. (a) 2*9~10~10~(100+100+1)+ 1 = 361801. 
(b) (1) Let x = +.500 x lo0, y = t.200 x lo0, z t.666 x lo0. Then (x 8 y) 8 z (+. 100 x 

10') @ (+.666 x 10') = +.666 x lo-', but x QD (Y 8 z) = (+.500 x 10') 8 (+. 133 x 10') = +.665 x 
lo-'. 

(2) Let x = +.500 x y = +.500 x z = +.lo0 x lo0. Then (x Q y) Q z = (+.lo0 x 
lo'*) Q (+. 100 x lo0) = +.lo1 x lo0, but x $ 01 Q Z) = (t.500 x Q (+. 100 x lo0) = +. 100 x 
100. 

(c) Let x = +. 100 x lo4, y = +. 100 x lo0, z = - ,100 x lo4. Then (x $9) Q z = (+. 100 x lo4) 
@ (-. 100 x lo4) = +. 000 x but true result = y = +. 100 x lo0, 100% error. 

3. The given instruction sequence can fail in certain situations. Suppose processor 1 executes its 
LDA from a zero lock, and then immediately (before processor 1 does its SET) processor 2 executes its 
LDA, still from a zero lock. Both processors then set the lock and access the data base simultaneously. 

We can reduce the time between testing the lock and setting it by reversing the instructions 
BRP and SET. But then consider the following sequence of actions: processor 1 sets the lock and 
accesses the data base; processor 2 executes its LDA; processor 1 finishes and executes its CLR; 
processor 2 executes its SET. This results in an infinite wait loop because the CLR was missed by 
processor 2. 

What is needed is an instruction that does the testing and setting of the lock in a single 
memory cycle so that no other processor may intervene. Let us call this the TAS (test and set) 
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instruction, which loads the accumulator from the specified memory word and sets the memory word 
to 1, in a single readlwrite cycle. Then a correct instruction sequence would be: . . 

TEST TAS lock 
BRP TEST 

access data base 

end access 
C LR lock 

T h e  increment and hip on zero (ISZ) or similar instruction may also be used, but then care 
must be taken to subtract in order ro balance the add's. 

Some other problems which might need to be considered: busy waiting; arbitrarily long waits 
(need priority scheme); and pxessor interrupts. 

4.(a) BEGIN (ADD1 SUBTRACT1)* (ADD0 + TIMESl)' END 

(b) <initial segment> -t ADDl <initial segment> SUBTRACT1 I SUBTRACT1 <initial segment> ADDl I 
<initial segment> <initial segment> I <empty> 

Note that the above language is context free. Also, it is easy to construct a pushdown 
automaton to accept the language. 

However, the language is not regular. Suppose that it could be recognized by a finite 
automaton. Then upon reading the sequence  ADD^'^), the automaton would have to be in a different 
state for each i in order to accept a following  SUBTRACT^^^) if and only if j = i .  Thus a finiie number 
of states is not sufficient. 

5. (a) In order to estimate s by the Aitken extrapolation method, we  must eliminate c. We can write 

where ah = ap(l - A$. Thus, we may estimate s by applying the Aitken method to the sequence hk 

= gk - gk+1. 
(b) Given ho, h i ,  h2, and h; = ho - (hi -ho)2/(h2-2hI+ho), we have h; = s when hk = s + 
k b a ; h l ,  orgk P C - s k + a l A l .  

(c) We have ho = -17.0, hl  = 10.0, h2 -3.5, SO hi  -17.0 - (~7)~/(-3.5-20-17) = 1 = S. 
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6. (a) T h e  procedure does nor terminate. 

11 {-p(x> v PV(x))l 51 IPWa))) from 1, 2 
21 {p(a)l 61 (PV(f(a>))} from 1, 5 
31 {q(a)l 71 (p(fWTa))>)l from 1, 7 
41 {q(a) v -q(b)) 

T h e  procedure will continue to produce clauses of the form (P(f(f.. .flu). . .))), and no other 
resolvents. In particular the empty clause will not be derived, so the set of clauses is satisfiable. 

(b) T h e  procedure terminates. 

11 {PV(x>) v "q(x>) 51 {PV(a)) v r(a)) from 1 ,  3 
21 ("P(g(a))) 61 {q(a) v ~q(a)} (tautology) from 3, 4 
31 {q(a) v r(a)} 71 {r(a) v ~ r ( a ) ]  (tautology) from 3, 4 
41 ("I(x) V "q(x)} 

There  are no further resolvents. Again, since the empty clause cannot be derived, the set is 
satisfiable. 

(c) T h e  procedure terminates with the empty clause. 

1 I {PC4 v q(x)) 61 iwr(a)} from 4, 5 
21 (-p(a) v ~ ( a ) )  71 {"p(a>) from 6, 2 
31 (NQ(Y) V ~(y))  81 lHq(a)) from 6, 3 
41 { ~ r ( a >  v p(a>) 93 &(a)) from 7, 1 
51 i"p(z) v "Y(Z)} 101 pl from 8, 9 

T h e  set is unsatisfiable since a contradiction was derived. 

7. Let i and j denote integers which are assumed to have integer representions in 
sign-magnitude, ones' complement, and two's complement. Let Fi and F j  denote the real numbers 
whose floating-point representations have the same bit pattern as the integer representations of i 
and j, respectively. 

In order for the comparison instruction to work, we first note that the sign bits for 
floating-point and integer representations must be the same. (Consider the case when i and j have 
opposite signs.) Secondly, we want Fi = F j  iff i = j, and therefore the floating-point representations 
must be unique. This requires the use of normalized mantissas. 

For nonnegative numbers, all three fixed-point representations are the same. In order for the 
nonnegative floating-point representations to have the same order properties, they must have the 
(biased) exponent on the left. We then have F ;  < Fj  iff i < j for i ,  j r 0. Now for negative 
numbers, we need F,i = -Fit SO that the same negation operation works for both fixed and 
floating-point numbers. We then have, for i ,  j < 0, 

F; c F j  iff -F- i  c -F_j  iff F-i > F,j iff -i > -j iff i < j. 

For ones' complement, the definition of a normalized mantissa is that the sign bit and the first 
bit of the mantissa are different. This definition also applies to two's complement, except for the 
case of -.510, which has mantissa .10000.. . . It should be noted that arithmetic is somewhat 
complicated for the cases of ones' and two's complement. 

T h e  above scheme is used on the Univac 1103A and the CDC 6600 (ones' complement), and 
the PDP-6 Type 166 (two's complement). 
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8. Twenty questions. 

(b) CDC 6600 
cache memory 
(b) B 5500 
(b) SNOBOL 
Illiac IV, STAR 
PDP 8-el Intel MCS-4, TI  960 
no 
memory 
223 = 28 = 256 
constant x n log n, where n = number of keys 
linear, since f i x )  has a double root at a 
regula falsi: lower rate of convergence, but 112 as many function evaluations per step 
(c) 186,000 mileslsec x 5280 ftlmile x 10-'sec c 1 ft 
least recently used, pages not in working set 
exclusive-or 
ones' complement, because complementation is the same as negation 
instruction counter, registers, other state information 
stack; queue 
Dendral, MATHLAB 

20) Here are a few: 

Q What is Jim Wilkinson's favorite drink? 
A: Reduction on the blocks with a zero chaser. 

After constructing a small computer-controlled vehicle with a general hemispherical shape, the 
experimenter exclaimed: "My bug has a program!" 

Q How would you describe the state of a number-crunching machine? 
A: Chompin' at the bit. 

T o  iterate is human, to recurse is divine. 

See Knuth, Vol. 1, index. 

graffiti: "Free the FORTRAN 4" 
scribbled below: "WATFOR?" 

Here is how the statement "All odd numbers r 3 are prime" would be proved by various scientists. 

Mathematician: "3 is a prime, 5 is a prime, 7 is a prime, by induction they're all prime." 
Physicist: "3 is a prime, 5 is a prime, 7 is a prime, 9 is not a prime - must be experimental error." 
Engineer: "3 is a prime, 5 is a prime, 7 is a prime, 9 is a prime - they're all prime." 
Computer scientist: "3 is a prime, 3 is a prime, 3 is a prime, . . . " 
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1. (aj 

(b) T S R Y l  Y2 21 22 
I n i t i a l  s t a t e  (no clock pulse present) 8  8  8  8  0 8  8  
After  a r r i v a l  of 1st clock pulse 8 1 8 8  1 8  1  
After  a r r i v a l  of 2th clock pulse 1 8 1 1  8  1 8  
After  a r r i v a l  of 3th clock pulse 8 1 0 1  1 1  1  
After  a r r iva l ,  of 4th clock pulse 8 8 8 1  1 1  1  
After  a r r i v a l  of 5th clock pulse 8 8 8 1  1 1  1  
After  a r r i v a l  of 6 t h  clock pulse 8 8 8 1  1 1  1  

2. Each of the languages takes the form ( aibj I j -An, i) ). 
(a) (d) f(n, i) - n-i or nli. The corresponding languages are regular because the languages are 

finite. (isn, jsn) 
(b) (c) f(n,i) = n+i or nrci. The corresponding languages are context free, but not regular. 

Informally, this is because each of the languages requires an arbitrarily large amount of memory in 
order to be recognized. More formally, consider a finite automaton trying to recognize one of these 
languages and look at the set of states it enters while recognizing the substring x'. Since this set of 

k states is finite, for some k II i the finite automaton is in the same state at the end of a as of at. But 
then if it accepts aibn"pi) it also accepts akbf(nli) and this is not in the language. (Clearly the 
important thing about f is that An, i) as a function of i takes on an infinite set of values.) 

Both languages are context free, which can be shown by giving grammars or designing 
push-down automata to accept them. Grammars for each are given below. 

(e) fin,  I )  - in  (or ni). For n > 1, the language is not context free. For n - I ,  in the first case it is 
context free, and in the second case it is regular. To show that the language is not context free for 
n > 1, we show that the uvwxy theorem (Hopcroft and Ullman, p. 5'1) does not hold. Suppose by the 
theorem that r - uuwxy, lux1 > 0 is such that uviwxiy is in L for all i 2 0. By the simple form of the 

k I language, vx = a b for some k, 1 both nonzero. Now consider (i+k)n - in. As a function of i, this is 
unbounded as i -, CO. (Proof: Consider the binomial expansion.) So simply choose an integer m 
such that (km+k)" - (krn)n > I .  Then if the uvwxy theorem holds, u~"wx'~y is in L and hence, by 

definition bf L, ~v"wx"~y = aibin for some i. Then U V " + ' W ~ ~ " ~  = aitkbin*' is in L. But by our 
choice of m, in+l z (i+k)n. Hence this last string cannot be in L. The contradiction shows L is not 
context free; however it is easily shown to be recursive. 
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3. (a) T h e  grammar is not left-recursive. Clearly there is no direct left recursion. For any 
non-terminal symbol U, let L(U) be the set of all leftmost symbols in strings producible from U. 
T h e n  we have 

L ( S )  = (A, C, a ,  cj 
L(A)  = {C, a ,  c) 
L ( B )  = {C, A, c, a) 
L(C) = (cj 

Since none of the sets L(U) contains U, there is no indirect left recursion either. 

(b) If the definitions given in Cries are used, the precedence table is 

If the table is constructed as described in a paper by Wirth and Weber ("EULER: A Generalization 
of ALGOL, and its Formal Definition: Part I", CACM, Vol. 9, No. 1, January 1966), there are some 
additional > relations. In either case, there is a conflict C > c, C < c, so this is not a (1,l)-precedence 
grammar. 

(c) Th i s  is most easily done by starting with the added production and working backwards. 
Clearly, C produces the empty string so any non-terminal that produces C will also produce the 
empty string. As a result, B can produce the empty string. It then follows that A and S can also 
produce the empty string. 

(d) With the addition of the production C + r, a top-down recognizer could loop forever when 
parsing sentences with this grammar. When the recognizer is looking for an A as a C followed by a 
B, the C can be satisfied by the empty string. Now, however, in looking for a B, the recognizer 
might try to use the production B + Ab. It must now find an A again, and this loop will continue 
forever. 

( 4  

< 
> 
< 
> 

Again there are conflicts in the table so this new grammar is not a (Ill)-precedence grammar. 

= 
> 

> 
> > >  

4. (a) Paging introduces internal fragmentation within the fixed page size. Segmentation introduces 
external fragmentation due to variable length segments. 

(b) Paging systems typically must solve the page replacement problem (which page to replace 
when a page fault occurs). Some paging systems with limited mapping ability must also solve page 
placement problem. All must determine when to bring a page into memory (e.g. demand paging, 
working set preloading, etc.). 

S 
A 
B 
C 
a 
b 
C 

S A B C a b c  

- - 
< = < <  

= < <  
> 
>< 
>< 

> > >  
> > > >  
> > > >  

> 
>< 
>< 

< = < < > > <  

> 
>< 
>< 

S  
A 
B 
C 
a 
b 
C 

S A B C a b c  

- - 
< 
< 

< 
< < 

< 
<= 
<= 
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Segmentation systems must solve a related segment-replacement problem. Since segments are 
variable length, there is also a garbage collection problem to be solved. The system must also decide 
when to fetch a segment. 

(c) Program sharing is awkward since one can typically only make two processes share pages. 
Furthermore, if the programs are not self-relative, they must be placed in the same place in each 
process' virtual memory. This restriction can make sharing of program libraries very difficult since 
virtual memory for the entire library must be set aside and not used by any process wishing to access 
any subset of the library. 

When each program (procedure, etc.) is a separate segment, then sharing is easily 
accomplished since each procedure has its own virtual space. Typically segmented memory spaces 
are very much larger than paged memory spaces (MULTICS has 218 words each; the XDS Sigma 7 
has 28 pages of 5 12 words each.). 

(d) Paging permits a system with small physical storage to simulate much larger storage space 
(hence, "virtual storage"). Not all pages of the virtual space need be present in the physical memory 
at once. 

Segmentation, without paging, usually requires all of a segment to be in memory at once (note 
that this does not mean that the maximum possible segment be present, only as much as has been 
declared or accessed so far). Segments are allocated to sequential portions of memory and relocation 
is achieved by the use of base registers, descriptors, and indirect addressing. T h e  maximum 
permissible segment is typically bounded by the physical memory size. Of  course, one can combine 
paging and segmentation (as in MULTICS) to obtain the advantages of both. 

5. (a) index registers, general registers 
(b) base registers, self-relative instruction set 
(c) push-down stack instruction set 
(d) interrupts with masking, enabling, and disabling primitives; byte-string oriented instructions: 

edit, move, compare, translate, translate and test 
(e) test-and-set instruction 
(f) "previous instruction counterw-register; metabits on each memory word to permit trapping on 

any access, write access, read access, execute access 

6. Given: IS: monkey's place (MP) = placel, box's place (BP) = place2 
ape's place (AP) = place3, contents-of-monkey's-hand (CMH) I. empty (E) 
contents-of-ape's-h and (CAH) = empty 

GS: CMH = bananas (B) 

Goal 1 Transform IS into GS 
Goal 2 Reduce difference D3 between IS and GS 

Goal 3 Apply Get Bananas (GB) to IS with a=monkey 
Goal 4 Reduce D2 on IS 

Goal 5 Apply Move-Box (MB) to IS with x=under bananas (UB) 
Goal 6 Reduce Dl  on IS 

Goal 7 Apply Walk (W) to IS with x=place2, asape 
State S 1: MP=placel, BP=place2, AP=place2, CMH=E, CAH=E 
Goal 8 Apply MB to S 1 with x=UB 

State S2: MP=placel, BP=UB, AP=UB, CMH=E, CAH=E 
Goal 9 Apply G B  to S2 with a-monkey 

Goal 10 Apply climb 
Goal 1 1 Reduce DO on S2 

Goal 12 Apply W with x=UB, a=monkey 
State S3: MP=UB, BP=UB, AP=UB, CMH=E, CAH=E 
Goal 13 Apply climb 
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State S4: MP=on-box, BP=UB, etc. 
Goal 14 Apply G B  to S4 

State S5: CMH=bananas, etc. 
(Goal 1 succeeds) 

7. (a) T h e  first program writes "I" and the second writes "2". 
(b) T h e  issue this problem was intended to point out is the lexical scope properties of ALGOL. 

In LISP, the value of A used in the first program would be "l", the dynamically most recent. There  
are times when we want to use the dynamic value (this example is probably one of them). However, 
using dynamic bindings makes the program harder to read and precludes some code optimizations. 

8. (a) T h e  obvious approach is to use some procedure for numerical integration. (We may assume 
that the exponential function is available to us.) For simplicity, we choose the trapezoidal rule, T h e  
error involved in using the trapezoidal rule with step size h is given by 

lox fix) dx = T - xf "(4,  for some u ,  0 r u s x 
12 

2 2 
In our case fix) = e-X and fff(x) = ( 4 ~ ~ - 2 ) e ' ~  . By examining the third derivative, we find that 
I f"(x) 1 r 2 for O s x c  co. Thus the error in our com utation of erf(x) is bounded by ( h 2 x ) / ( 3 ~  so P- to achieve an error of r we must choose h I 3 f i ~ l x .  For example, to compute erf(3.0) to an 
accuracy of we would need h 2 ,0133, i.e. about 225 steps. 

Now that we have a way of computing erf(x), we can compute the inverse error function 
inverf(x) by finding the root of [erf(x) - zl. Since the derivative of erf(x) is readily available (it is 

2 
(2/fi)e-X ), we may use Newton's method. However, even with this well-behaved function, 
Newton's method is not guaranteed to converge, and the choice of initial guess is crucial (thus it may 
be better to use a safer method, such as bisection). For example, if we take xo = 1.0, then the 
iteration diverges for z s .4. It turns out that choosing xo = z is a much better approximation. Now 
assuming that we find a root x such .that lerf(x)-zlce, we would like to know the error d = w-x, 
where w = inverf(z)? We have 

erf(ru) = erf(x) + d*erf'(u), for some u between w and x. 
2 

Since lerf(zu)-erf(z) I < E, we find that Id I 5 r(fi12)e-x . For example, if x = 2.5 and E .: loq4, then d 
can be as large as .05. 

(b) If we compute inverf(.999) by our methods above, we find that we need on the order of 1000 
2 

evaluations of e-" . A much better way to solve our problem is to use power series or rational 
function approximations for erf and inverf. These may be found in most handbooks of numerical 
methods. 
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1. (a) preorder: 1 2 3 4 5 6 7 ; inorder: 3 2 4 1 6 5 7 ; postorder: 3 4 2 6 7 5 1. 
(b) ( 1 ) G E D H I F B C A .  ( 2 ) 4 7 5 2 6 1  3 , 7 4 5 2 6 1 3 , 7 5 4 2 6 1  3 , 7 5 2 4 6 1  3 , 7 5 2  

6 4 1 3 , 7 5 2 6 1 4 3 , 7 5 2 6 1 3 4 . (3) There are many solutions, all based on the recursive 
nature of the algorithms as applied to the grandson trees. For example, any permutation with (G,E) 
or (F,H,I) not adjacent cannot be achieved. Nor can any permutation have (A,B,C) and (F,H,I) in 
different relative orders. 
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(c) It depends on the tree. Run any of the algorithms on the tree, and mark those steps which 
operate on something non-null. Let n be the number of marked steps. Then. 0 5 n s 7, and the 
answer is (n!). For a counterexample to many solutions, see the tree below, for which all 7! 
algorithms are distinct. 

(d) Yes. The  result is easily proved by induction. 

2. (a) R(x) = fix)-P(x) has n+2 maxima and minima which are equal in absolute value and 
alternate in sign. 

(b) Let P(x) = Ax + B. Then R(x) = ax2 + bx + c - (Ax + B) and R'(x) = 2ax + b - A, so the 
extrema of R(x) in (-Ill) occurs at xo = (A-b)/2a. By part (a), we must have R(-1) = -R(xo) I. R(1). 
Solving these equations for A and B, we find that P(x) = bx + c + a/2. 

(c) ax2+bx+c = (a12)Tp(x)+bTI(x)+(c+a12)To(x). The best linear polynomial is bTl(x)+(c+a/2)To(x) 

= bx+c+a/2 , as before. Here we have used the fact that, in general, (1/2'1-1)~n(x) is the polynomial 

beginning with xn having the smallest maximum. 
(d) The  interval [O,lI maps onto 1-1,lI by the transformation x' 5 2x-1. Then x = (x'+1)/2, so we 

consider u((x'+ 1)12)~+b(x'+l)12+c and proceed as in (c). Then we map back to [0,11. 
(e) Ax) = (x-xI). . .(x-x,~) is minimized when Znf(x) = T,(x) = &S no, where cos 0 = x. T h e  zeros 

of T,(x) are X j  = cos Ois where cos no; = 0. Therefore Xi = cos [(Zi-l)n/Zn)l. 

3. T h e  tables for a half-adder are 

We get these as follows: Add = And(And(Neg(Or),And),Neg(Or)) ; Carry = Or. 

T h e  diagram for the half-adder is 
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A full adder can be made from 3 half-adders, as shown below, but this is rather slow. An easy 
improvement which produces a faster carry is also shown below. . 

Full adder 

Fast carry 

4. (a) f(0) = -1 , f( I) = 5 . Therefore, f has a zero in [0,11. 
(b)~ Let g(x) = x - mfo(x) . The iteration x,,, = g(x,,) canverges if Ig'(x)l s L < 1. But gY(x) - 

1-mf'(x) in (O,l), and f'(x) = 3x2+6x+2 . Since f'(0) = 2, f'(l) = 1 I, and f is increasing, we obtain 
the restriction Oe m < 211 1. Let us try m = 111 1. It can then be shown that g(x) e 10,Il for all x E 

[0,1]. Therefore all conditions are satisfied for convergence. If xo<O, then the iteration becomes 
x,,,~ = x,+ 111 1 , so after about I 1  lxol iterations x, reaches [O,11 and we will have convergence (very 
slow!). If xo > I, the iteration becomes x,+l = x, - 511 1 , so again we will eventually have 
convergence, after about ( I  l15)xo iterations. 

(c) Does not converge because Igt(x)l> 1 near the root. 
(d) Converges; use the fact that ft(x), ft'(x) > 0 for x E [0,12 

5. T h e  object of this problem is to illustrate that clock interrupts can also serve as device 
interrupts. When the program wants data it sets rdflag :- true and tests it for false as a signal that 
the data has arrived. An array rdarray of size 1:m is used for communicating the actual data. 
Similarly, when the program wants to write, it fills wrtarray of size 1:n and sets zurtflag := true. T h e  
interrupt routine will set wrtflag := false when the array is ready for more data. In addition, the 
routine requires two hardware flags readready and writeready which indicate when data is ready for 
reading or when the output unit is ready for more information. 

foo: if rdflag A readready thes~ begin 
readready c false; 
rptr := rprr + 1; 
rdarray[rptrl := rea4 
if rptr = m the11 begill rptr := I; rdflag t false end 

end; 
if wrtflag A zuriteready then begin 

writeready t false; 
wiite(zurtarray[ruptrl); 
wptr := wptr + 1 ;  
if wptr > n then begin wptr := 1; wflag c false end; 

end; 
return; 
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6. (a) True. It is easy to see that L(C) contains only words from {0,1}* of length s 6. This means 
that the language is finite, and therefore regular. 

(b) True; consider the grammar with productions { S+aSa, S-tbSb, S+E: ] . 
(c) False. Consider the word anca". A finite automaton accepting the language must be in a 

different state after reading each of the first n a's. However, this must be true for all n, which is 
impossible. 

k k k  (d) False. Suppose the language were context free. Then for sufficiently large k, the word a b c 
can be writren in the form uvwxy where not both v and x are empty and where all words of the 
form w i d j  m w  alro be m the language (uvwxp theorem). Now it can be seen that neither v nor x 
can contain two distinct letters, so at least one of the three letters a, b,  c does not occur in v or x. 
But then the word is not in the language, a contradiction. 

T h e  "no deep cutoff" approximation assumes that most cutoffs are not deep and makes the 
probabil~ty of no cutoff, where one mighe occur given the presence of the parent node, the same 
throughout the tree (in this case, 213). 

Let Ai and Bj represent the expected number of bottom positions in the corresponding trees 
above. For a tree of depth d, we are interested in the value of Ad. Clearly A. = Bo = I, and for i l  1 
we have the recurrence relations Ai = Aj-I+Bi-l and Bi = Ai,1+(2/3)Bi-l . These recurrences may be 
solved using generating functions, obtaining 

3 I d  3 l d  a - 5  fi+ 5 
ffd = [ ( I + ~ ) ( ~ )  - (I+;)(-) 1, wherea = - and b - -. 2 2 b-a 

We find that Ad is approximately 1.075(1.847)~. 

8. (See logic diagram at top of next page.) 

9. Call by name: substitution rule. Call by value: value is passed. Use call by name for 
returning results in variables and also for passing arrays. Use call by value when value only is 
passed and variable is not to be changed in the outside world. 

(a) $2) - 6po+5qo; f(3) = 12po+ 1090 
(b) f(2) = 6P0+5~0; fl3) 52P0+34qo 
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FULL ADDER 

HALF ADDER 

10. We ensure that the universe has exactly the three distinct elements {1,2,3) by writing 
(1) Vx ( x= l  v x=2 v x = 3 )  ~ ~ ( 1 4 )  A ~ ( 1 ~ 3 )  ~ ~ ( 2 = 3 )  

T h e  adjacency relations between them are written 
(2) Vx NA(x, X )  A VX (A(x,y) 3 Ab, x)) A A(1,2) A A(2,3) A NA(I ,  3) 

T h e  adjacency of the apples with coordinates ( X I  , y  , 9) and (x2, y2, z2) is expressed by a 
predicate of six arguments Acfj(xl , y l ,  x l ,  ~ p , y ~ ~  x2) defined by 

(3) V X ~ Y ~ Z ~ X W ~ Z ~  [ A ~ ~ ( X I , ~ ~ , Z ~ X Z , Y ~ , Z ~ ) = ( X I = X Z A ~ ~ = ~ ~ A  A(zlrz2) ) V  
( ~ 1 ~ x 2  A A(Y,,y2) A Z I = X Z  v ( 4 x 1 ,  ~ 2 )  A ylay2 ~ 1 ~ ~ 2  ) I 

A path meeting the conditions of the problem will have an associated predicate 
P ( x l s  9 1 ,  x l ,  x2, y2, x2) expressing the fact that the apple with coordinates (x2, y2, x2) follows the 
apple with coordinates ( x l ,  y 1 ,  X I )  in the path. This predicate will satisfy the following conditions. 

Every square has a unique successor except the center. 
(4) Vx ly ,z l  ( x1 ; "2  v y 1 * 2 v  z l * 2  ) >  3! ~ ~ 2 2 2  P ( x 1 , y ] , ~ 1 , ~ 2 , y 2 , ~ 2 )  

T h e  beginning square is not the center. 
(5 )  a # 2 v b 2 2 v c # 2  

Every square except the beginning square has a unique predecessor. 
(6) Yxw2z2(  x 2 * a v y 2 * b v  z 2 * c ) 3 3 ! x l y l z ~  P ( ~ 1 , y l , ~ l , ~ ~ , y 2 , ~ 2 )  

Consecutive squares on the path are adjacent. 
(7) V x l y 1 ~ l ~ ~ 2 z 2  P ( ~ ] , y ~ , z ~ , x 2 , y 2 , ~ 2 ) ~  A q ( ~ l , y I , z l , ~ 2 , y 2 , 2 2 )  

The  satisfiability of the conjunction of these seven sentences expresses the solvability of the 
problem. 

The '  quibble is that since the problem is unsolvable, the sentence false also expresses its 
solvability. 
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1 1. QUICKIE QUESTIONS 

Ervin. See index of Vol. 1, 2, or 3. 
1  8  1  0  0  0  8  1  0  . (two end-around carries) 
- 12. (Polish notation) 
See Nilsson, Problem Solving Methods in Artificial Intelligence. 
No; consider the requirements for placing declarations. 

r 

3 by 5 array. 
Half a byte. 
If F is true for all arguments, then the sentence is true. If F is false for any argument, let x be 
one such argument and the sentence is true. 
No dynamic relocation. 
E.g. changing x2 to x*x and 2*x to x+x (done by compilers). 
A Programming Language 
Backus Naur (Normal) Form 
Common Business Oriented Language 
Adel'son-Vel'skii & Landis, American Volleyball League 
Channel Control Word, counter ClockWise 
At the beginning to obtain initial values. 
S2, because with SI the smaller terms of the sum are lost. 

(x) = QI(x+&) 
Smooth, less oscillatory. 
Hard to replace console lights. 

1 1 1 1  
1 1 1 1  
1 1 1 1  
0 0 8 0  

SPRING 1974 COMPREHENSIVE EXAM 

(transitive closure) 

1. We first note that the sum of 14 10-bit numbers has at most 14 bits. 
Consider the numbers to be summed as a 14x10 array of bits. We divide this into two 7x10 

arrays, and sum each of the columns of 7 bits using a (7,3)-counter. This compresses each 7x10 
array into a 3x12 array, at a total cost of 20 counters. Now we can regard the two 3x12 arrays as 
one 6x12 array and then compress it into a single 3x14 array, using 12 counters. Finally, we use two 
14-bit adders to obtain the result. Total cost: $20 + $12 + 2 x $28 = $88. 

Actually, we could have first compressed the 3x14 array into a 2x14 array, using 14 counters. 
(This works because the sum of each 3-bit column has only two significant bits.) Then we need just 
one 14-bit adder to complete the sum, thus reducing the total cost to $74. 

At this point we may realize that a (7,3)-counter can in fact simulate a one-bit full adder, as 
follows: Consider three of the inputs as the two bits to be summed plus a carry, and connect the 
other four inputs to ground (i.e. 0). Then the two low-order bits of the output represent the sum 
and the carry out. Thus we need never use an adder at all! Furthermore, a little thought reveals 
that an optimal strategy for summing the bits is to sum the columns starting with the least 
significant bit. (We assume that duplication of lines Is not allowed,) We find that at most four 
counters are needed to sum each column (including carry bits from sums of earlier columns), for a 
total cost of 13 x $4 = $52. A more careful analysis can reduce the cost to as little as $40 (is this 
optimal?). 
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2. Input: 

T h e  delays in the inverters cause the output of the last inverter to change after I has changed. 
Moral: All logic circuits have delays. The circuit is dubbed a "trigger" because an output pulse is 
induced by an input transition from 0 to 1. 

3. This problem requires a more precise definition of the functions of the computer system. 
First of all, is it to be batch-oriented, single-user interactive, or timeshared? The  cheapest to 

build is probably single-user, because batch requires a job-control facility; and timesharing requires 
scheduling, swapping, and protection mechanisms. However, a $300K machine would probably not 
be used as a single-user system. We choose a timeshared operation as the most flexible; a crude 
batch facility could always be added as another timesharing job. (To implement a timesharing 
system, we must assume tha.t the computer hardware permits some kind of protection mechanisms, 
for memory and for privileged execution.) 

We must certainly provide an assembler, loader, and debugger. These can be quite simple; 
esoteric features should be avoided in the interest of getting these pieces working quickly. Note that 
we will probably be using them to test our own software. 

The  chief components of the operating system are the file system (including device drivers for 
terminals, line printer, etc.) and the scheduling and memory management system (to perform 
swapping, etc.). A secondary component would be some kind of command interpreter that is capable 
of invoking "sub-systemsw (i.e. user programs). The functional specification of the operating system 
should be done early, because the authors of other software will need to make use of its facilities 
(chiefly for file operations). 

We must also provide at least one high-level language. If the machine is destined for 
scientific markets, this language will doubtless be FORTRAN; if for business, COBOLIRPG. Second 
languages (if we have time) could be ALGOL, PLII, or BASIC. 

Lastly, we will need some utility programs, which can be written as "user programs" rather 
than as part of the operating system. These include programs for listing disk directories, deleting 
files, backing up files on magnetic tape, etc. We will probably also want a simple text editor which 
can be used to prepare source text files. 

As the above systems are being written, we must remember to allow time for writing 
documentation! (If a "standard" FORTRAN is used, perhaps some documentation effort can be 
avoided.) 

A crucial question is how to get started on the new machine. We have two options: 
bootstrapping or cross-compiling. Cross-compiling is easier for this case, so we choose it. T o  that 
end, we define a "binary file" format: we compile programs on our existing computer into this 
format, load them into the new computer, and check them out. We will choose to do our coding in 
assembly language, so we build a cross-assembler on our existing machine. If the new machine is 
not available yet (or if its production schedule slips!) we can also build a simulator to check out code 
for the new computer on the existing computer. 

A crude time-chart for the project is shown below. 
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4. There are a number of problems associated with this strategy. The common intent behind 
base register systems, in addition to providing virtual memory, is to permit more than one process to 
co-exist in the main memory at one time, each one isolated in its own virtual memory. Since only 
one process ever has control over the CPU at a time, the physical mapping device (base register) is 
typically reloaded each time the system scheduler switches processes. However, I 1 0  may be 
requested by many processes (into the same virtual but different physical memory locations). T h e  
composite mapper would have to know for which process an 110 operation is being performed in 
order to transform the device controller's memory requests into the correct physical location in 
memory. This in turn requires that the mapper, if it is in the memory, have direct access to all the 
base register values that might be needed for serving the active processes in the system. Memory 
access requests would have to be tagged by some process identifier so that the correct base register 
value is used. 

As for dynamic program relocation, there is a serious problem with this idea as well. Even 
though the 1 1 0  requests can be redirected instantly by changing the associated base register, it is still 
necessary to copy the memory locations to be moved from one physical location to another. If 110 is 
going on (especially into memory), it is not clear how much of the memory to copy. If a buffer is 
being read from memory to an I/O device, the buffer cannot be reused until the reading is done. 
More precisely, if a buffer is being written into, then the related base register value would have to 
be changed so that 1 1 0  would write to the new location, then some portion of the buffer would be 
copied from the old to the new location. If a buffer is being read from memory to a peripheral 
device, it should be copied to the new location and then the base register value should be changed. 
Since the 1 1 0  proceeds asynchronously with respect to copying, it is not clear that the two will 
cooperate harmoniously. The conclusion is that buffers must stay wired down until I 1 0  is complete, 
and also that a common memory map is not very helpful. 

Cross-hssy 

Loader & 
Assembler 

Debugger 

5. There is a simple solution: make the empty list contain a single element which has no data 
associated with it. 

empty l i s t :  HEAD + -$ 

Command sys/Utilities 

FORTRAN 

A 

non-empty l i s t :  HEAD + L [ ~ ~ I D I ~ ~ - ~ F ~ T = ~ ~ ~  
T o  insert DNEW after HEAD: 

PointerLFREE] := PointerCHEAD 1; 
PointerEHEADJ := FREE; . 
DataCGREE ] := DNEW; . 
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6.  (a) T h e  main problem here is that a record which is created while within an inner block would 
disappear when the inner block is exited. However, a global reference to such a record would still 
point to the place in the stack where the record was. This is part of the famous "retention" vs. 
"deletion" argument which flares up now and then when stack oriented block structured languages 
are discussed. 

(b) T h e  major problem with interactive and dynamic compilation is that a simple change (e.g. 
insertion of a "begin-end" pair) may cause many blocks to change their lexical levels and may even 
necessitate a complete re-binding of variables. Furthermore, some changes in program text may 
necessitate reparsing (e.g. insertion of a co~nlnent to effectively nullify a statement). T h e  problem is 
to minimize the amount of reparsing absolutely needed. 

7. (a) v, ,+~ = (1 + hk) v,,. 

(b) 'vn = (1 + ~ k ) ~ v ~ ,  vo = yo. Using the hint, we have 1 + Xk = exp(hk - h2k2/2 + A3k3/3 - . . . ) 
for - 1 < Xk s 1. Therefore v,, = yo exp (nhk - nh2k212 + 0(k3)) for - 1 c Ak .s 1. 

(c) Since the differential equation has the solution y(t) = yoeX1, we obtain 

I vn - y(t)l = lyO1 leX1l I 1 - exp (-h2kt12 + 0(k2) 1 

Since the exponent of e is O(k) as k -, 0 the above relation implies that the iteration converges 
uniformly in 1 on every finite t interval, as k -t 0. 

(d) We have Jy(t)J = lyol leX1l = lyol eXl1, which implies ly(t)l r lyol since A ,  r 0. 
From part (b), Iv,l 5 Ivoliff I1 + XkIr 1. Since 11 + hk12 = I 1  +(XI + iA2)k12 = 1 + 2Xlk + 

X I  2k2 + h22k2, we find that ( 1 + hk I s 1 iff 

(e) If one wishes to compute an approximate solution to our problem over a long t-interval, it is 
essential that lvnl r (vOI and hence that the condition derived in part (d) be satisfied. If A,  = 0 then 
we must take k = 0 to satisfy the condition in (d), so Euler's method is useless in this case. Similarly 
if (h212 is much larger than l X l l  then the condition of (d) implies that k must be very small and 
consequently that Euler's method is very inefficient for this problem. If a solution is only desired 
over a very short t-interval the restriction lvnl I lvol is not so essential and the method has limited 
usefulness. 

8. (a) We shall illustrate the algorithm by showing the steps: For each node on OPEN, we shall give 
the path from A to that node, the sum of the costs on the arcs of the path, and (in parentheses) the 
estimate of the distance from the OPEN node to B. 

OPEN CLOSED 

3) Expand C, because arc costs + estimate is minimum. 

AE 16(3), AG 10(1 I), ACD 9(10), ACF 16(4) NO), C(2) 

Note that ACA is also a possible path, but A is already on CLOSED, with a lower cost than that of 
the ACA path (i.e. 0 I 4). 
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4) Since there is a tie between E and D, we will split it arbitrarily. We shall expand E. 

A G 1 O(1 l), ACD 9( 1 O), ACF 16(4), AEB 20(0) C(2), E(16) 

Again, the path AEA is not expanded because A is on CLOSED with a lower cost. Path AED is 
not expanded because D is already on OPEN with a lower cost. 

5) Expand D. 

A G  10(1 l), ACF 16(4), AEB 20(0), ACDE 17(3) A(@, C(2), E(16), D(9) 

T h e  path ACDC is not expanded because C is on CLOSED with a lower cost. 

6) Choose B, because its total cost is 20 (in a tie with F), and we always resolve ties in favor of a 
goal node. Hence A* finds path AEB to be the "shortest" one. 

(b) No, the shortest path is ACB. The reason that A" fails is that the estimates are not all lower 
bounds on the distance from the node to the goal. In particular, the estimate at F is incorrect, and 
this causes the exploration of paths involving F to be delayed just long enough so that a 
sub-optimal path is found by A*. 

9. In recent years, there has been a shift toward "knowledge-based" A1 programs. These 
programs incorporate domain-specific knowledge as well as knowledge about how to use the 
knowledge. This is in contrast to "knowledge-impoverished" programs (e.g. first-order logic theorem 
provers which use resolution). 

T h e  most striking example of knowledge-based systems are the new approaches to natural 
language understanding (Winograd, Schank). The knowledge-impoverished natural language 
systems (e.g. attempts at machine translation in the 1950's) were not successful. Other examples of 
knowledge-based systems are DENDRAL, theorem proving (Bledsoe), automatic programming 
(Elspas, Sussman), and scene interpretation. 

10.(a) T h e  algorithm we will present attempts iteratively to reduce n, keeping the constraint that the 

tape hold #anb(2n)# for some n. This is done by deleting characters, replacing them with the 
character x, and ignoring all occurrences of x. 

T o  reduce n by 1, we need to delete one a and half of the 6's. This can be done by deleting 
the leftmost a and then deleting every other b (thus there is no need to count them). Failure occurs 
if we find a b among the a's, an a among the b's, or an odd number of 6's at any step. 

T h e  final step should correspond to n = 0, i.e. the tape should contain s b s  (ignoring all x's). 
Therefore, if no a is seen at the start of some step, a check is made to see if there is exactly one b. 

A flow chart of the T M  is shown on the next page. For the sake of clarity, we separate the 
steps of reading, writing, and moving the head. 

(b) No, because the language is not context-free (use the uvwxy theorem). 
(c) Yes, the language is context-sensitive, because it can be recognized by a linear bounded 

automaton, namely, the one described above. 

11. T h e  formula is satisfiable, but not a tautology. 
Since (c a d) E N((NC v 4 )  A (C v (I)) and (a 3 6) = ( ~ b  3 NU), the first part of the conjunction 

may be written [(a 3 b) 3 (c = d)l v [(a 3 6) 3 N(C = d)] ,  which is a tautology. 
For the second part of the conjunction, set b to false, then we have NC v (d E NU), which is 

clearly satisfiable, but not a tautology. In particular, the assignments a = true, b =false, c =false, 
d = true satisfy the original formula, but a = true, b =false, c = true, d = true falsify it. 
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start n 

WINTER 1975 COMPREHENSIVE EXAM 

1. The binary encoding of the values which q takes are 
0000, 0001,0100, 1101, 1000, 1001, 1100,0101, 0000, ... 

Only 8 of the possible 16 states arise. Note that the third bit is always zero. 
Input 

91 92 44. 
0  0  0  
0 0 1  
0 1 0  
1 1  1  
1 0 0  
1 0 1  
1 1 0  
0 1 1  

Output 
QI Q2 44 
0 0 1  
0 1 0  
1 1 1  
1 0 0  
1 0 1  
1 1 8  
0 1 1  
0 0 0  

One can observe that QI changes whenever q2q4 * 10 and that Q ~ Q ~  form a mod 4 counter. Thus 
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Either Tflip-flop T - t3I 

AND gate t m a = b . c  

.\ 
or D f l i p f l o p  D - d . 1  P 

L 

AND gate b m a  c =b.c  

XOR gate : m a  =b.c* + b* .c 

08 01 11 18 

84 01 sum of products: 4 AND + 1 OR 
0 0 product of sums: 5 OR + 1 AND 

(b) Pick one of the input leads to the OR gate. Then the circuit will always give a 1 output, and 
this is the-only break of the type being considered which will cause this behavior. If a lead to an 
AND gate is chosen, there will be at least one non-prime input for which the output will be 1 rather 
than 0. However, it may not be possible to tell which gate is at fault. 
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3. Operator precedence Simple precedence 
a b c d  S A a b c d  

q - 7  c d < > i p  - - 
i 

- - < > 
T h e  standard trick for eliminating precedence clashes is to introduce <B> ::= <A> and to redefine S 
to be <S> ::= a<B>d I b<B>d. We then have 

S A B a b c d  

5. (a) T h e  beginning and ending values of the PC (program counter) for each block, and the name 
of each block. 

(b) Assume that code is generated in the same order as statements in the source file. Then it will 
be most convenient for the compiler to store the PC and name information immediately upon 
finding each begin. We put this information into a linear list, and also store the location of the list 
entry for each begin on a temporary stack. When the matching etid is found, its address is put into 
the list entry and the begin is removed from the stack. The stack also enables the compiler to 
construct a FATHER link for each block upon finding the begin. 

(c) Search through the linear list to find the smallest end address greater than the PC. Search 
back along the FATHER links until a begiti address is found which is less than or equal to the PC. 
Then  follow the FATHER links back to the beginning, printing the block names in reverse order. 

In the above solution, we have used a linear list in order to conserve space. Note that timing 
considerations are generally not as important when dealing with errors. A tree structure could also 
be used, with LSON - RSIBLING linking for the blocks. 

B 

: 
: 

6. T h e  chief advantage of both systems is that they free the programmer from worrying about 
reclaiming the storage he has used up. 

(a) T h e  disadvantage of garbage collection is that it takes time proportional to the total amount 
of space in use, since all of. it must be examined. In an extended physical memory system, the 
garbage collector must access many pages on secondary store, and this is an inherently slow process. 
Secondly, garbage collection is a completely disruptive process. Computation cannot proceed while it 
is in progress. However, garbage collection is attractive from the viewpoint that there is almost no  
overhead until storage runs out. 

- - 
< = < 
< = - - < ' 

< > 

A much simpler solution is <S> ::= a<A> I b<A> , <A> ::= cd I c<A> . 
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(b) Reference counts require that every allocated data item include space for the reference count. 
In a system like LISP, where the allocation unit is a single word, the space overhead may be quite 
significant. In addition, every operation which affects the accessibility of a data item must update 
the reference count. The  time overhead for this updating may be undesirable, especially when the 
referenced item is in secondary memory. Finally, the reference count scheme cannot detect 
self-referencing structures which are otherwise inaccessible. 

7. In general, the problem is that we have to save the state of the machine when a breakpoint is 
encountered, and to restore it before we pass control back to the user. This saved state is exactly 
what the user will want to interrogate during his debugging session. We therefore need to save 
information such as the contents of the accumulators, any status bits, and the value of the program 
counter. 

T h e  broken instruction must be replaced with one which transfers control to the debugger. 
Since we need to know where we came from, different breakpoints must branch to different 
locations. O f  course, we need a list which associates breakpoints with the corresponding broken 
instructions and their locations. 

O n  return from a breakpoint, we will be executing the broken instruction from a different 
location in memory, which may cause some problems. For example, self-relative addressing will not 
work. Also, if the broken instruction is a jump to a subroutine, we must somehow make sure that 
the proper return address is saved. 

8. Let r be the solution of the equation f(x) = 0 and let d, = xn-y be the error in the 
approximation x,. Then we have 

Now 

T h u s  

(a) T o  obtain the highest order of convergence we want to choose a and 0 such that 1 + a = 0 
1 and -%+ 0 = 0. Thus a = -1 and @ .: -- 

2 2' 
(b) Order of convergence is 3, i.e. cubic convergence. 

9. (a) predictor: y8 = 2.12 + 1-1 ( 23(2.12) - Ie(1.77) + 5(1.68) ) = 2.36 
12 

corrector: y a m  -2.12+ 2(1.77)+ $(2.36+ 8(2.12)+ 3(1.77)) - 2.04 
(b) Solution decreases while true solution increases. We examine the behavior of the corrector for 

y f = y :  
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If h = 0, then we have J , ,+~ + yn -2yn,l = 0. Characteristic equation: x2 + x - 2 = (x + 2)(x - 1) = 

0. T h e  root z = 1 corresponds to the true solution ex, but the root z = -2 corresponds to (-2)n which 
oscillates and grows rapidly in magnitude. Thus the solution is unstable. 

1 O.(a) Prove: AT(baubles, Gump's) A AT(bangles, Macy's) A AT(beads, Sak's) 
Initial state: AT(baubles, Universal Plastics) A AT(bangles, Universal Plastics) A 

AT(beads, Universal Plastics) A truck(t) 
Axioms: 

A 1.  (Vxyz) AT(x, y) A AT(x, z) 3 py-z 
A2. (Vxyz) AT(x, y) A AT(z, y) A LOAD(x) 3 IN(x, x) 
A 3. (Vxy) truck(%) A drive(x, y) 3 AT(x, y) 
A4. (Vxyz)truck(x)~ AT(X,Z)AIN(~,X)AUNLOAD~)~ AT(y,z) 

(b) BEGIN 
STRING(2B)  SUPPLIER, RETAILSTORE, ARTICLE; 
READ (SUPPLIER);  
WHILE SUPPLIER -= "DONE" DO BEGIN 

READON (RETAILSTORE, ARTICLE); 
DRIVETO (SUPPLIER); 
LOAD ( ARTICLE) ; 
DRIVETO (RETAILSTORE); 
UNLOAD (ARTICLE) ;  
READ (SUPPLIER) 

END ; 
WRITE ( 'DONE" ) 

END. 

"UNIVERSALPLASTICS" "GUMP'S" "BAUBLES" 
UNIVERSALPLASTICS" "MACY'St' "BANGLES" 

"UNIVERSALPLASTICS" "SAK'S" "BEADS" 
"DONE 

(c) A descriptive representation seems appropriate when: the knowledge of the task is highly 
modular; the knowledge base needs to be changed often; the task can be described with assertions 
about the world; or the problem can be set up as an assertion to prove. 

A procedural representation seems appropriate when: the sequence of actions is important; 
the relationships between objects are time-dependent; the primitive actions are fixed; or the method 
of solution is known and is unlikely to change. 

11. T h e  combinatorial explosion is the proliferation of nodes in a search space resulting from the 
large number of possible combinations of primitive elements in a program. A1 programs typically 
involve search through such a space. The evaluation of any one node in a possible solution path 
usually depends on the values of all the successor nodes. Thus, the number of nodes to be 
examined grows exponentially with the depth of the search tree. 

Search can be controlled using one of the following techniques: 
(1) Heuristics for pruning branches of the search tree: knowledge of task domain; branch and 

bound techniques (e.g. alpha-beta pruning); strong evaluation function with threshold (expand only 
the best nodes). 

(2) Heuristics for reordering branches of the search tree: expand best nodes first; examine "easy" 
branches first at OR-nodes and "hard" branchep first at AND-nodes in an AND-OR tree. 
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(3) Problem reduction: establish subproblems which are easier to solve than the original problem. 
Planning: establish a series of intermediate goals to guide the problem solver through the 

search space. 
(4) Learning: save the results of expanding commonly encountered nodes to avoid re-searching 

below these nodes. Ad just the evaluation function as a result of previous experience. 

12.(a) Given two finite automata with state sets K1 and K2, we construct a non-deterministic 
automaton with the Cartesian product K,xK2 as its set of states. Only one state component is 
changed in each transition of the new automaton. These transitions shall correspond in the obvious 
way to the state transitions of the original automata. The initial and final stares of the new 
automaton are the pairs of initial and final states of the original automata. This new automaton 
accepts exactly the merge of the languages accepted by the original two automata. (The above 
construction could also be given in terms of regular grammars.) 

(b) Similar to part (a), using a pushdown automaton and a finite automaton. 
(c) Given context-sensitive grammars for L1 and L2, we construct a new context-sensitive 

grammar which contains the union of the sets of production rules for the original grammars. (We 
assuine that the two grammars have distinct symbols.) We introduce a new start symbol S and add 
the production S + S1S2, where S 1  and S2 are the start symbols of the original grammars. In 
addition, we add all productions of the form ajbj -t bjai, where Ui and bj are terminal symbols in the 
grammars for L1 and L2 respectively. The resulting context-sensitive grammar generates exactly the 
merge of L1 and L2. 

13. ,Assume the grammar contains no useless nonterminals. (All terminals except a and b can also 
be deleted.) For a nonterminal A, define n(A) to be the set of all i such that A can generate a word 
with i more a's than b's. The sets n(A) can be determined by iterating the following process: 

For all productions A -t u such that u contains only terminals or nonterminals Bi for 
which one element of n(Bi) is already known, compute values for n(A). 

If any n(A) is found to have more than one value, then the grammar cannot have the desired 
property. Otherwise, the process terminates when no new values for any n(A) are obtained. T h e  
value of n(S) then gives the answer. 

SPRING 1975 COMPREHENSIVE EXAM 

1. No. A deadlock can occur only if all of the tape units are reserved and all processes are 
waiting indefinitely for more units to become available. If all four tape units are reserved, then one 
of the processes has all the tape units it needs and will be able to finish. Its two units then become 
available, and the other processes can finish. 

2. (a) In ALGOL, variable bindings are static and are semantically determined at compile time from 
the block structure and scope rules. In LISP, bindings are dynamic and depend on the order in 
which routines are called. A LISP variable is bound to its most recent definition on a value stack. 

(b) We should try to place the new cell on the same page as one of the substructures (CDR or 
CAR), in order to reduce paging during traversal of the structure. Note this implies that each page 
should have a free storage list associated with it. 
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3. (a) FIFO: 9 faults with 3 page frames; 10 faults with 4 page frames (FIFO anomaly). 
LRU: 10 faults with 3 page frames; 8 faults with 4 page frames. 

(b) Associate a reference bit with each page which is set every time the page is referenced. When 
we need to select a page for removal, we advance a pointer circularly through the list of in-core 
pages and select the first page whose reference bit is clear. Pages which are skipped over have their 
bits cleared. 

(c) O n  a system where there are many commonly used programs (e.g. compilers and editors), it is 
advantageous to have users share the common pages. Such sharing reduces both the overhead of 
moving programs to and from the drums and the required amount of drum storage. Data pages 
may also be shared by programs, and this is often the most efficient way to transfer data from 
producers to consumers. 

4. (a) T h e  problem is to reduce the amount of storage required for the precedence matrix. Methods 
for doing this include: sparse matrix techniques, precedence functions (if they exist), and pointers to 
identical rows or columns. 

(b) Most compilers use a simpler technique for the scanner than for the context-free parser. 
Some compilers use top-down methods for good error recovery but switch to operator precedence for 
expressions (to avoid backup). In FORTRAN, a special parser might be used for FORMAT 
statements. 

(c) No. From the matrix we conclude that g(Sl) = f(S1) > g(S2) = AS2) > g(S1), which is 
unsatisfiable in precedence functions. 

(d) Typed languages: ALGOL, SAIL, FORTRAN, PASCAL, SIMULA. Advantages: many 
more errors detectable at compile time; compiler knows more about what a program is doing and can 
perform optimizations; system can provide type conversion automatically. Disadvantages: less 
flexible language; compiler is harder to write. 

Untyped languages: BCPL, LISP, APL, EULER, GEDANKEN. Advantages: more 
flexibility possible in programming resulting sometimes in greater efficiency; compiler is easier to 
write because of the uniform treatment of addresses. Disadvantages: programs are harder to debug 
(some bugs result in subtle smashing of code or data). 

4. T h e  test-and-set instruction provides a primitive way to synchronize processes. A process (1) 
waits for a flag to be clear, (2) sets the flag, (3) enters its critical region and (4) clears the flag when 
it is done. T h e  disadvantage of this technique is that it involves busy waiting. 

A better primitive method uses semaphores (Dijkstra), which allow processes to be queued 
while they are waiting and restarted when the shared resource (e.g. critical region) becomes available 
to them. T h e  basic operations in the program are P (wait) and V (signal). 

Hardware 

1. (a) Sum of products: f = x ~ ? ~ Z ~  + Z3x4 + ZlF2x3 

(b) Product of sums: f = (xl + x3 + x4)(Zl + Z3)(g2 + x4) 

16 b i t  multiplexor 
Xa 
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XI 5, F, 5, 8 1 B 0 
18 1 zl! 6 7 ii 

0 1 2 3 4 5 6 7  
8 1 1 1 8 1 0 0  
1 0 8 8 0 1 0 0  8 b i t  multiplexor 

f 

4. (a) Multiprocessing means that there are several processors capable of operating simultaneously 
on a system. For example, swapping drums and other I10 devices usually have their own processors 
which run fairly independently of the CPU. Some systems may even have several CPUs. 

(b) Memory interleaving means that successive addresses refer to words which are physically 
located in different memory banks. Since reading a word from memory is usually destructive, there 
is a delay time for that bank during which focal hardware restores the contents of the word. T h e  
effect of this delay can be minimized if the next word fetched is from a different bank. 

Another use for interleaving arises on memories having multiple ports, say for the CPU and 
swapping drum. Usually the 110 ports have higher priority. If memory were not interleaved, a 
drum could effectively lock the CPU out of a bank of memory altogether during a rapid block 
transfer. lnterteaving reduces this "interference". 

(c) Wide buses permit the parallel transfer of more information at the same time. If each access 
to memory fetches two words at once, the memory bandwidth is potentially doubled, and a CPU may 
need only about half as many bus cycles to carry out the instructions. 

(d) Associative memory means memory addressed by part of its content. This speeds up the 
search for a n  entry in a table because of the parallel operation of the hardware which carries out 
the association. Associative memory is often used to speed up virtual-to-physical address translation 
or in implementing a cache memory. 



SPRING 1975 

Theory of Cornputation 

1. (a) Assume that there is an effective enumeration ( T TP, T3, . . . ) of all total recursive 
functions. Define a new function F as follows: F(x)  = T,(x) + 1 for all x. Then F is a total 
recursive function, but it is not in the enumeration because it differs from each Ti  at the argument i. 
This  contradiction shows that there can be no effective enumeration of all total recursive functions. 

(b) Every context sensitive language is recursive. If every recursive language were context 
sensitive, then we would have a contradiction of part (a). Alternatively, let ( C, , C2, C3, . . . ) be 
an effective enumeration of all context sensitive grammars, over a fixed (countable) alphabet. . . 
Define S - ( a' I a' is not in L(C;) ). Then S is recursive but it cannot be generated by any context 
sensitive grammar in the above enumeration. 

2. (a) D* . Dxx 

(d) T h e  finite machine of part (a) is essentially that part of a scanner which recognizes the 
numeric constant and variable tokens in a language. Final state 7 corresponds to an integer 
constant, state 6 to a floating point constant, and state 4 to a variable name. The  reverse scanner 
might be used if, for some reason, it is desired to read the source backwards. Of course an actual 
scanner should be based upon a deterministic machine. 

3. (a) The  language contains no strings of even length. This is easily seen by noting that every 
production increases the length of the string by zero or two. Since we start with a single symbol 
(namely S ) ,  we cannot generate any strings of even length. (In fact, all terminal strings have length 
4k+ 1 for some k r 0.) 

(b) First note that the shortest string derivable from B has length 3, and that c occurs only in the 
production A + SBc. Hence the desired string8 must be of the form aBcbB where each B is replaced 
by either aab or baa. There are a total of four such strings. 
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Algorithtns and Data Structures 

1. procedure RK a 
Begin of program: 

P 
loop r 
check stepsize: RK lST(x, y, H ,  x2, y2); RK lST(x2,y2, H,  x3, y3); 

for  k:= 1 step 1 until n do 
if comp(~llk1, y3[kI, eta) z eps the11 begin 

6 
5 
go to check stepsize 

end; 
x:=x3; 

while not out: 
E 

repeat 
rl 

end RK 

T h e  remaining go to cannot be eliminated without introducing extra computation. But it isn't such 
a harmful one, and one would expect an example at the end of a language definition to illustrate 
most of the features of that language. 

2. F L M A  J R T B P D H I Q E K C G N S U O .  

3. (a) A sequential list containing entries ( i ,  j, AD, jl) for nonzero A[i, jl. 
(b) A n  orthogonal list arrangement (see Knuth section 2.2.6). 
(c) Same as (b), or possibly a hash table of size M s 350 which finds A[i,jl given the key ci, j>. 

If the hash function has the form (ai + bj) mod M, it will be possible to perform operations (3) and 
(4) without too much delay. 

(d) 10000 consecutive locations with A[i, jl  in locations L + 100*i + j for some L. 

Nutnerical Analysis 

1. Partial pivoting could increase the bandwidth from 2m+l to 4m+l thus significantly 
increasing the amount of storage as well as the number of arithmetic operations required to carry 
out the elimination. 

2. (a) No. For example, the floating point number system is not associative with respect to +. To 
show this, consider the special case of two digit base 10 arithmetic. Then f1(10 + fl(-10 + 0.1)) = 0 
but fl(fl(l0 - 10) + 0.1) = 0.1 . 

(b) Forward error analysis must be carried out in floating point arithmetic which leads to 
problems as in part (a). Inverse error analysis can be carried out in real arithmetic, which is much 
easier, and also usually produces simpler bounds. 

3. (a) We use the 1, norm, 11% 11, = max l<islL Ixil, where = ( X I ,  . . . , x,,). Writing our equation in 

the form A - ' ~ N  = z, where % = (1, 112, 114, . . . , 22-n, 22-n) and 6_ = (0,0,  . . . , 0 ,  Z2?, we have 

llA-'11,2~'" = llA-'ll,llb,ll, r IIA-' Lll, - 1 1 %  11, = 1 so that 1 1 ~ - '  11, 2 2n-2. NOW IIAllQ = 1 so c o n d ( ~ )  = 

~ ~ ~ ] l ~ l l A - ' l l ,  1 27L'2. Thus  for large n, the matrix A is quite ill-conditioned. 
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(b) Since det(A) = I ,  A is clearly nonsingular and the diagonal elements are certainly not small. 
However, A is "nearly singular" for large n since its condition number is then very large. Methods 
based upon Gaussian elimination must rely upon the size of the diagonal elemenes, once transformed 
to upper diagonal form, to determine rank. If the lower r rows have diagonals which are "essentially 
zero" we would conclude that the rank is n-r. Our example shows that there are nearly singular 
matrices (i.e. which are only a small perturbation away from being singular) which have large 
diagonal elements. Therefore, this approach will not be suitable for floating point computation. 

T h e  iteration clearly will not converge and from the picture it is reasonable to conclude that x, = 

xn+2 = . . . = ~ , ~ + 2 , ~  = .. . and x,,, = xn+3 = ... = Xn+2,,1 = ... for at1 m z 0 .  

(b) Let p(x )  = ii,,xn + Zosistl-l~ix', where a",,, = a,, + Aa,, and suppose that ?= r + Ar is the root 

of 3 corresponding to the root r of the original polynomial p, Then 0 ?(?) = ~ a , ?  + p(3. Using 

a Taylor expansion to terms 0(ar2), we obtain ~ ( 3  = p(r) + (Ar)pr(r) = (Ar)p'(r). Thus  to terms 
0 ( a r 2  + ArAa,,), we have (Ar))pr(r) z -Aa,,,(r + Ar)" = -Aa,,rn, or, 

(c) T h e  observed convergence is linear. This may have happened because the iterates are not 
close enough to the root or they are converging to a multiple root. 

Artificial intelligence 

1. (a) (The following is an example of an acceptable answer.) 

"English language understanding" 
A program which "understands" English must have some way of representing the meaning of 

sentences. This meaning needs to be incorporated into the program's model of the world. For 
example, in Winograd's SHRDLU a model of the "blocks world" is kept and updated by the 
program. In Colby's PARRY, the variables of the program model 'the emotions of the paranoid. In 
Schank's work, a semantic net carries the meaning in a data structure. 

T h e  importance of the model derives in part from the necessity of the program to "reason" 
about its world. For example SHRDLU knows about the transitivity of "on top of" and also knows 
what it has done. The MYGIN program knows "why" it  made each step of a diagnosis. T h e  models 
in these cases include the prior activities of the program. In general A.I. developments, reasoning 
has been based on theorem proving with new techniques involving the resolution principle. Older 
general techniques include the means-ends analysis of GPS. Today's more successful programs use 
more doinain specific techniques. SHRDLU reasons about its model using the goal directed 
computations of MICROPLANNER. In a sense, it knows "what follows from what" although it does 
not prove theorems in general. Like several of the new A.1 languages, MICROPLANNER does the 
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bookkeeping associated with backtracking. This tool allows a program to gracefully abandon a 
fruitless subgoal. 

Sometimes there are several sources of knowledge for a program to draw upon or there is 
knowledge to be used only in particular contexts. The first case is called the multiple exper t  
problem and is exemplified by the HEARSAY program. This program subjugates the various 
experts of an English-speaking chess playing program (e.g. sound expert, syntax expert, chess 
expert) to a master which arbitrates between them. The second case is handled by a new software 
concept - the pattern-directed or preconditioned interrupt known as a demon. If the entire 
calculation is driven by patterns of the form <precondition> -, taction>, then the system is called a 
production system. These various concepts can be viewed elther as fancy developments in program 
organization, or as variations on the procedural representation of knowledge. 

In summary, English understanding is a rich enough area to have connections with all the 
major areas of A.I. research, including heuristic search, knowledge representation, and new program 
organizations. 

(b) We must first determine what objects are to be recognized by the image understanding system. 
Then  the main A.1, design problem is to decide how the objects will be described to the program, as 
well as how the program will exploit these descriptions. In our case, the satellite has to be able to 
recognize objects such as rivers, river bends, deltas, mountains, islands, etc. 

2. (a) For any nontrivial task involving search, the search space is very large. Rules and procedures 
called heuristics are therefore employed to steer or limit the search. Often these rules are highly task 
specific and depend on informal knowledge about the problem. 

(b) Means-ends analysis is a problem solving method which is applicable when the initial and 
goal states are explicitly defined and when a path to the goal can be achieved by the incremental 
application of a given set of state operators. The method is to iteratively select an operator to 
transform the current state into another state which is closer to the goal state, until the goal is 
reached. 

(c) Hill climbing is a technique for finding the extrema of a scalar function of n variables. T h i s  
is useful for improving the value of a performance evaluation function of n variables. 
Unfortunately, the technique generally cannot distinguish between local and global extrema; thus it 
may give a result which is far from optimal. 

(d) A demon is a conditional interrupt which operates autonomously in a program. It activates 
whenever the "condition" occurs in the program. Demons are useful for representing a process 
which can be conceptualized in terms of a few independent pattern-invoked actions or subprocesses 
in addition to the main computation. 

(e) Production systems are a way of representing a program in terms of <situation, action> pairs 
which are called productions. The basic idea is that the action (subprocess or event) takes place 
when the situation (pattern matching conditional expression) becomes true. This technique is useful 
when the task consists of many independent pattern-invoked subprocesses or when it is often 
desired to add new subprocesses or to change the order of operations. 

3. (1 )  True. Each application of an operator can be viewed as the reduction of the problem to a 
simpler subproblem. The  special case of state space methods remains useful as a separate concept 
because it is simpler and because some problems are more easily conceptualized as moves in a state 
space rather than as problem reduction steps. 

(2) False. T h e  alpha-beta technique always achieves exactly the same answer as minimax. 
(3) T h e  detailed knowledge of task domains has been found to be both useful and necessary for 

achieving high levels of performance (i.e. achieving significant search reduction). T h e  attention of 
A.I. researchers has turned to acquiring and utilizing such detailed knowledge for specific problem 
domains. Another drawback of general problem solving methods was that they tended to force 
awkward, non-natural representations of problems and domain-dependent knowledge. 
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WINTER 1976 COMPREHENSIVE EXAM 

Systems 

1. Make the symbol table entry for the undefined variable be the head of a linked list of all 
forward references to the variable. When the variable is defined, the list can be traversed to fix up 
the forward references. T o  use this method, we must place some restrictions on the arithmetic which 
can be done on forward references. Also, if the object code is too large to "fix up" while in memory 
during the assembly phase, then the loader can be used to perform this task, using the same method. 

2. T h e  main job of an operating system is to allocate the resources of the system to competing 
tasks (jobs, processes, or users). The operating system allocates memory and CPU resources and 
manages a file on behalf of the running processes. Operating systems may also offer utility services 
through system calls. These frequently deal with 110, interprocess communication, and file 
manipulation. 

3. An interrupt is an externally generated signal which indicates the completion of an  110 
operation or the occurrence of some condition which the operating system should know about. T o  
resolve conflicting interrupts, there is usually some method for establishing priority. A t  
predetermined stages in its normal instruction cycle, the CPU hardware will test for an interrupt 
condition and execute an instruction in a specified location associated with that particular interrupt. 
Usually this instruction does a subroutine branch or exchanges the current PSW for a new one to 
reach the actual interrupt service routine. The service routine might save all the general registers 
and other information in order to avoid any damage to the state of the interrupted program. 

4. Linkers are primarily concerned with resolving external references between object modules. 
Loaders are generally used to perform relocation of object modules and reformatting of them into 
absolute load modules. Some loaders can perform linking chores as well (e.g, automatically loading 
library modules to satisfy unresolved external references). 

5. Re-entrant routines are capable of being executed by more than one process concurrently. 
T h e  routine must be pure procedure, that is, the calling routine must supply all local storage. 
Recursive code is typically re-entrant and also "calls itself". T o  maintain control, new local variables ' 
must be created for each recursive entry into the routine. 

6. T h e  fundamental difference between multiprogramming and multiprocessing is simultaneity 
versus concurrency. Both systems must deal with the interactions among several processes, and the 
handling of resource management, interprocess communication, and process management is similar. 
However, in a multiprocessing environment, there may be the possibility of two processes executing 
the operating system simultaneously. Cooperation among processes cannot make single-CPU 
assumptioris which might be valid in a multiprogramming environment. 

7. Paged systems allocate fixed length pages on secondary storage and identical length page 
frames in the main store. Pages are moved to and from secondary storage as needed (e.g. demand 
paging or pre-paging). A large address space can be offered to each process, even if the real main 
store is smaller than the maximum virtual address space. Segmentation is a method of creating 
virtual storage composed of variable length segments. To  manage the mapping from virtual to real 
memory, segment tables are maintained with pointers to the base of each segment and the extent of 
each segment. Symbolic segmentation allows a user to refer to any elements of a subroutine library 
without necessarily requiring that a particular part of the address space be allocated to the library 
routine. In a paged space, the library routines must be located at a fixed place in the virtual 
address space in order to execute. In effect, a segmented space creates a very large number of linear 
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virtual spaces, each with a name. The paged space creates only one such virtual linear address 
space. 

8. O n e  popular way is the use of "P" and "V" operations on objects called semaphores (invented 
by E. W. Dijkstra). Processes wishing to use a protected resource signal "P" to the associated 
semaphores. If the resource is in use, the process is queued by the operating system and put to sleep. 
When a process finishes the critical section, it signals "V" to the semaphore which causes the 
operating system to reschedule the process which is currently at the head of the queue, waiting on 
that semaphore. 

An alternative is a "buiy wait" scheme using "lock" and "unlock" primitive operations. Here, a 
process attempts to successfully lock the critical section. Locking fails if the critical section is already 
locked. T h e  process loops, repeatedly attempting to lock until successful. When done with the 
critical section, a process unlocks it to allow other processes to proceed. 

9. A n  interpreter accepts source input in some well-defined form and executes it (i.e. it interprets 
the semantics and carries out the associated commands). A compiler, on the other hand, accepts 
source input and transforms it into something which can be interpreted later (e.g. relocatable or 
absolute object module). Incremental compilers often transform source language into an  
intermediate interpretive form which can be interpreted on command from an interacting user. 

Nu~nerical Analysis 

1. (a) T h e  algorithm describes pairwise addition. Thus s(M, 1) = Cl,jsN aj. 

(b) We have t(1, k) = (t(0, k) + t(0, k+2"-'))(1 + cl,k) = (ah + ~ i ; + ~ ~ - l ) ( l  + cl,k). Then  by 

induction t(M, 1) = XlsjjlN aj(l t qj), where (1 t qj) = nlsph, (1 t cp,jp). Hence In; 1 S Me t 0(r2). 

(c) FKIm (a) and (b), s(M, 1) - t (M, 1) = -C15jsN ajnj, so Is(M, 1) - t(M, 1) 1 5 xlSjsN aj1l)j 1 S 

maxj  I y I Clsjss a;. Thus 

(d) Suppose we compute the sum in the "natural way" as follows: ru(0) = 0, w( j )  - fl(aj t ~ ( j - 1 ) )  

for j = 2 , . , N Then w(N) = ElsjIN aj(l + tj), where Ill l 6 (N-1)~ + 0(c2) and lrjl S 

( N - j + l ) ~  + 0(c2), j = 2,3, ..., N .  Hence IXlsjrN a j  - w(N)I 5 xlsjsN QjIrjI 5 m a x l s j , ~  IfjI* 
ClsjsN aj and SO 

W e  see that the maximum relative error for pairwise addition is much smaller than for addition 
performed in the usual manner. 

2. (a) Since Z* = h(f), we have l l $ ' + l  - I* 11 = ~lk($~)) - M i )  11 S L  lit(') - l l  and hence l{r(k)  
-cjl c L ~ I I X ( O ) -  Z*II .  SinceO< L c I ,  116~- % * l l +  0 a s k +  a. 

(b) We have l l t ( k + l )  - N 11 = llk(ck)) - h(g(k-') 11 r L 111'~' ,v 
- 11 and hence l1kk'l) - E(') 11 6 

l lz(l)  - Z_(O) )I Writing %(('n) - ;(") = (m) - ~(m-1)) + (Z(w-l) - Z("-2)) + . (k + ( 2 ( 7 1 + 1 )  , Z(ll)), we 
w - N u N 

obtain 11 ; ( " I )  - z('")ll ,.. s (Ln'-l t L '"~  t . . . t Ln) 11 g(') - 11 S L n ( l - ~ ) - '  1lz(l) - %(O) 11. Letting m 
+ w, we have 

L ' l  11 ;* - p) 11 S - 1lg( ' )  - ;(O) 11. 
I-L 
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(c) Write the system in the form 

T h e  determinant of the matrix is I - ab r 0, since lallbl < 1. Therefore the system has a solution. 
(d) We have g(k+l) = h(rd)), ,., ,.o where 

Now 11 ~(ZJ-Y~ ll s max(la1, PI) IIg-Kll. Thus L = mau(lol, Ibl) < 1 and hence t(P) -+ g* as k + W. 

(e) Let r(k) . x(k) - x' and f k )  = - y'. Then ,(k+') = -ofb and Pi') = Hence - (a6)fk) (A'. . . . = (ab)l+Yo) + 0 as k + co . A similar analysis shows that ctA) + 0 as k -r . . 
Artificial Intelligence 

1. (a) Define the following predicates: V(x) = x is a Vulcan; E(x) e x is aboard the Enterprise; P(x)  a 
x has pointed ears; and R(r) r x is rational. Then the given conditions are Vx (P(x) 3 (E(x) s 
V(x)), V j  (V(y) =, R(y)), E(Spock), E(Kirk), and P(Spock); and the proposition to be proved is 32 
R(x). 

subset 
Lrulcans 

Beings 

Beings on 
Ehterprise I 

An alterna.tive solution (HAM-like) is shown at the top of the next page. Here the query can be 
represented as ,, 

rational 

which means, "who is rational?" (actually, "who belongs to the class of rational beings?"). 

2. (a) We describe a solution in a hypothetical language with the following conventions. When c x  
occurs in a pattern, this binds x. Then Sx will be the binding, which must exist if used. 

th-consequent ((ex is rational) 
[(goal (cx is Vulcan))]) 

th-consequent ((ex is Vulcan) 
[th-and (goal) (ex on Enterprise)) 

, (goal ($x has pointed-ears))]) 

assert [(Spock on Enterprise)] 
assert [(Kirk on Enterprise)] 
assert [(Spock has pointed-ears)] 
goal [(+x is rational)] 
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(b) O n e  possible LISP implementation is described below. 
Relations will be stored in a hash array. Patterns will be stored in a linear list. Relations and 

patterns themselves will be represented as lists. Rules of inference will be stored as properties of 
patterns. A sample rule might be of the form: 

(To achieve (nice 6%) 
[th-and (goal)(cleaned-up $x)) 

(goal (shiny Sx))J) , 

These  rules are interpreted by the interpreter defined below. Procedures for retrieving and storing 
relations and patterns in their respective data structures would have to be implemented. In 
conjunction with these, a pattern matcher would have to be implemented. Given a pattern, it will 
return all relations in the hash array that match the pattern, as well as the corresponding 
instantiations of pattern variables. 

Deduction will be carried out by a small interpreter. The interpreter will have two main 
entries: assert for asserting a relation, and goal for achieving the insrantiation of a relation of a 
given pattern. When a relation is asserted, the pattern list is searched for patterns that match the 
relation and that have antecedent inference rules associated with them. These rules are retrieved 
and their bodies interpreted. The goal mechanism is a bit more complicated. T h e  interpreter will 
keep an explicit tree of goals to be achieved and their corresponding subgoals, and it will visit nodes 
in the tree.depth-first. Whenever a goal is attempted two things happen: an encry for it is created 
in the goal tree and the pattern list is searched for entries that match the goal pattern and have 
consequent ri~les of inference associated with them. These ruies are retrieved and interpreted. T h e  
tree is thus grown depch-first. If a goal succeeds, the corresponding node is marked accordingly and 
the interpreter backs up the tree to the parent goal and attempts to achieve any remaining needed 
subgoals. If a goal fails, the corresponding node is marked as "failed" and the failure is carried to 
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the parent goal by the interpreter. Whenever the root node is marked as either "successful" or 
"failed" the interpreter terminates, with the corresponding result. Variable instantiations that arise 
from goal attempts are carried within the goal node itself. If a goal succeeds, its variable bindings 
are propagated to its parent goal. Otherwise they remain attached to it (or possibly are removed). 
This  explicit goal tree will thus hold the necessary information for implementing backtracking. 

Some alternatives to the above solution are: (1) a mini-resolution theorem prover, (2) a 
QLISP-like system, or (3) a deduction program on the Quillian net. 

5. If we assume an evaluation function has been given, the described implementation can be 
modified as follows. 

T h e  interpreter, in addition to keeping a goal tree, will have a goal list in which all currently 
active goals appear. This list is kept sorted according to the values of the evaluation function on 
each goal. Whenever a new goal is created it is placed both in the goal tree and in the goal list in 
its proper place (depending on the value of the evaluation function applied to it). The  current goal 
is always taken to be the "best" goal in the goal list. The interpreter will have to be modified as 
follows: whenever new subgoals are created to achieve some goal and inserted into the goal list, the 
"best" candidate from the p a l  list is taken to be the next goal to be attempted by the interpreter. 
T h e  rest of the interpreter structure will remain the same as before. 

1. (a) Binary search takes O(lg n) time, while sequential search takes O(n) time. 

inorder 3 postorder 

3 b  

The structure of the tree is only loosely determined by the method of traversal. 

(c) Sample subtree: 

(last in for inordcr tree.) 

(last i n  for postorder tree.) 

T h e  number in the node is the event time of the notice of that node. 
Insertion for the postorder tree is often faster because the event time of a given node is r 

event times of all nodes in its subtrees. Thus insertion can take place fairly high in the tree without 
the need to follow a branch to the the end to find an empty slot as in the normal inorder tree. 

2. (a) We replace the two pointers for each node by a single pointer value which is the difference of 
the two pointers. Thus if we have one of the original pointers we can obtain the other one from 
this value. The  head node points to the beginning and end of the list. (If the list is empty, the 
head node points to itself.) See Hoare, Structured Programming, p. 140. 
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(b) procedure WRITE(X,  HEAD) ; 
i f  HEAD # WRITE(HEAD) then 

PTR(WRITE(HEAD) )  + PTR(WRITE(HEAD)) - X + HEAD; 
P T R ( X )  * WRITE(HEAD) - HEAD; 
WRITE(HEAD) + X; 

procedure DELETE(HEAD);  
i f  HEAD $ READ(HEAD) then begin 

X + READ(HEAD); 
READ(HEAD) + HEAD - PTR(X) ;  
i f  READ(HEAD) # HEAD then 

PTR(READ(HEAD))  + PTR(READ(HEAD)) - X + HEAD; 
end ; 

(c) HEAD Z Y X 

188 124 19 5 7 

(d) HEAD W Z Y X 

3. (a) 3 linear arrays. 
(b) Binary tree. 
(c) (1) Put tops of stacks at opposite ends of a block of space and have them grow toward each 

other. (2) Use dynamic allocation of list space, with garbage collection. 
(d) Sequential list of entries (i, j ,  A[i, jl) for all nonzero A[ i ,  jl. 
(e) Hash table. 

4. (a) Clearly max l,;s,,lx;-81 r I@-€J~, 10-al. Therefore 20max ls;s,,lx;-O1 1 IP-OJ+ 10-a1 r IP-cil, or  
max 15;5,,lx;-81 1 IP-aI12. Equality occurs when 0 = (a+0)/2, so this value of 0 minimizes Ixi-81. 

(b) We can find a and (3 using essentially 3n12 comparisons, as follows. First we compare x2i-1 
with xqi  for i = 1 , 2 ,  . . . , n / 2  (n12 comparisons). The larger elements from each cornparison are 
saved in an array MAX(i) and the smaller elements in MINO). Then 0 can be computed as the 
maximum element of MAX(i), and a as the minimum element of MIN(i). Each of these 
computations requires (n12)-1 comparisons, for a total of (3n12)-2 comparisons. 

Theory of Co~nputatio~l 

1. For both parts, let (Pi  I i = 1, 2, ...) be an effective listing of all computable functions. For 
example, Pi might be the ith ALGOL W program and Pi(x) would be the output given by that 
program on input x. 

(a) Suppose that there is an algorithm to decide whether or not a given procedure calls itself. 
Consider the procedure A L P H A ( x )  defined as follows: 

PROCEDURE ALPHA ( INTEGER X) ;  
B E G I N  INTEGER 1,J; 
I + X D I V  2; 
J + X MOD 2;  
I F  J = 8 AND P i ( i )  halts THEN ALPHA ( X + l ) ;  
END; 
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Clearly ALPHA(E*i ) calls ALPHA recursively if and only if P;(i) halts. Thus we can solve the halting 
problem, which is a contradiction. 

(b) Suppose that there is an algorithm to decide whether or not two programs have the same 110 
characteristics. Now let g(i) be such that P@i)(x) = 0 if Pi(i) halts, and undefined otherwise. Also, 

' let io be such that piJ~) = 0 for all X. Then halts if and only if Pg(i) and Pio have the same 
110 characteristics. Thus we can solve the halting problem, a contradiction. 

2. (1) context free, (2) context free, (3) regular, (4) recursively enumerable, (5) context sensitive, (6) 
context free, (7) context sensitive, (8) not recursively enumerable, (9) regular, (10) regular. 

3. ( 1 )  true, (2) true, (3) false, (4) unknown, (5) false, (6) unknown, (7) false, (8) true, (9) true, (10) 
false. 

Hardware 

RCD Excess-3 ' 
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Either of the following diagrams: 

- 
Bo 

B1 

9 

'., B2 

- 
B2 

B3 - 
B3 

(c) Same as the second diagram in part (a) except that all gates are replaced by NOR gates. 
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2. (a) . L I U ~ L ~  xino 

1 1 1 

I 
Oe 

(b) Outputs listed in the order 020100: 

All arrows which are not labelled "ck" are transitions from unstable states (i.e. a flip-flop has been 
triggered but hasn't responded). 

3. (a) A memory unit whose contents are destroyed in the process of being read. Example: core. 
(b) A memory device which requires power to retain information. Example: any T T L  RAM. 
(c) A memory device in which any location in the device may be directly accessed, with 

approximately equal access time for each location. Example: core. 
(d) Memory which is used for the storage of instructions and not available for storage of working 

data. Typically implemented via ROMs. 
(e) A device which has n inputs and 2n outputs, where the input is interpreted as a n-bit binary 

number. For each of the 2n possible inputs, a unique output line is selected. Example: address 
decoders. t 

SPRING 1976 COMPREHENSIVE EXAM 

Theory of C o ~ n p u t a t i o ~ ~  

1. (a) (i) The  set is not regular. Its intersection with the regular set OXIOX is {OnlOn I n?O), so by 
Theorem 3.6 in Hopcroft and Ullman it is sufficient to show that (OnlOn I n>O) is not regular. 

Suppose that a finite automaton accepting (0'110" 1 nrO} has k states. In scanning the first 
k+l symbols of oh+' loA+', some state is visited twice; hence the (non-empty) string scanned between 
visits can be removed from the input without affecting the input's acceptance. This shows that the 
finlte automaton accepts a string which is not of the form OnlOn. 

(ii) The  set is regular. Taking x = 1 we find that the set contains 1(0+1)*1. But clearly it can 
contain no more than this, since all strings in the set begin and end in 1. So the set is in fact equal 
to 1(0+ 1)*1. 



184 ANSWERS 

(b) By Theorem 3.6 in Hopcroft and Ullman, Rp n R1 is a regular set, and this set is empty if 
and only if R 1  c R2. It is significant that a constructive proof of this theorem is given; by Church's 
thesis we assert that a Turing machine can be constructed which reads M I  and M 2  and produces 
MB accepting & n R1.  NOW if M3 has k states we simply run Ma on all inputs of length < k and 
see whether or not any input is accepted. By Theorem 3.1 1, n R 1  is empty if and only if n o  
input of length < k is accepted by M3. 

2. (a) If term always terminated, it would be a decision procedure for termination of LISP 
computations. This would enable us to solve the halting problem for Turing machines, which we 
know is unsolvable. 

(b) O n e  possible solution is 

bad[ul c substru, U , quine[(LABEL FOO 
(LAMBDA (X) (COND ((U (QUINE X)) (FOO X)) ( T  T))))l 

T h i s  function was obtained by first constructing from term a new LISP function FOO which tells 
whether a LISP function terminates when it looks at its own S-expression representation, and gives 
its answer by not terminating when the answer is yes and giving T otherwise. Then bad[term*l is 
the S-expression representation of foo[foo*l and the fact that i t  doesn't terminate follows from its 
construction but also from carrying out the indicated computation on recursion. 

Nutnerical Analysis 

1. For each part of the problem, we use the result that the iteration xk+l = f(xii) converges to a 
root u of the equation x = f(x) if I ff(x) 1 < 1 in a neighborhood of a (containing xo). Since the 
functions involved are continuous, it is in fact sufficient to show that I ff(u) 1 < 1. Also note that if a, 
6 are the roots of x2 + a l x  + a2 = 0, then we have a + @ = -al and a@ = a2. 

a 1 %+a2 a2 a2 .p 
(a) Here f ( x )  = - - = -al - -, so fr(x) = - - 

X X x2 x2 '  

T h u s  Iff(u)l = = / e l  < 1 since 1.1 > I @ I .  
u2 a 

a2 (b) Here f(x) = - - a2 , SO ff(x) = - = a@ 
x+a ( ~ + a ~ ) ~  (X-U-@)~ 

T h u s  Iff(a)l = I @ I  = 151 c 1 since la1 c I @ / .  
p2 @ 

xL+a2 
(c) Here f(x) = - - 2 x  2 x  , SO f f (x)= - - = - ~ h u s  /ff(u)l = 1x1 < 1 since 21ul c Iu+fiI. 

a1 a l  a+@' a+@ 

2. (a) fl C ai  = (fl(al+. . . + ~ ~ - ~ ) ) ( 1 + 8  1) + a,,,(l+S 1) 1 
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(b) Yes, you should sum the smallest terms first so that they will contribute to the sum instead of 
getting lost when they are added to the large partial sum from the first few terms. 

1 (c) We have fl(n2+x) = (n2+xX1+61) and fl(-!-) = -(1+81)(1+62), so there are two extra 
n2+x n2+x 

factors 1+Si. 
N N 

1 Therefore S I  = fl (x --;--) = 2 (1 + 1 .Ol(N+3-n)Bju), 
Tl.1n+x t l=l?z+x 

N 
1 

N 
N+3 < 1 so lerror in S ,  1 r -$3'-' =(N+3-n) 5 -0'-'(1.01) - - ( 1 . 0 1 ) ~ ~ - ~ ( ~ + 3 ) ( 1 . 6 4 ) .  

2 ,,,I i 2+x  2 11- 1 n 2 2 

1 
N 

1 so lerror in S21 I. - ( 3 1 ' 1 ( l . ~ l ) ~  5 -0'-'(1.01)(1 + InN + 2(1.64)). 
2 n-l ?I 2 2 

(d) For P = 16, t = 6,  N = 10000: 
1 error in S , ( 5 (1/2)( 1.0 1)( 16-~)(  10003)(1.64) = 10-~*10~(1.64)/2 = 1 0 ' ~ .  

lerror in S21 5 (1/2)(1.01)(16-=)(I + In 10000 + 3.28) 2: (1/2)(1.01)(10~6)(10.21 + 3.28) x 7 x 
so the roundoff is much smaller in the second case, 

w 
1 (e) Truncation error r - which is between - 1 
2 '  

and -. so it is about 
~ = N + I  n N+ 1 N '  

Actual roundoff in first result is 
1.644934 - (1.643517 + .0001) = 1.644934 - 1.643617 = .001317 < .0100. 

Actual roundoff in second result is 
1.644934 - (1.644833 + .0001) = 1.644934 - 1.644933 = .000001 < 7 ~ 1 0 - ~ .  

1. (a) Run time stack, since the space needed depends on the depth of recursion, and bindings follow 
stack discipline. 

(b) Run time stack, for the same reason as in (a). The fact that binding is on block entry rather 
than procedure call does not change the needs. 

(c) Run time general, since there is no way of knowing ahead of time how many records of what 
type will be created, and records become free when there are no references to them, which does not 
follow scoping discipline. 

(d) Run time stack, as in (a). 
(e) Run time general, as in (c). 
(f) Run time general, since there must be a way to allocate new atom headers when the READ is 

executed, and they are not freed up when the function or block is exited. 
(g) Compile time. If in FORTRAN, it must be. 
(h) Run time general, since processes are created and destroyed independently of the normal stack 

discipline. This  can be integrated into a stack, as with INTERLISP'S spaghetti stack. 
(i) Compile time. Pointers to pieces of code can be allocated like any other variables. 
(j) Run time stack, as in (a). 
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2. (a) Op-codes for commonly used instructions (like CONS, MEMBER, etc.). 
M icro-coded aid for frequent internal operations such as variable binding, stack 

manipulations, variable referencing, or function call (as in the LISP interpreter). 
Compact encodings for programs and data. E.g. ByteLisp packs most instructions into 9 bits, 

allowing 4 to be stored per word. Schemes for encoding LISP list structure have been proposed 
which get a 2-to-1 reduction for typical data. These compacting strategies could be done without 
microcode, but the encoding and decoding expense would be too great. 

Virtual storage management. Much more sophisticated schemes can be used without incurring 
to much overhead, when address translation is done in microcode. 

(b) Static measurements of how often different operations are called for in existing programs. 
T h i s  requires an analyzer which goes through programs gathering statistics. An example in LISP is 
finding out how many calls in typical programs are to functions with no arguments, one argument, 
two arguments, etc. A result might be a decision to put in an opcode which was specially designed 
for calls to functions of one argument, thereby avoiding some of the overhead associated with 
variable numbers of arguments. 

Static measurements of how data is actually distributed in typical programs. For example, if 
most of list structure involves long CDR chains and short CAR chains, the optimal encoding would 
be different than if it was a balanced binary tree. 

Dynamic measurements of how often different operations are done. This requires a version 
of the language which has the capability to gather statistics as its runs. At the level of function 
calls, it can be done with a tracing mechanism, but to handle internal things like stack manipulations 
and variable lookup, it is necessary to build in special measurement facilities. 

(c) If space is the major bottleneck, then the emphasis would be on supporting virtual memory 
management and on encoding the programs and data into a more compact form. 

3. (The machine under discussion is the DEC PDP-11/45.) 
(a) All we want to do is (i) make virtual addresses 0 through BOUND-1 valid, all others invalid, 

and (ii) map virtual address VA into physical address BASE+VA. This we can do as long as BOUND 
and BASE are multiples of 64 bytes (low order 6 bits zero). 

T o  do the simulation, let BOUND = n * 8K + m. Make MR's 0-n resident, upward expanding, 
and full length (NR="false", ED="up", LF=max='17700), except that MR n has length m (LF=m-64). 
Make AF of MR i be BASE + in8K. Make all other MR's nonresident (NR="trueW). 

(b) T o  use the hardware for paging, make MR's 0-7 upward expanding and full length (ED="upW, 
LF=max='17700), and require that each AF be a multiple of 8K (low 13 bits zero). We get an  
eight-page address space, each page of 8K byte length. 

(c) If we make all MR's upward expanding, we get a segmentation of sorts: there are 8 segments of 
8K byte maximum length. We don't have segmentation in the Multics sense because, for example, 
there is no provision for control of inter-segment references (indexing from a pointer in segment i 
can easily produce an address in segment jiti). To  be comparable to Multics, the addressing scheme 
also needs provision for dynamic linkage of segments by symbolic name. Segmentation is clearly a 
bad approach here because of the restriction to only 8 small segments in a program. Multics allows 
up to 218 segments to be linked together. 

(d) T h e  primary reason for having memory mapping on this machine at all is to allow a large 
physical memory to be addressed by a machine with a small virtual address space. Large pages are 
a problem due to the potential for internal fragmentation, but having upward- and 
downward-expandable, variable-length "pages" may help here. On  the other hand, smaller pages 
would requlre more overhead to set up; since the mapping registers are in fixed locations (instead of 
being kept in core, pointed to by some register), the overhead of loading and unloading them can be 
considerable. Even if page tables are maintained only in mainstore, the space they take up can be 
considerable when pages are small. 
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Data Structures 

1. (a) A stack. This could be implemented as an array stack(l::n) with a pointer top to the top of 
the stack. Initially top = 0. 

Insertion is: 
if top=n then overfloru else begin top = top+l; stack(top) t item end; 

Deletion is: 
if top10 the11 empty else begin item c stack(top); top = to?- 1 elid; 

Each operation requires O(1) time, average and worst-case. The stack could also be implemented 
using a linked list. 

(b) A queue. This could be implemented as an array queue(l::n), with two pointers front and back. 
Initially front= I ,  back= 1. We imagine that position 1 follows position n. 

Insertion is: 
if (back mod n)+ 1 =front then overflow else begin 

queue (back) t item; 
back t (back mod n)+l 

end; 
Deletion is: 

if back =front the11 empty else begin 
item t queue (front); 
front t (front lnod n)+ 1 

end; 

Each operation requires O(1) time, average and worst-case. The queue can store n-1 items (at least 
one array position is left empty so that an empty queue and a full queue can be distinguished). A 
linked list could also be used to implement a queue. 

(c) A heap. A heap is a complete binary tree such that the root is the smallest element and each 
child of a vertex is at least as large as its parent. We can number the elements from 1 to n, such 
that 1 is the root and 2x and 2x+1 are the children of x. Then we can store the entire tree in an 
array. 

T o  insert, we add the new element at position n+l and "sift up" by interchanging along the 
path from n+ 1 to the root so that the elements on this path are ordered. Insertion requires O(1) time 
on the average. 

T o  delete, we return the element at position 1, put the element at position n in position 1, and 
"sift down" by comparing the current elements to its two children and exchanging it with smaller if 
necessary. Deletion requrres O(1og n) time on the average. 

(d) A hash table. A hash table is an array of list heads plus a hash function. T h e  hash function, 
given an arbitrary real number, computes a position in the array. 

T o  insert an item, we compute its hash function and add the item to that list. This  always 
requires O(1) time. 

T o  delete all items of a given value, we compute its hash function and delete all items of the 
desired value from that list. If the hash table is enough (say larger than the number of items it 
contains) and the hash function distributes the values evenly into the table, then deletion requires 
O(1 + no. of items deleted) on the average. 

There are many variations possible on this basic hashing scheme. Another reasonable answer 
to this question is a balanced tree of some sort (AVL tree or 2-3 tree). For these structures, the 
average time per insertion is O(log n) and per deletion is O(log n + number of items deleted). 
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(b) T h e  following ALGOL W solution attempts to mimic the given definition of S, trees as 
closely as possible. The main difficulty comes in ensuring that null RSIBLINGS are properly checked 
for; here this is accomplished by stopping the recursion at N = l  rather than N=0. 

PROCEDURE CHECK (REFERENCE (NODE) VALUE S; INTEGER VALUE N); 
BEGIN 
I F  RSIB(S)#NULL THEN ERROR("Root has b r o t h e r " ) ;  
I F  N=0 THEN 

BEGIN I F  LCHILD(S)+NULL THEN E R R O R ( " 1 l l e g i t i m a t e  c h i l d  o f  r o o t u )  END 
ELSE CHECKl(S,LCHILD(S),N) 
END CHECK; 

PROCEDURE CHECK1 (REFERENCE (NODE) VALUE P,C; INTEGER VALUE N) ; 
BEGIN 
I F  C=NULL THEN ERROR("Missing c h i l d * ) ;  
I F  KEY(P)>KEY(C) THEN ERROR(I1Parent l a r g e r  t h a n  c h i l d u ) ;  
I F  N = l  THEN BEGIN 

I F  LCHILD(C)#NULL THEN E R R O R ( " 1 l l e g i t i m a t e  c h i l d " ) ;  
I F  RSIB(C)#NULL THEN ERROR( "Unexpec ted  sib1  i n g " )  
END 

ELSE BEGIN 
CHECKl(C, LCHILD(C),N-1); 
CHECKl(P,RSIB(C),N-1) 
END 

END CHECKl; 

Cleaner solutions are possible by noticing that an S,, tree is really a toot  whose sons, from left to 
right, are roots of S,,-,, S,l-2, . . ., SO trees. A good non-recursive implementation using this idea 
requires only two cells of stack space for each level it descends into the tree. 

Hardware 

1. (a) - Data Out 

r 
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Data In Data Out - - 
- - 

S h i R n  - 
We must assume that the inverter is sufficiently fast. In particular, the delay through the inverter 
must be less than the delay through a latch, minus the latch's hold time. 

2. (a) Just invert Data Out: . 
Data Out 1's compl Data Out 

(b) Transmit all Data Out bits unchanged until a '1' is produced, then invert the rest: 

Start 2's corn 1 Out J 
Some signal (Start 2's compl Out above) must be used to define when the register actually contains 
the number whose 2's.complement is to be shifted out. There will be glitches in 2's compl Data Ou t  - 
when CARRY is set, due to the unequal delay through the last shift register stage and CARRY. 

Artificial I~ltelligerice 

1. The  negation of the goal statement is Vx 3y (P(x)  A.NP(~) ) )  and this gives the clauses P(x)  and 
wP(Y(x)) to be proved inconsistent. A single resolution does it. 

2. (a) A depth first search avoiding previously visited vertices will take O(3") steps since this is the 
size of the graph. 

(b) A recursive program that generates moving all but one disk to the third spike as a subgoal 
followed by moving that disk and moving the pile back will take O(2") steps. 

(c) A si~itable problem reduction program can discover that the top disk can be moved anywhere, 
so that any condition on the position of the top disk can always be satisfied. This program will 
reduce the problem to the n-1 disk problem and then to the 72-2 disk problem, etc. Such a program 
wil establish a method of moving the disks in O(n) steps although there are 2'' moves. 

(d) T o  "solve" the problem in O(1) steps requires that the program explicitly use mathematical 
induction or some equivalent mode of reasoning. 
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WINTER 1977 COMPREHENSIVE EXAM 

Systems 

1. (a) A class is a specification of a packet or template of data and/or procedures and/or a sequence 
of statements which are to be associated as a unit. Some examples: (I)  the data might be two reals 
representing a complex number and the associated procedures would do arithmetic on these 
numbers; or (2) the data might be an integer "info" and a pointer "llnk" to an object of the same 
class, and the associated procedures might insert and delete from linked lists; or (3) the class might 
represent a coroutine. Thus, a class is like records in ALGOL W or SAIL but with procedures 
associated too. Class objects can be created dynamically and be pointed to, and these objects can 
survive the procedures which created them. We can prove properties about the procedures of a 
class and use these properties to prove the correctness of a larger program, whenever that program 
doesn't meddle with the data in an unauthorized manner. Furthermore, a class can be used to 
spec~fy a "pearl" or a level of program development in which all code for an implementation 
decision is grouped together. 

(b) Test-and-set wastes time doing "busy waiting". 
(c) Matrix A would be laid out grouped by rows and matrix B by columns, so that memory 

references would tend to be grouped and thus require fewer pages of storage. 
(d) (1) No flexibility in priority, favors long jobs. (2) Infinite overtake (long jobs may never be 

run). (3) Swapping overhead. 
(e) No. A process cannot request a resource whose index is less than the index of a resource it 

holds. T h u s  if process A requires resource i which process B holds, process B cannot request a 
resource which A holds, because A's resources must all have index less than i, which B already has. 

2. (a) For string variables of varying length you can't use the stack to store the string itself because 
the stack can only contain quantities of a fixed length. Therefore, the entry in the stack will merely 
contain a pointer to the actual string, which is stored in a general data area. T h e  length of the 
string must be indicated in some way, either by including the length with the pointer in the stack; by 
having the length be the first datum in the string area; or implicitly by having a special 
end-of-string character. 

If the string variable had a known, fixed length, it could be stored on the stack. Even in this 
case, if the compiler writer assumed that users usually declared strings much longer than necessary 
and wasted the extra space, the "varying" implementation could be used with the implication that all 
character positions beyond what was actually stored would be understood to be blank. 

(b) In case (i), we know exactly what a "vector" is when the type is declared, so we may as well set 
u p  a template of the usual form for an array. We would set up code to fill in the bounds entries 
right away to whatever they evaluate to at run time; in the example this value is 3. Later references 
to type vector would either copy or point to this template to describe the variable being declared. 

In case (ii), type definitions could become arbitrarily complex before we come to the time to 
evaluate everything in actually declaring a variable. S~nce there is not much sense in partially 
evaluating something while arbitrarily complex segments remain unevaluated, we would probably go 
to some kind of macro or call-by-name scheme to keep track of the type definition. Accordingly, 
what we would store would be the unevaluated input text, or some coded version of it. 

(c) T h e  major kind of error checking for procedures is the number and types of parameters and 
the returned result. If a procedure variable can potentially hold any procedure, this checking would 
in the general case have to be left until run time. However, we could take a stricter view of the type 
procedure and divide it into multiple types according to the parameters. Thus we could say, for 
instance, that a procedure or procedure variable has type 

boolea11 procedure (real, real procedure (integer), ittteger). 

Enforcing this discipline would move all type checking to compile time. 
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Procedure variables also allow for the possibility of calling a procedure from outside its static 
(block) environment. Since this violates the normal stack discipline, one might dismiss this 
possibility as an error, and the given example as nonsense. However, coroutines are a valid example 
of a situation where the stack discipline is insufficient; there must be some way for a procedure 
which is currently dormant to keep its environment intact. This calls for a procedure to have 
associated with it pointers to both its caller (dynamic enviroment) and its enclosing block (static 
environment). As long as a reference to a given procedure exists, the static environment must not be 
destroyed. 

Nu~nerical Analysis 

1. The  indicated strategy uses a safe but slow method, namely bisection, which guarantees that 
the error is halved at each step until close to the root. Then the superior convergence rates of either 
the secant method or Newton's method (orders ~ 1 . 6  or 2, respectively) can be used to advantage if 
the function f is smooth and has a simple zero, since hopefully one has gotten close enough to the 
root for the asymptotic estimates to apply. Thus, we attempt to avoid the unreliability of the secant 
method and Newton's method when far from a zero. 

2. The  secant method only requires one function evaluation per iteration while Newton's method 
requires the evaluation of both the function and its derivative each iteration. Any additional 
iterations which may be required for the secant method to achieve desired accuracy is often offset by 
the expense of computing the derivatives for Newton's method. 

3. (a) Underflow or overflow will occur if the magnitude of either x or y lie outside [~-l/*,111 l/*] 
while z 1 can still lie in [M-',MI. 

(b) t -3  bits. If 1/16 5 (UIU)~ < 118 then the binary representation of the fractional part of ( U / U ) ~  
looks like . 0 0 0 1 x x x . .  ., which has only t-3 significant bits. 

(c) t-i  bits. Since 114 2 ru I 112 the fractional part of ru looks like . O l x x x .  ... Thus, we cannot 
expect w to have more than 1-1 significant bits. 

4. (a) We store the elements of the original matrix in three vectors of length N, a_ = (a,, . . . , a,,), b_ = 

(bl, . . . , E , , ) ,  and c_ = (cl, . . . , cJ. The resultant matrix will be an upper triangular matrix whose 
only nonzero elements lie on the main diagonal, on the superdiagonal, and in the last column. We 
will store our result in the same three vectors a, b, and c; We will store the diagonal and 
superdiagonal in b_ and c_ respectively, as before. We will store the first n-2 elements of the last 
column in a l  , . . . , a,,-*, i.e., we can relate our vectors a, b, and c_ to the matrix as shown below. 

It is easy to see that the elements ci, i = 1, . . . , n-2 are not changed in the elimination process and 
that the first row of the matrix is already in the desired form. We assume that the values of the 
original matrix are already stored in the vectors a, b, and c, At each of the first n-2 steps of the 
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algorithm we will introduce a nonzero element in the last row as we zero out the leftmost nonzero 
element; we will store this element over c,. 

The  algorithm: 

begin 
for i := 2 until n-2 do 

cosnment reduction of the (i-1)st row and column; 
begin 
cob := ~ i - , l b i , ~ ;  aob :a q - l l b i - l ;  , bi := bi - ai * cob; ai  := - ai * aob; 
b,  := bn - c,  * aob; c,  := - c,  u cob; 
end 

comment reduction of the (n-2)nd row and column; 
cob := ~ ~ - ~ / b , ~ - ~ ;  sob := a,,_2/b,L-2; 
b,#,l :P b,,, - an,, * cob; C n , ,  :P C l l - l  - an-1 * Q O ~ ;  
a, := a ,  - c ,  w cob; b, :== b, - c,  v aob; 
comment reduction of (n-1)st row and column; 
b, := b,t - a n  * ~ n , ~ l b ~ -  
end 

(b) Pivoting is not necessary if the matrix is positive definite or irreducibly diagonally dominant. 

Artificial lntellige~~ce 

1. (1) AND/OR trees 
(2) add and delete lists 
(3) consequent theorems 
(4) forward reasoning . 
(5) symbol-mapping problem 
(6) Skolem functions 
(7) unification 
(8) set-of-support 

(8) problem reduction 
(3) effects of operators 
(2) backward reasoning 
(5) HEARSAY-I1 
(6) inheritance of properties in "isa" hierarchies 
(9) removal of existential quantifiers 
(7) matching 
(1 0) resolution strategy 

(a) (vx){tow"(x) s (3y ) [dogcatcher (y )~ l ives - in (y ,x )n (Vz) [d~ inz ,x )  i has-bi tten(z, y)]]) 
(b) ~(3~){to~n(~)~(3yXdog(y)~lives-in{y,x)~~(Vz)~dogcatcher(z)~lives-in(z,x) * has-bitten(y,z)l) 
(c) (3~){town(x)~(3y)~dogcatcher(y)~lives-in(y,x)~~(Vz)~dog(z)~lives-in(z,x) * has-bitten(z,y)lj 

3. Axioms: ON(A.B), ON(B,C), GR(A), BL(C),wGR(C). 
Negation of theorem: wON(x, y) v wGR(x) v GRb)  . 
One possible refutation: 
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4. (a) Clause form sometimes results in redundant effort. For example, suppose we are trying to 
prove (A v B) A C. The negation of this expression produces the following clauses: 

Suppose we begin by resolving (1) and (3) yielding (6) NA v ND. Next resolve (6) and (4) yielding 
(7) HA. Not being able to resolve (7) against anything, we try (2) and (3) yielding (8) NB v ND.  
Resolving (8) against (4) and the result against (5) produces the contradiction. An analysis of the 
search for a p m f  reveab that the process of getting rid of ffC was the same for both clauses (I) and 
(2): we used clause (3) and then (4) in two identical sequences. This sort of repetition was caused by 
having to "distribute" into more than one goal clause. A natural deduction system, for example, 
could have proved C once and for all and then taken up the subgoal of proving A v B. 

Often formulas are given (by the domain expert) in a form which suggests the most efficient 
use. For example, the formula A v B + C suggest either (i) to prove C, first prove A and B; or (ii) 
when A and B are known true, assert that C is true. Converting A A B 3 C into clause form yields 
HA v NB v C.  NOW we have destroyed the heuristic information regarding how to use this 
expression. -A v NB v C could also have arisen from A A WC => -B, for example. 

5. (a) Look at the imp1mmRtions used for both. These usually involve simple list structures or 
property list structures that are pretty much the same for both formalisms. So these different 
formalisms are merely a different way of talking about fundamentally the same representation. Both 
have to be able to handle quantification and all the logical connectives. 

(b) Most implementations of predicate calculus representations deal with "first-order" predicate 
calculus. Semantic nets allow several "higher-order" constructs such as: 

(1) quantification over predicates and functions 
(2) typing of arguments 
(3) explicit representation of sets, subsets and elements of sets. 

In addition most semantic net implementations have two-way indexing between arguments and 
predicates, which is a feature that most predicate calculus implementations do not have. 

where " . . . " meas the 

same subtree as before. 

(b) Call magic "split" instead. Its body is 

if T = 0 then L. t R t 0 
else if x < info[TI then begill s~lit(left[TI, x, L,  leff[Tl); R t T elld 
else if x > info[Tl tlle11 begin split(right[~l, x, right[Tl, R); L t T end 
else begin co~nine~it  x is already in the tree so delete the duplicate; 

L c leff[Tl; R t rtght[T]; 
. coln~neat could also return node T to available storage now; 

end 

(c) The  main thing needed is a clear "invariant" statement about what "split" does, followed by a 
proof that it does do this. 



194 ANSWERS 

Procedure split(T, x,  L ,  R) takes a binary search tree T and a value x, and sets L to a binary 
search tree consisting of all nodes t of T with info[tl < x, and sets R to a binary search tree 
consisting of all nodes t of T with info[Tl > x. Tree T is destroyed in the process. Furthermore t is 
an  ancestor of u in L if and only if t was an ancestor of u in T, for all t ,  u E nodes (L); and the same 
holds for R. 

Th i s  induction hypothesis is strong enough to prove that split does its thing. For example, if 
T = 0 or info[Tl = x, the validity is obvious. Otherwise if, say, x < info[Tl then 
split(left[Tl, x,  L ,  left[Tl) will (by induction on the size of T, for example) set L correctly and will 
replace left[T] by the subset of its nodes which are greater than x, hence R t T sets R correctly. 

Furthermore BST(x, x l ,  . . . , x,,) is the result of topins(x, BST(xl, . . . , x,,)), for 
BST(xl,  . . . , x,,) is the unique binary search tree T such that {infoi'tl I tsTj = {xl,  . . . , x,,] and t is an 
ancestor of u in T if and only if i = min{k I infoi'tl = xk} and f = minik 1 infoi'ul = xk) implies i < j. 
Since topins(x, BST(x,, . . . , x,,)) produces a binary search tree in which x is the root and in which 
other ancestor relations are present in BST(xl, . . . , x,,), the output of topins must be 
BST(x, XI ,  . . . , x,,). 

2. T h e  maximum occurs when all terminal nodes (leaves) have cost equal to their level plus one, 
and all other nodes have cost zero. Proof: If c(a) > 0 and a has k r 1 sons, change c(a) to 0 and add 
c(a) to the costs of all k sons. This preserves the sum on all paths from the root, so all inequalities 
are preserved. Furthermore it does not decrease the total cost. After applying this operation a finite 
number of times we obtain a tree with no smaller cost and all nonzero costs at the leaves; hence 
there is always an optimum cost assignment of this form. The maximum cost subject to this 
condition obviously has c(u) = level(u)+l for all leaves a. 

Theory of Cotnpu tation 

1. , u ,  IU -, Q(P(y, y)); t , 2 + Q(Q(P@, 3))); X ,  v + P(Q(Q(P(y, y))), Q(P@, 9))). 

2. (a) 91: Oql , 192, (- or 0) half; q2: lql ,093, 1 halt; 43: 092, 143,042. 
(b) Yes. T h e  problem for each j is to output m times the remaining string plus the carry from 

xj-] .  . .xo, SO the minimum necessary and sufficient number of states is the number of distinct carries 
that can occur. Let yj be the binary number represented by x j - ~ .  . .xo, then the carry into position j 

is L ~ ~ ~ I Z ~ J ,  and this can be any integer from 0 to m-1 inclusive when f is sufficiently large. Hence rn 
states are necessary and sufficient. 

(c) Not possible. For example, if the machine has n states it cannot form the cube of Zn, since it 
must be able to count off 2n squares after inputting x, = 1. 

3, (a) S -, aSbS + abS + abaSbS + ababS + abab 
' abSaSbS ' 

(b) S + aSbS I abS I aSb I ab 
(c) Start symbol So. So + aSobS I aS lbSo I aS2bS2 

S + aSobS2 I aS ,bSl I aS2bSo 
S 2  + aSObSO I aSlbS2 I aS2bS1 

(d) Let the given grammar have start symbol S, nonterminals N, terminals A, productions P. T h e  
new grammar has start symbol So, nonterminals (Vo, VI, V2 I VcNj, terminals A, and productions 

(Vi + p If(P) = i (modulo 3) and t(P) = u and V + u t P j ,  where 

f(c) = 0, f(au) = 1 +flu) for acA, f(Viu) = i +flu) for VrN; 
t ( ~ )  - e ,  t(aa) = at(a) for atA, t(Viu) = Vt(u) for VcN. 
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(In other words, the sum of the subscripts plus the number of terminals on the right side is 
congruent to the left subscript modulo 3.) 

Hardware 

1. (a) A dynamic memory is a semiconductor memory whose contents need to be periodically 
refreshed (by reading or writing) to prevent the information from being lost. 

(b) A cache memory is a high speed memory in the actual CPU which is used to speed up 
program execution by remembering recently used instructions or data. For example one might 
prefetch a block af instructions at a time and allow the CPU to execute out of the cache. 

(c) A PROM is a read-only memory (i.e. with fixed content), but whose content can be changed 
by using special techniques such as ultra-violet light erasure and electrical reprogramming. 

(d) Direct memory access occurs when a high-speed peripheral device accesses the main memory 
directly through a special channel without having to go through the CPU itself. 

2. (a) T h e  ICarnaugh maps for the 7 output functions a, b ,  c, d ,  e, f ,  g are given below. A 
simpler design results if one designs the circuit as a product-of-sums (using the 0's of the function) 
instead of the more usual suin-of-products. 

Using De Morgan's theorem, X*Y = j7 t 7, we can use NOR gates exclusively. 
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- - - 
A ~ n 5  c c D D 

Circuitry 
for  f a l s e  
data rejection 

Further savings of gates can be obtained if there is some logic sharing between output functions. 

(b) T o  reject non-code inputs, the entries in the truth table should be all 0's for lines 10 through 
15. This  corresponds to the addition of prime implicants ( E  + 8) and (B + B) to force all outputs to 
zero when a non-code input occurs. Both ( E  + 6) and (B + B) should be added to functions a, b ,  
c ,  d ,  and g, whereas only implicant (B + B) is needed for function e ( ( E  + 8) is already covered), 
and (c + B) for function f ( (B + B) is already covered). 

Th i s  can be very easily done by adding two more NOR gates to generate (c + a) and (fi + B), 
and feeding their outputs to the appropriate output N O R  gates in the previous circuit as shown 
above. 

3. (a) Number of states needed = 5. Minimum number of flip-flops = [ log2 5 1 = 3. 



WINTER 1977 

State a z s i m  (Q~, 02,($) 

s1 -- 099 

s2 -- 001 

z, -- 010 
I 

q -- 011 
s, -- loo 

m a & .  nau; of' Excgtation 3 ~ c t i o n s  - 

~i = dm't care 

- 
3 Q3 

' J2 
-4) CLK > CLK 

Output functions (using remaining 3 states as don't cares): 
- - A  - 

T I  = CQlQ2Q3, T 2  = CQ2Q3, T3 = CQ&, T4 = CQ2Q3, T5 = CQI 
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Algorithms and Data Structures 

I .  Consider a sequence which contains the nodes of T in symmetric order. Let S be the 
subsequence which consists of P and all of P's descendants, and suppose that A immediately precedes 
S and B immediately follows S. 

( P's right descendants 
P's left descendants 

Now, P is either the left or the right child of its parent. Note that, if P is the left child of its parent, 
that parent is B, the first node following the entire block S in symmetric order. Similarly, if P is a 
right child, its parent is A, t h i  node immediately preceding the block S. 

We can find these two candidates easily. By following right links from P until we hit a null 
one, we can find the rightmost node in S, then its right thread will point to B. T h e  other case is 
handled symmetrically. 

There is no easy way to tell whether P is a left or right child of its parent. So, we just try 
both candidates. Suppose we try B first. Since B is pointed to by a right thread, B must have a 
non-null left child; we test whether that child is P. If not, A must be the parent. 

T h e  above has not considered the case where one or both of A and B are the header node, but  
everything works out OK. Thus we obtain 

Algorithm Parent. 
P 1. [First try B, in case P is a left child.] Q t P. 
P2. [Follow right links.] While R T A G ( Q )  = "+" do Q t RLINK(Q). 
P3. [And one right thread.] Q c R L I N K ( Q ) .  
P4. [Now Q = B, and we know LTAG(B) = "+".I If LLINK(Q) = P then return (Q). 
P5. [No good, so now find A; P is a right child.] Q * P. 
P6. [Follow left links.] While L T A G ( Q )  = "+" do Q 6 LLINK(Q). 
P7. [And one left thread.] Q t L L I N K ( Q ) .  
P8. [Now Q = A, and we know R T A G ( A )  = "+".I If RLINK(Q) = P then return (Q). 

2. (a) Since NR(2)-CNF satisfiability is a special case of arbitrary Boolean expression satisfiability, 
and the latter is in NP, the former is also in NP. T o  show completeness, we can transform 
3-satisfiability into NR(2)-CNF satisfiability. 

If every clause has at most three literals, the only way that the NR(2) condition can fail is for 
a clause to be of the form 

(3j + pj + 2);). 
W e  can replace such a clause by the two clauses 

(Z; + Zj + y)(y + ??A) 
where y is a brand new variable. It is easy to check that the troublesome clause is satisfiable if and 
only if both of the replacements are. Furthermore, this transformation can certainly be performed in 
polynomial time. Thus, any fast algorithm for NR(2)-CNF satisfiability would imply the existence 
of fast algorithms for 3-satisfiability and hence for all problems in NP. 

(b) Here is one possible representation: 
Represent clauses as linked lists with the negated variable (if any) last in the list. Represent 

unordered sets of clauses by linked lists with pointers to both head and and tail, as shown below. 
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Note that these sets can be merged in constant time. 
Also, add an array A[l:n] with the convention that A[il =false indicates that the process has 

discovered that x; must be false to have any hope of satisfying the input expression. Otherwise, the 
value of A[il is a set (possibly empty) of clauses which can be ignored if x i  is true, but which must 
be satisfied if xi is false. 

T h e  algorithm initializes all elements of the array A to the empty set, a.nd initializes the 
variable input to a set containing all the clauses of the input expression, represented as stated above. 
Th i s  initialization is clearly linear time. Then, the main loop of the algorithm processes a clause 
from input while maintaining the following invariant: The original expression is satisfiable if and 
only if there is some assignment of truth values to variables Value(x;) such that (i) every clause in 
input  is satisfied, and (ii) if Value(xi = fahe then either ALiI = false or every clause in A[ i ]  is 
satisfied. 

begin 
initialize A and input; 
w i ~ i l e  input not empty do 

begin 
C t any clause in input; remove C from input; 
if C = empty clause then return (unsatisfiable); 
I t first l~teral in C; R t rest of C; 
if 1 is a negated variable, say 1 = 2i, the11 

begin 
corn~rlel~t since negated variables are put last, C consists of the single literal 5; 

hence xi  must be set to false; 
if A[il ;. false then 

begin 
input t- merge (A[il, input); 
AIiI  t false; 

end; 
end; 

else 1 is a positive variable, say 1 = xi, so 
begin 

if ACil = faCse then add R to input 
else add R to Ail; 

eod; 
end; 

return (satisfiable); 
end. 

Each execution of the while-loop takes constant time with the data structure specified, and a clause 
of the original input with t literals occupied t t 2  words and can generate at most ( t e l )  executions of 
the while loop. Hence, the time is O(m). 
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Artificial Intelligence 

1. (a) T h e  solution below uses situation variables to represent the days. A cerer~~ony is thought of as 
a function from states (days) onto succeeding states (days). 

Predicates: adul t (x) ,  kyd(x) ,  bygshot(x, s ) ,  inFamily(x, f ,  s)  and sqysh(x, y ,  s )  where x and y 
are kyds, f is an adult, and s is a day. 

Functions on days: Glomv,  y ,  s )  = the day following the ceremony in which adult f gloms kyd 
y at midnight at the end of day s; Sruych(x, y ,  s)  = the day after x (who was previously a bygshot) 
swyching with y at midnight of day s. 

V x ,  s kyd(x )  3 3 f  [ a d u l t 0  A inFamily(x, f ,  s )  A Vg [inFamily(x, g ,  s )  2 g=fll 
V f ,  x a d u l t 0  I, 3 y  [inFamily(y , f, s) A bygshot(x, s )  A 

V z  [bygshot(z, s)  A inFamily(z, f, s) 3 z=yll 
V x , y ,  s sqysh(x, y ,  s)  w 3f [inFamiiy(x, f ,  s)  A inFamily(y, f ,  s)  A bygshot(x, s )  A x z g ]  
V X ,  f ,  s inFamily(x ,  f ,  GtomV, x ,  s ) )  
V x ,  y ,  g ,  f ,  s inFamily(y,  g ,  s )  A y + x 3 inFamily(y, g ,  GlomV, x ,  s ) )  
V x ,  y ,  z ,  f, s inFamily(z,  f ,  s)  3 inFamily(z, f ,  Sruych(x, y ,  s))  
V x ,  y ,  z ,  s sqysh(x, 9 ,  s)  3 sqg~h(y ,  x ,  Swych(x, y ,  s ) )  
V x ,  y , z ,  s z z x A z # y 2 [bygshot(z, s )  H bygshot(z, Swych(x, y , s))]  
V x ,  f ,  z ,  s bygshot(z, s )  H bygshot(z, GlomV, x ,  s ) )  

T o  prove: 

First to prove it couldn't be a bygshot on the day before: If it was, then by axiom 2, there was 
no  other bygshot in tha.t same family. By axiom 5 together with the uniqueness given by axiom 1, 
there are no new additions to the family being glommed out of. By axiom 9, none of the old 
members can become a bygshot at the time of the glomming. Therefore, there is no bygshot in the 
old family, which contradicts axiom 2. 

Second, to prove it couldn't be a bygshot on the day after: If it was, then by axiom 9 it must 
have been a bygshot on the day before. But we have already proved this impossible. 

(b) Goals: inFamily(x ,  z ) ,  Sqysh(x, y ,  s ) ,  bygshot(x) 

Operators: 

G l o m V ,  x )  Preconditions: f is an adult, x is a kyd, x is not a bygshot 
(note this allows you to glom someone in your own family, which is not explicitly 
forbidden in the problem) 

Add: inFami ly (x , f )  
Delete: inFamily(x,  n )  for the old family 

Srugch(x, y )  Preconditions: x and y are kyds, x is a bygshot, x and y are in the same family 
Add: bygshot(y) 
Delete: bygshot(x) 

Dif feretices: 
Desired Operator or subgoal 
inFami ly (x  ,fi Glomv,  x )  
bygshot(x) Sruych(m, x )  
bygs hot(x)  Sruych(x, n )  
S q ~ s h ( x ,  y ,f) goal: bygshot(x) 
Sqysh(x ,  y ,f) goal: inFamLLy(x ,fl 
S q ~ s h ( x ,  y , f )  goal: i n  F amily(y , f) 
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Trace: 
Goal: Sqysh(b, f ,  e )  
Operator: subgoal bygshot(b) - already satisfied 
Operator: subgoal inFamily(b, e) 

Operator: Clom(e , b) 
Preconditions: wbygshot(b) 

Operator: Srugch(b, 8 )  

Choose * matching preconditions - c or d 
Operation: Swych(b, c) 
Add: bygshot(c) 
Delete: bygshot(b) 

Add: inFamily(b, e )  
Delete: inFamily(b, a) 

Operator: subgoal inFamilyV, e) - already satisfied 
Note that at this point a simple planner-like program might think everything was done, since 
the subgoal bygshot(b) was satisfied at one point. However, a GPS-like scheme would still 
have a difference to resolve, and so would search for an appropriate operator. 

Operator: subgoal bygshot(b) 
Operator: S~uych(*, b) 

Choose * matching preconditions - f because it is bygshot 
Operation: SruychV, b )  
Add: bygs hot(b) 
Delete: bygshot(f) 

Goal satisfied 

2. (a) Speech understanding usually involves: 
(1) acoustic processing (involves the actual signals and transformations on them) 
(2) phonetic analysis (recognition of phonemes or significant features) 
(3) lexical analysis (word recognition) 
(4) syntactic analysis (grammatical structures) 
(5) semantic analysis (analysis of the meaning of what was said) 
(6) pragmatic analysis, or reasoning, or world model (incorporation of what was said into what is 

known and being done by the system) 

Scene recognition involves: 
(1) picture processing (involves the actual input corresponding to light intensities on a retina, and 

transformations on it) 
(2) line or feature recognition (often done with a "line finder") 
(3) region recognition (may take into account things like texture) 
(4) object recognition (often based on a limited domain of possible objects, such as simple 

straight-edged polyhedra) 
(5) comprehension (e.g. as described in Minsky's frames paper) 

(b) A modular system can be written by a group in a structured way. Changes to one component 
have easily controlled effects on how the others operate, and the rules at any one level are easier to 
comprehend and modify than those dealing with detailed interactions. Modularity forces the 
representation to be more clearly organized since it is based on communication between different 
components; and therefore is not usually as ad hoc. 

A heterarchical system makes it possible for information from one level to significantly reduce 
the amount of processing which needs to be done at other levels (e.g. looking for lines only where 
the edge of an object is suspected). Often, it can make a whole part of the processing unnecessary 
(e.g. figuring out that a person has used an idiom, without doing a full syntactic analysis). Effort 
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can be allocated to those areas where information is most needed and most likely to be found. Also, 
the representation can be much simpler since each level can carry all of the useful information in a 
uniform way. 

3. (a) T h e  alpha-beta strategy is used in domains where the planning process has to take into 
account the efforts of an opponent, trying to minimize the damage he or she can do. It is standardly 
used in chess. It could be used in travel planning, if nature were considered an opponent (i.e. the 
program tries to minimize the damage caused by disasters). It is not particularly appropriate in 
speech understanding since there is no clear place to apply the idea of move and countermove. 

(b) Ths A" strategy is used in domains where there is a good estimate of how successful a plan is 
likely to be. It is used in things like travel planning (route choosing is a standard domain for 
illustrating it). It does not apply well in chess, since it does not take into account the negative 
possible effects of moves by the opponent. It could be used in speech if there were some evaluation 
of how likely a given parse was to succeed (e.g. in the current SRI system). 

(c) Coal reduction is used in domains where the knowledge includes direct goal-reductions of the 
form: In order to achieve A, do B. This is true in travel planning, and in fact is a standard 
technique (e.g. McCarthy's original paper on getting to the airport as common sense reasoning). It  
could be used in chess in a program which had strategies for goals such as "strengthen the king 
side". This has been talked about often, but not really done yet. It could be applied to a speech 
system if there were a notion of strategic goals (e.g. figure out the action being referred to, then see 
who did it), but it seems that nobody has used it in this way. 

Hardware 

1. (a) A cache is a small chunk of fast memory which is used to hold some of the most frequently 
referenced words of main memory. The accesses to these popular words can avoid the time delay of 
probing main memory by instead probing the cache. In order for a cache to be much help, the 
program should reference small pieces of the memory very frequently instead of probing all of 
memory at random; in other words, it should display locality of reference. 

(b) A pipelined execution unit achieves high speed by overlapping the performances of a 
sequence of similar computations. At any moment, the different computations are in various stages 
of completion. Over time, each computation passes through all the intermediary stages in order, 
with the different computations following each other through the pipe. This organization works 
especially well on vector arithmetic, for example. 

2. (a) Let t be the number of inputs which are one, 0 st s 3. Then, u and v are defined by 
t u v  

(c) Circuit F uses only two inverters to invert its three inputs. 
(d) Wow! Can you get by with only one inverter? (No, inverting n r 1 inputs takes at least 

[(n+ 1)121 inverters.) 
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3. One possible circuit is 

which has the state transitions: 

Excess-3 is self-complementing, that is, the 9's complement of a decimal 
code can be computd by complementing each bit of the representation. 

digit in excess-3 
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Numerical Analysis 

1. (a) A may be large and sparse so that if one forms PA = LU or does a Cholesky decomposition (A 
symtnetric, positive definite) of the form A = LLT, the resulting factors will in general be dense, 
Hence the finite algorithm may have storage problems that an iterative scheme can avoid. 

(b) A n  iterative scheme often needs only a column or a row of A at one time. Hence if A is so 
large that only a few rows or columns can be held in fast storage, the iterative scheme may be easier 
to use than a finite algorithm. 

(c) If a good estimate of the solution is known then an iterative scheme can take advantage of 
this whereas a scheme like Gaussian elimination will not. 

2. Consider (1) Ag = i and (2) D~'AD~(D;'X_) = (Dj16J, where the Di's are diagonal. Then  

D ~ ' A D ~  is a scaled equivalent of A and (2) is a scaled version of (1). 

It is often possible to select D l  and D2 SO that / . ~ ( D ~ ' A D ~ )  5 u(A) and hence the sensitivity of 

(2) to perturbations will be reduced. (Note that if we take D2 = I then (2) implies Il6x,ll/llx,ll 5 

U ( ~ i l ~ )  llDi1(k+~bJlll ~l~i'b,ll. Hence the norm on the r.h.s. of the inequality has changed!) 

3. If the xi's are equidistant (or nearly so) the interpolant P,, may oscillate rather badly between 
the xi's. This  possible radical departure of P,, from f is known as Runge's phenomenon. 

If we can select the xi's we could use Chebyshev interpolation by taking x j  = 

cos[(2i+l)n/(2n+2)3. In this case Powell's theorem (Dahlquist and Bjorck, p.108) tells us that  
1 1  P,,-f 11, (2/n)(ln n)E,,(f), and as a special case for n I 10, that I I  P,-f 11, r 5E,,(f).  

4. (a) By Taylor's theorem, we have 

0 = f I l  + + C$"(X,,+B~E,,)IZ, where 0 5 O2 5 1 

Rearranging this, we get 

W e  also have 0 = $a) = f,, + ~,,f'(x,,tO~c,~) SO that c,, = -f,,lff(x,,tOle,,). Substituting this for c, on 
the r.h.s. of the above equation, we get 

T h u s  the scheme is 

(b) For the given function the Newton-Raphson (N-R) correction is c,, = x,, - x i  and the new 
scheme gives E , ~  = 1-x,,. 

step N-R error new scheme error 
0 312 1 12 312 1 I2 
1 314 -114 1 0 
2 15/16 -1116 1 0 
3 2551256 11256 1 0 

Clearly the new scheme using more information about the function is better than N-R since it 
converges in one step! 
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5. We see that in the interior 

S'(xi-) 2h0i + h ~ i - 1  + h-'[fi - fidl] 

and 

S'(X~+) = -2hoi - + h"lf;+l -fiI. 
Hence f o r  i - 2,3, .. . , n-I, we have 

From the periodicity conditions it is clear that o l  = a,  since S"(x,+) = S"(xn-). Moreover, S(xl+) - S(xn-) implies that f1 = f,. So we consider S' at the ends from which we see that 

S'(XI+) -2h01 - ha2 + h-llfn - fnelI 

and 

S'(xn-) a 2hon + hen-, + h-'& - fn-,I 2hol + han-) + h"[fi - fn-1]. 

Hence 

40, + 0 2  + an,, = hTf2  - 2fl + fnmlI- 
So the system for o 1, 02, . . . , un-] becomes 

(You should atso verify that Sr'(xi-) = St'(xi+) and S(xi-) = S(X~+).) Gaussian elimination without 
pivoting will work because the matrix is strictly diagonally dominant. 

1. Parameter values and local variables are stored on a stack. Each process calls the program 
with a stackpointer to its private storage area. The program keeps the stackpointer in registers that 
are part of the context of a process, i.e. they are saved at process switch time. 

2. (a) Let cost be C, and cost per word c. For each segment the storage loss is p12. .Each segment 
requires s l p  pages and hence that many page table words. Thus we have C = cp12 + cslp ,  which is 
minimized when dCIdp = 0 = cI2 - cslp2, so that p(optima1) = 

(b) Cost of transfering pages in and out, CPU cost versus memory cost, page faults as a functian 
of page size, hardware block size limitations. 

3. T h e  flowchart on the following page gives the complete decomposition, and illustrates suitable 
lower level procedures. 
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0 test 'I 

4. (a) Z ::= <exp> 
<expr> ::= <term> I <unary op> <term> I <expr> <adap> <term> 
<term> ::= <factor> I <term> <mu\top> <factor> 
<factor> ::= <prim> I <factor> <expop> <prim> 
<prim> ::= var I (<expr>) 
<unary opz := + I - 
<multop> ::= a 1.1 
<adop> ::= + I - 
<expop> ::= T 
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term 

(c) T h e  double definition of + and - makes ordinary operator precedence impossible unless the 
lexical scan differentiates these operators prior to the parse. However, Wirth's "simple operator 
precedence" can do the job without a special lexical scanner, as shown in CACM, January 1966, 
page 23. 

5. The  standard deviation should be equal to the mean. The shape of a curve of observations 
can be plotted or a chi-square test can be run to test the fit. Independence of the service times can 
be demonstrated if the system is memoryless. 

6. ( a )  Safe if r 2 p(m-1) + 1. 
(b)  Let h(P i )  denote the current allocation to process Pi, for I r isp .  Then, one example of 

deadlock occurs when p = 3, m = 3, r = 6, and h ( P I )  a h(Pz) = h(P3) = 2. 
(c) Find a process Pj  which requires the smallest number of additional resources to complete, i.e. 

k = m - d(P;)  is minimal. If k 2 r - Xi h(Pi), do not allocate to any process other than Pj. (The 
case where k is strictly greater should never occur.) 

7. Determinism, bounded contexts, reserved keywords to identify statements, limitations of strings 
and comments, terminal occurring only once in the productions. 

Theory of Cotnputation 

1. The  necessary assertion is (a = F,,,t) A (b  = F,,,t,l). If a proof of total correctness is desired, it 
woilld be necessary to add the conjunct t r 0. 

2. (a)  False, the halting problem. 
( b )  True, just simulate M for n5 steps. 
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(c) True. Let t be the smallest exponent for which Fermat's conjecture fails, or let t be co if 
Fermat's conjecture is always true. Then the decision procedure is 

if m 5 t then yes else no. 

3. (a) L1 = (0" 10" 1 n r 0). First, note that L1 is not regular. This can be proved by considering 

the equivalence classes under R whjch contain O"1 in the language of Hopcroft and Ullman's 
Theorem 3.1, or by using the uvwxy theorem. 

But L 1  can be recognized by a Monotone machine M as follows: the machine makes a 

preliminary pass over the input to check that w E 0*10*, and positions the head over the 1. Then,  
M enters a loop repeating: 

scan left over 1's until the first 0, and change it to a 1; and 
scan right over 1's until the first 0, and change it to a 1. 

If the right end-marker is found by the right scan immediately following the left scan which finds 
the left end-marker, M accepts. 

(b) L2 = {1"01'" 1 n r 0). LZ is context free, but not regular. Also, all strings in L2 contain at 
most one 0. Hence, by the Lemma, L2 cannot be recognized by any Monotone machine. 

The tree on the left and its mirror image 
are two distinct parses of the sentence 

A'I'A I 100101001 

B'Q'B Q 
which has length 9. 

1 A'l'A 

(b) Let u ,  v ,  w E (0,1)*, and a ,  b, c, d E {O,lj. Suppose that ru E L(G), and Iru 1 = n. We can prove 
by induction on n that 

(i) i f z u = a b v  then a + b 
(ii) if w = u c d then c z d 
(iii) if ru = u a b c d v then not a = b = c = d 

that is, the conjecture holds, and furthermore, no string in L(C) begins or ends with a double letter. 
P ( l )  is trivial, so suppose S +* w where Iru I > 1. By symmetry, we can assume that S * A ** w ,  and 
since ) w  I > 1, we have S * A B10B2 =, ru. We prove each of the three assertions: 

(i) Suppose ru = a b v. If a and b both derive from B1, we are done by induction. If not, we must 
have B, 3 1 = a and b = 0 so we are OK. 

(ii) Symmetrically. 
(iii) Suppose ru = u a b c d v. If all of a ,  b, c, d derive from one of the B's, we are done by 

induction. But if not, two out of a ,  6, c, d must be the first or last two symbols derived from a 
B, so we are again done by induction. 
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WINTER 1978 COMPREHENSIVE EXAM 

Algoritllrns and Data Structures 

1. (a) Heapsort. An array A is a heap when A[2il and A[ilr A[2i+ 11 for 1 i i s N12. Form a 
heap by inserting elements A[il into the partial heap A[i+ 11, . . . , AENI, for i 5 [NIZJ, [N/2J-1, 
. . . , 1. Next, repeatedly exchange A[ 11 (the largest remaining element) with A[jl and insert A[ 11 
into the heap ~ [ 1 ] ,  A[a, . . . , AU-I], for j = N, N-1. . . . ,2. Insertion consists of exchanging Ark] 
with the larger of ARkI and A[2k+ll repeatedly, until Ark1 2 A[2kl and Ark1 2 A[2k+ 1 I. Heapsort 
works in worn-case time O(n log n), which is the theoretical minimum. 

(b) Radix sort. Allocate 10 list headers. Scan through the array, putting each record in the list 
corresponding to its last digit. Link together the lists in increasing order of last digit, and sort again 
using the fourth digit. Repeat for each digit. The final list is in sorted order, after O(N) time. 
This  method is familiar to card sorter operators. 

(c) Quicksort. Choose a key (say the key from a random record in A). Partition the array into 
the elements less than the chosen one and those greater. Recursively apply Quicksort to the 
subarrays, smaller first (to guarantee O(1og IV) storage to remember the positions of unsorted 
subarrays). Quicksort runs in O(N log N) time on the average, with a smaller constant than 
Heapsort. 

(d) A special case routine. It is possible (and not difficult) to write a short program to sort four 
elements using only five comparisons in the worst case. 

(e) Insertion sort. For i = 2, 3, . . . , N, insert record A[il into the sorted array A[11, . . . , Ali-l] by 
exchanging it with records A[i-11, A[i-21 etc., until we find its proper place. Each record travels 
one step at a time to its proper place, so the total time is the sum of the distances to the correct 
places, which we expect to be small. 

Lef'tChild utd Rightchild are pointers to 

other nodes. A Leaf will hzve 

Lcf ' tChild = Rightchild = A . Leftcolor 
Rightcolor take on the values R or  b. 
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(b) procedure CHECK (rbNode node); 
begin 

procedure CHECK 1 (rbNode node; integer height, depth; boolea11 underRed); 
cotnlnerit Check that the tree under node is a legal subtree of an RB-tree of height height, 

if it's at depth depth and under a red edge if underRed is true; 
begin integer 4 boo lea^ uR; 

if (LeftChild = A) and (RightChild A) then 
begin 

if height z depth then 
ERROR (There are leaves of B-levels height and depth); 

if underRed then . 
ERROR (There is a red edge leading to a leaf"); 

end; 
if (LeftChild = A) or (RightChild = A) the11 

ERROR ("There is a node with only one descendant"); 
if underRed then 

if (LeftColor = R) or (RightColor = R) then 
ERROR ("There are consecutive red edges"); 

uR t (LeftColor = R); 
if uR then d = depth else d = depth + 1; . 

CHECK 1 (LeftChild, height, d, uR); 
uR t (RightColor = R); 
if uR then d = depth else d = depth + 1; 
CHECK1 (Rightchild, height, d, uR); 

end CHECK I; 
integer height; rbNode n; 
height t 0; n t- no& 
while LeftChild(n) # A do 

begin 
if LeftColor(n) = b then height c height + 1; 
n t LeftChild(n); 
end; 

CHECK 1 (node, height, 0, false); 
PRINT ("The tree is RB balanced of height height"); 
end CHECK 

(c) With no red edges at all, we have a complete binary tree of height h which has 2h leaves. If 
h = 1, the maximlim clearly occurs for the tree 

which has 4 leaves. For general h, we can view the tree as an RB balanced tree of height 1 whose 
leaves have been replaced by RB balanced trees of height h-1. We maximize the entire tree by 
maximizing the subtrees and choosing as many of them as possible. Thus the maximum M ( h )  
satisifies M(1) = 4 and M(h) = 4M(h-I), so M(h) - 4h. 
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Artificial I~~tefligerlce 

1. (a) T h e  diagram below shows how it is possible to produce a line drawing from the intensity 
data. A line is drawn wherever the gradient between the values of nearby points is the greatest. 
T h e  lines below are drawn where the difference in intensity values of adjacent points is grearer than 
or  equal to 2. Since there are so many vertices and edges missing from the drawing it is difficult, if 
not impossible, to identify the object. Also, since it is impossible to determine the exact position of 
the table relative to the rear wall, it is unclear whether the square region in the upper left is a spot 
on the wall, or another object partially obscured by a larger object in front. 

(b) T h e  most important contribution of the data in this part to analyzing the scene is separating 
the object froin the wall in back. This data establishes that the small square region is in fact part  of 
the wall, and not part of the objects on the table. 

(c) T h e  data in this part makes it possible to separate the surface of the table from the walls, and  
it locates the top face of the object. It is clear from this data that the diagonal line in the lower left 
is on the table, and not part of the object. 

(d) T h e  shadow of the object is the dark region immediately to the left of the object. T h e  
diagonal line in the lower left is a pseudo-edge due to the shadow. In the absence of other depth 
information, a shadow can be very useful source of information. The  position of a shadow, for 
example, could distinguish between an object suspended in space, resting on the floor, or attached to 
a wall. In the case where one has an object with a hole in it, such as an arch, the shadow can assist 
in locating the hole. 

(e) T h e  diagram below has the edges and vertices labeled, using the same labeling notation as in 
Winston. 
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T h i s  information is particularly useful as a filter. Usually, due to noise and lighting conditions, 
there are missing and spurious lines in a line drawing. Since .there are only a relatively small 
number of physically possible labeling's compared to all those combinatorially possible, the labeling 
enables one to discard a large number of possible alternatives. 

(f) T h e  object in the scene is, of course, the cube. There are a number of ways a program could 
establish this fact. One way would be to exploit the constraints of the very limited number of 
objects in our world. One could have a set of rules like "An object with a triangular face cannot be 
a cube" or "An object with three rectangular faces visible'must be a cube" and eliminate alternatives 
until the object is identified. Another idea would be to organize the features of each object into a 
"frame" as described by Minsky. Each frame would identify criteria1 features which must be present 
in the object, and the frame could specify a choice of alternative frames to match, suggested by the 
violations, if any. T h e  frames for each object would be matched with the observations, and the  
object with the best match would be chosen. 

2. (a) Pattern directed invocation is a technique of calling a procedure by matching a desired result 
with a pattern associated with the procedure. Any procedure whose pattern matches the desired 
datum is invoked automatically, and it is not necessary for the calling procedure to know the name 
of the procedure it is invoking. Pattern directed invocation is the basis of a number of A1  
languages such as PLANNER, CONNIVER and QA4. 

(b ) ,An  augmented transition network (ATN) is a finite state machine with a pushdown store and 
a set of "registers" which may hold arbitrary information. Each transition between states has an 
associated set of conditions and actions. ATNs have proved to be useful devices for recognizing 
natural language sentences, and a number of A1 language understanding systems have been built 
which employ them, notably, Woods' LUNAR system, and the BBN speech understanding system. 

(c) T h e .  frame problem arises when one is trying to represent knowledge about a world which 
may be  changed by actions. For any action, one must know exactly which facts about the world 
remain true and which change, e.g. If I pick up a saucer with a cup sitting in it, I know that the cup 
will also be picked up, but the table it is sitting on will remain where it is. If the world is large, 
specifying which facts change and which do not for each action can be difficult. 
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(d) A blackboard is a data structure which can allow a large number of independent processes 
(usually specialists in  some area) to share information about a common problel-r~ they are trying to 
solve. This has been used successfully in the CMU Hearsay I1 speech understandin8 system. 

(e) Means-ends analysis is a search technique used in state space searches. One has a set of 
possible states, and operators which change one state into another. Means-ends analysis is the 
process of extracting the differences between a current state and a goal state, and matching these 
differences with relevant operators, perhaps establishing some intermediate state. This idea was the 
basis for Newell and Simon's GPS program, as well as GPS like planning programs such as 
STRIPS. 

3. If a robot were to teach French, it would have to have an excellent speech understanding 
capability (assuming, of course, that it will be a better French teacher than a language record). It is 
true that given the current state of the art, it would be possible for a computer to recognize a 
vocabulary of 250 words, spoken in isolation, provided it was trained by a particular speaker, and 
then with less than perfect accuracy. Understanding of continuous speech with a vocabulary that 
size is possible, as demonstrated by CMU's Hearsay I1 and Harpie systems, but only if the 
vocabulary is limited to a narrow domain. Also, this is impossible to do in real time. 

Even if the robot was a compact implementation of CMU's speech understanding system, 
there are many problems encountered in the domain of the language teacher which would make the 
success of such a robot impossible. Speech understanding systems rely heavily on syntactic, 
phonological, and other constraints to narrow the range of choices for what has been said. A 
novice, non-native speaker of a language is likely to make a large number of syntactic and 
pronounciation mistakes, so these knowledge sources would be unavailable to the system, or severely 
reduced in their filtering power. In addition, the robot, in order to be an effective teacher, would 
not only have to understand the sentence despite many mistakes, but be able to recognize minor and 
subtle mistakes and point out their corrections to the student. Some of these mistakes, such as using 
the wrong verb tense, would require a large amount of knowledge to detect and correct, and are 
clearly beyond the capabilities of any language understanding system implemented to date. 

Hardware 

1. (1 )  A base address register is a register used to hold the segment start address of the current user. 
All memory references are relative (within the user segment) and are relocated by adding the base 
address register. 

(2) Gray code is a binary number system in which two successive numbers differ in only a single 
bit. 

(3) A PROM is a programmable read-only memory. It is programmed, once, to have specified 
values at each address. Thereafter, these values may be read but not written. 

(4) Direct memory access is a method of accessing main memory (to remove or insert data) 
without involving the central processor. 

(5) A programmable logic array is a chip consisting of a set of logic with inputs and outputs. A 
large st of connections is possible between elements in the array. The chip is programmed by 
making certain connections, to produce the desired output functions. 

(6)  A bit is a single binary unit of information. 
('7) Tri-state logic is a logic system which allows three values: high, low, and floating. When the 

output is floating it has no effect on anything connected to it. 
(8) Multivalue logic is a logic where the possible output values from a unit have more than two 

values. 
(9) Microcode is the program code in control store, which implements a computer instruction set 

using some hardware which executes micro instructions. 
(10)CMOS is an integrated circuit technology which has the characteristics of high density, low 

power usage, and somewhat slower operation than TTL technology. 
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2. One possibility is to increase the bandwidth of memory and the memory to processor bus. 
This will allow more information per transfer and so increase the transfer rate. 

Another possibility is interleaved memory. In this scheme memory is divided into "banks". 
Independent banks can be accessed simultaneously and each bank has an independent bus to the 
processor. 

3. 1's complement: 0 10 1. 2's complement: 01 10. 

4. Possible answers: indirect, indexed, base register, base register + displacement, absolute, 
relative. 

5. One method is to use redundancy, that is, to have multiple hardware components. A voting 
scheme can then be used if a failure occurs, thus reducing the possibility of a complete failure. 

Another method is to associate error checking information, such as parity bits or CRC, with 
the data. Examining the error checking bits may indicate when an error which alters the data 
occurs. Th is  will either allow a fixup or f0rce.a retry. 

6. NOR NAND 

1 1 

7. We can write the quadratic as (x - 123)(x - a). We know that 123 * a = 716 and 123 + a = 
129. Thus a 6 6, and we have 123 * 6 = 716. This is possible only if the base is 12. Hence the 
little green men have 12 fingers. 
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9. First compute the effect of the exclusive-or gate network on the counter outputs. T h e  output 
is ((Q4 $ Q3) $ Q2) $ Q,, which is odd parity, i.e. it is high when the number of ones in the counter 
value is odd. 

(a) T h e  count line is high if the counter value has odd parity and the input is zero, or the 
counter value has even parity and the input is one. 

(b) T h e  alarm goes off whenever clock occurs and the value of count is zero. 
(c) T h e  shortest key has length 16. Each bit of the key advances the count by one until count = 

16, at which point the lock opens. Working out the parity for each count we obtain: 
0000 0 0100 1 1000 1 1100 0 
0001 1 0101 0 1001 0 1101 1 
0010 1 0110 0 1010 0 1110 1 
0011 0 0111 1 1011 1 1111 8 

T o  advance the count, the input key should be the opposite of the parity. The lock opens when the 
counter contains 1111 and the input is 1. Thus the key is 1881811881181001. 

Numerical Analysis 

1. (1)  It is inefficient to form x' and i !  from scratch for every i. (2) There is a risk of overflow 
in forming x i  as well as i! when 1x1 and i are large, even though the quotient x i l i !  may be a 
perfectly reasonable number.. (3) Most seriously, this is an extremely poor way to compute exp(x). In 
particular, it yields a highly inaccurate result if x is negative and not "small". In this case the terms 
alternate in sign, and there will be substantial error caused by cancellation, especially since exp(x) is 
small for such x. 

2. (a) T h e  obvious way to compute sqrt(c) is to use Newton's method for the equation x 2  - c = 0. 
T h e  iteration is 

It can be shown that Newton's method is guaranteed to converge to 4Z for any xo > 0. (See 
Dahlquist and B jorck, p. 226.) 

However, it is not appropriate to simply apply Newton's method for some arbitrary xo and let 
the iteration run until convergence, because we want an efficient as well as reliable procedure. If the 
initial value is close to then the Newton iterates will converge quadratically; thus it is important 
to obtain a good initial guess. 

Since we are working with a binary machine, we can express c in the form 22ha, where b is an 
integer and a lies in the range [1/2,23. (Note we can do this without introducing any rounding 
error.) Then fi = and so the square root function needs to be computed only for numbers in 
the range [1/2,23. A good initial approximation to fi in this range can be obtained using a simple 
approximation function (e.g. a straight line). 

(b) ( 1) No, since some representable numbers have non-representable square roots (e.g. c = 2). 
(2) No. The  square root function maps the set of representable numbers onto a smaller subset. 

Thus ,  there are at least two distinct representable numbers that will have identical computed square 
roots. 

3. (a) No. Linear transformations do not treat all vectors equally. Since - A - ' k  = A - I  (A% - 9, we 
have 

1 1 %  - A - * ~ I I  r I I A - 1  I I  I I A E  - ~ I I  
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where equality is possible. Thus if 11 A ' ~  11 is large, then 11% - A-'bll may be large even if II Ax - 6_11 is 
small. For example, consider 

where 6 is small. If b = c) and g = (!), then A% - = (i) which is small, but the exact solution is 

(2) sq  that E - ~ - ' b  - (-Ii), which is not srnall. 

(b) ~ e t  L be the solution computed using Gaussian elimination with partial pivoting, and write (A 
+ SA)% = b, If no growth occurs, then we have (see Dahlquist and Bjorck, p. 180) 

11 6 A II s (n3 + 3n2) g,, li A II E, 

where g,, is the "growth factor", E is machine precision, and we use the infinity norm. Writing ( b _  - 
A@ - (6R)x_ and assuming Ilx,li z 0, we get 

T h u s  if there is no growth, Gaussian elimination guarantees a residual which is small relative to the 
computed solution and the original matrix. 

(c) No. If iterative improvement converges, it will produce an accurate solution, [hat is, the final 
solution will be close to A-'b. However, part (a) shows that the accuracy of the solution is not 
necessariiy indicated by the size of the residual, and part (b) shows that Gaussian elimination 
(without growth) is guaranteed to produce a small residual for the first, unimproved solution. Thus, 
the norm of the residual does not necessarily decrease during iterative improvement, even though 
the accuracy of the solution is improving. 

Systems 

1. T h e  parse tree for X or (Y or Z and not V) is 

cexpressi on> 
I \ 

<factor> 
I 

<primary> 
I 

iden t i f ie r  

X 

' <primary> <primary> ide'ntif i e r  
I I 

ident i f ier  ident i f ier  V 
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(a) For a bottom up parse we read left to right reducing from the leaves whenever possible. 
Therefore we obtain 

(b) For a top down parse, we apply productions left to right from the root. Therefore we obtain 

( 4  B T  X, L1  
B  T Y, L1  
BF Z,  L2 
B T  V, L2 
B T t rue ,  L1 

2. (a) (1) FIFO does not match typical page-reference patterns, and thus has a high probability of 
replacing a page that will be used again soon. 

(2) LRU has a high overhead (must be updated'at every memory reference). However, there 
are approximations to L R U  which can be implemented efficiently. 

(b) Assume a system has two tape drives and that (1) Job 1 claims one drive, (2) Job 2 claims one 
drive, (3) Job 1 requests one drive, (4) Job 2 requests one drive. Now both jobs are blocked because 
they need a resource held by the other. 

(c) I /O  to a fast device (drumldisk) lets jobs execute faster and spend less time in memory. 
(d) O n e  example is in 370 architecture, which has (1) a memory protect lock for each memory 

block, (2) a memory protect key in PSW (an access is allowed only if the key matches the lock or the 
key = O), and (3) privileged mode, which prevents the user from changing locks and keys. 

3. T h e  solution satisfies (a) but not (b). 
(a) A process can only enter its critical section if i t  set x = 1. Then x r 1 will remain true until it 

leaves the critical section, and this will block other processes. 
(b) T h e  following sequence of events is possible: 

Process 1 sets x = 1 and enters its critical section 
Process 2 sets x = 2 and fails to enter 
Process 1 leaves critical section and sets x = 1 
Process 1 sets x = 2 and fails to enter 
Process 2 sets x = 1 
Process 2 sets x = 2 and fails to enter 
Process 1 sets x = 1 

. (the last four actions can be repeated indefinitely) 

4. (a) We need information for each e~ltrylexter~ial symbol in a module. T h e  information is 
contained in two dictionaries. For each entry symbol there is an item in the erltry dictionary of the 
form 

symbol relative address of entry symbol within module 

For each external symbol there is an item in the exterllal dictionary of the form 

symbol relative address of an address variable, which should hold the absolute address. 

(b) 1. Read in each module and assign starting address. 
2. Read in the entry dictionary for each module, update the second field by adding the start 

address of the module to the relative address within the module. (This yields absolute addresses for 
each entry symbol.) 
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3. Read in the exterrlal dictionary. For each item, find the corresponding item in the entry 
dictionary; if it does not exist give an error for undefined symbol. Otherwise, update the address 
constant (given by the second external item field) to the value in the matching entry field. 

(c) For a simple language, like Fortran, the compilers must provide type information for each 
entry and external symbol representing a variable, function, or formal or actual parameter. In a 
language with user defined types (e.g. Pascal) a symbol table must be provided. 

Checking type cornpatability involves ensuring that an e x t e r ~ ~ a l  symbol has the same type as 
the definition supplied by the entry item. 

Theory of Colllputatior~ 

1. ( a ) .  B: ( 1 5 j < i =, A[jl c A[N+jl) 
4 C: (1 s j 5 N * A[jl 2 A[N+jl) 

D: C A (1 r j < i rnin r A[jl r A[N+jl 5 max) A F 
(b) If assertion B(i) holds before a pass through the loop, then after the loop, A[jl  r A[N+jl for 1 

5 j < i since these elements are not changed. Furthermore if A[il > A[N+il before the loop, then A[il 
r A[N+il afterward since the test is true and the exchange is performed. Thus B(i+l) holds after 
the loop. 

(c) Upon exit from the loop, B(N+l) holds, which implies C. 
(c) T h e  truth of C ,is not affected by the rest of the program since the array A is never changed. 

Since (min = A[1] c A[N+l] = max) holds after the initial assignment, D(2) holds. Assertion F 
clearly holds throughout the loop. 

If L)(i) holds before the loop, we have two cases: 
Case 1. A[i] < min: Then (1 5 j < i sr A[jl 2 rnin > AD]) and A[il 2 A[il, so after the 

assignment (1 s j < i t  1 sr A[jl 2 min) holds. 
Case 2. A[il r min: Then (1 r j < i a A[jl r min) so ( 1  r j < i+l 3 Aljl 2 min) holds after the 

loop. 
Similarly, (1 s j < i+1 * A[N+j] c max) after the loop. Combining these facts with assertion C, 

we find that D(i+l) holds after the loop. 
(e) After the loop, D(N+l)  holds. Let 1 s i s 2N. Then either: 

Case 1. 1 s i r N: Then rnin c A[il r A[N+il < max by D(N+l). 
Case 2. N < i r 2N: Then rnin 5 A[i-NI s A[il r rnax also by D(N+l). 

2. (a) Yes. A non-deterministic Turing machine can first check that k s n, and then 
non-deterministically guess the k indices i , ,  . . . , ih, and finally verify that the k 2  relevant elements 

are zero. Assuming a cost of n to guess an index and a cost of n2 to test an element, this algorithm 
takes time 0(n4). 

(b) Reduce the clique problem to ZM. 
(c) Given a graph G on n vertices and an integer k, construct the complement of the adjacency 

matrix. Tha t  is, construct a matrix A such that 

0 if vertices i and j are connected in G 
A [ i , j l =  { otherwise. 

Now solve Z M  for the matrix A and the integer k. 
T h e  graph C has a clique of size k if and only if there is a solution to ZM for A and k. The  

transformation takes time o ( N ~ ) ,  where N is the size of the clique problem. 
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SPRING 1978 COMPREHENSIVE EXAM 

Algorithms and Data Structures 

1. (a) 1. Sort the weights as x[ 1 I I x[21 r . . . I x[nl. 
2. Use two pointers: BIG c n, SMALL c 1. 
3. while SMALL < BIG do begin 

if x[BlGl + x[SMALLI r 1 then begin 
put them in a bin; 
BIG c BIG - 1; 
SMALL t SMALL + 1 

end 
else begin 

put x[BlGl  alone in a bin; 
BIG c BIG - . I  

end 
elld 

4. If SMALL = BIG use a bin for x[BIGI. 

Step 1 uses O(n log n) time and steps 2-4 use O(n) time. 

(b) We prove the optimality of the packing by induction on n. The algorithm is obviously 
optimal when there is only one object. Now assume that the algorithm is optimal (i.e. uses the 
minimum number of bins) whenever there are less than n objects, and we shall prove that it is 
optimal for {x i ,  . . . , x,,) ,  where the x;'s have been sorted. There are two cases: (i) X[1] + X[n] > 1 
and (ii) XI11 + X[nl r 1. 

In case (i), X[n] must occupy a bin by itself in any packing. By induction hypothesis, the 
packing for X[lI, . . . , X[n-11 is optimal, and hence it is optimal for X[Il, . . . , X[nl. 

In case (ii), we further consider two subcases: (A) In an optimal packing, Xi11 is by itself. (B) 
In an optimal packing, X[11 is paired with some object Xu]. In case (A), our packing uses no more 
bins for X[2], . . . , XCn-11 than the optimal packing uses for X[21, . . . , X[nl, by induction 
hypothesis. Hence we are doing at least as well for X[lI, . . . , X[n]. In case (B), let us exchange Xu] 
with X[nJ in that optimal packing. Since Xu] S X[nl and Xi11 + X[nl r 1, everything still fits. By 
induction hypothesis on X[21, . . . , X[n-11, the packing is optimal. 

2. (a) Define g(v) = the value of a maximum flow for the subtree rooted at v, 
assuming c(F ATHE R(v),  v) = a. 

Then g(v) = co, if v is a leaf, 
g(v) = min(g(LSON(v)), c(v, LSON(v))) + min(g(RSON(v)), c(v, RSON(v))), 

if v is an internal node. 

T h u s  g(root) gives the desired maximum flow value. 

(b) Write h(FATHER(v), v) for min(g(v), c(FATHER(v), v)). So h(FATHER(v), v) is the 
maximum flow value that can pass through arc (FATHER(v),u) and reach leaves of the subtree 
rooted at v. 

Now compute the maximum flow f from the top down: 

flground, root) = g(root) 
f (v ,  LSON(v)) = min(f(FATHER(v), v), h(v, LSON(v))) 
f(v, RSON(v)) = f(FATHER(v), V) - f ( v ,  LSON(v)) 

It is easy to check to f is indeed a flow. Its value is g(root), and therefore maximal. 
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Each pair ( a ,  b) is stored as a node which is simultaneously in two doubly-linked lists - one 
hanging from the hash(a) bucket and one hanging from the hash(b) bucket. Thus all elements (a, 8 )  

are in the list for hash(a), and all elements (a, b) are in the list for hash(b). T h e  operation 
ENTER(a,  6 )  takes O(1) time, while the other operations take time proportional to the number of 
pairs in the list fo: hcsh(a) or hash(b). Note that the hash tables for a and b may be either separate 
or  the same. 

Artificial Intelligence 

1. (This solution goes into a good deal more detail than is expected on the test.) 
W e  let the individuals House1 , House2, House3, House4, House5 stand for the five houses, 

as viewed from left to right. The  colors will of course be red, green, ivory, yellow and blue; the 
men Englishman,  Spaniard, Ukranian, Norwegian, and Japanese; the pets dog, snails, horse, fox 
and zebra; the drinks coffee, tea, milk,  orange-juice and ruater; and the cigarettes Old-Cold, 
Chesterfields, Kools, Lucky-Strike and Parliaments. . 

?'he first problem is to ensure that the different houses, colors etc. are all different. Let us 
define the predicate DISTINCT on five items as follows: 

V x l ,  x2 ,  x3 ,  x4,  x5 (DISTINCT ( ~ 1 ,  x2, x3,  x4, x5) = 
( ~ ~ ~ X ~ A X I # X ~ A X I # X ~ A X I # X ~ A X ~ # X ~ A X ~ # X ~ A X ~ # X ~ A X ~ # X ~ A X ~ # X ~ A X ~ ; L ! X ~ ) ) .  

Then we can express the distinctness as the WFFs: 

1 a] D I S T I N C T  (House I ,  House2, House3, House4, House5) 
D I S T I N C T  (red, green, ivory, yellozu, blue) 
D I S T  1 N C T  (Englishman, Spaniard, Ukranian, Norwegian, Japanese) 
D I S T I N C T  (dog, snails, horse, fox, zebra) 
D I S T I N C T  (coffee, tea, milk,  orangejuice, water) 
D I S T I N C T  (Old-Gold, Chesterfields, Kools, Lucky-Strike, Parliaments) 

We .define the monadic funcrlons Smokes, Owns, Drinks, and Livesin, on the men, and 
Colorof, on houses into colors, with the obvious 'meanings. 

Thus,  since no man shares a home or a habit with his neighbor, we have: 
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T h e  following parts of the problem become: 

21 Colorof (Livesin (Englishman)) = red 
31 Owns  (Span iard)  = dog 
41 V x  (Colorof (Livesin(x))  = green) e (Drinks(x) = coffee) 
51 Dr inks  (Ukranian)  = tea 
71 V x  (Smokes(x)  = Old-Gold) s (Oruns(x) = snails) 
83 V x  (Colorof (Lives in(x))  = yellow) s (Smokes(x) = Kools) 
131 V x  (Smokes(x)  = Lucky-Strike) e (Drinks(x) = orange-juice) 
141 Smokes (Japanese)  = Parliaments 

We also need to express the geometry of the world. We define the functions R i g h t  and Le f t ,  
and state the following axioms: 

R i g h t  (House 1 )  = House2 Left (House2) = House1 
R i g h t  (House2)  = House3 Left (House$) = House2 
R i g h t  (Howse3) = House4 , Left (House4) = House3 
R i g h t  (Housc4)  = House5 Left (Houses) = House4 
V x   right (House5) = x Vx -Left (Housel)  = x 

T h e  middle house is, by definition, House3; the first house on the left, Housel .  We now get 
the rest of the problem: 

61 V x  1,  x2  ((Colorof(x 1 )  = green A Colorof(x2) = ivory) 3 ( X  1 = Right(x2)))  
91 V x  (Lives in(x)  = House3 E Drinks(x) = milk) 
101 Livesin (Norruegian) = House 1 
1 1 1  V x l ,  x2  ((Smokes(x1) = Chesterfields A Owns(x2) = f o x )  3 

( (R igh t  (Livesin(x1)) = Livesin(x2)) v (Lef t  (Livesin(x1)) = Livesin(x2)))) 
121 V x l ,  x2  ((Smokes(x1) = Kools A Owns(x2) = horse) 3 

( (R igh t  (Livesin(x 1 ) )  = Livesin(x2)) v (Left  (Livesin(x 1 ) )  = Livesin(x2)))) 
151 Colorof ( R i g h t  (Livesin (Norruegian))) = blue v Colorof (Lef t  (Livesin (Norruegian))) = blue . 

2. (a) Evans' Analogy program: ( 1 )  Only a simple set of possible transformations are recognized. 
( 2 )  An inflexible notion of figure and change. For example, if the number of subfigures undergoing 
change (addition, deletion) is not the same between figures, then the program is unable to solve the 
problem. 

(b) Winston's Concept Formation system: ( I )  This system incorporates only a simplistic notion of 
learning. If the examples are not given in a most appropriate order, then it is not clear that the 
system can "learn" anything. (2) The  program knows of only a small finite set of primitives. ( 3 )  
Winston does not mention any actual implementation of his system. 

(c) Waltz's Vision system: ( 1 )  Too many unrealistic assumptions are made for this program to 
deal with "real" vision. For example, reality is composed of curved objects, not merely 
parallelepipeds. In the real world, lighting does not always come from only a single direction and 
shadows may not be present or may be ambiguous. (2 )  Waltz relies only upon local line constraints. 
( 3 )  Waltz's system relies heavily on search; this seems a poor psychological model. 

(d) Newel1 and Simon's GPS: ( 1 )  GPS did not prove to be a general problem solver. Many 
problems are not expressable in means-ends form. (2 )  A real solution may involve traveling 
"farther" from the goal in some particular step. GPS would not recognize this. ( 3 )  GPS has a 
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purely hierarchical, depth-first search structure. This is both inadequate for general problem 
solving, and inefficient in requiring repeated deductions. 

(e) Fikes and Nilsson's STRIPS: (1) Based on a resolution based theorem prover. (2) Lack of 
planning ability (resolved somewhat by ABSTRIPS). (3) The usual heirarchical problems of the 
GPS formalism. 

(f) Production Systems: (1) It's a nice idea for a heuristic framework, but leaves completely 
unstated what exactly is to be said in any set of productions, or how any particular piece of 
knowledge is to be represented. (2) Great care must be exercised in programming actual production 
systems to insure that the various productions don't interfere with each other. (3) A purely 
heterarchical control structure can get you in trouble, too. 

(g) Winograd's Shrdlu: (1) A central hypothesis of SHRDLU's linguistic ability - that language 
can only be analysed in a procedural form - seems denied by equally powerful, but more structured 
systems like ATN's. (2) SHRDLU'S deductive system dealt only in a finite, completely defined world. 
Even within such systems, there are questions that SHRDLU was unable to answer. (3) Successive 
utterances in SHRDLU are tied only by anaphora - there is no notion of a conversational dialouge. 

(h) Minsky's Frames: (1) Minsky's frame system can be reasonably criticized as a lot of hand 
waving. While he correctly points out that knowledge in any A1 system will need to be functionally 
organized, he fails to support the rest of his conjectures. 

(i) Buchanan et. al. DENDRAL: (1) Much effort is required to create the rule base for any class 
of compounds. (2) Dendral needs to be told which class of compound the sample belongs to. (3) 
There are commercial systems that perform the same task without elaborate rule structures. 

(j) Hewitt et. al. Planner: (1) Unrestrained automatic backtracking, without either escape 
mechanisms, or methods of passing "reasons for failure" messages, is an inadequate method. (2) 
Lack of a data-base context mechanism. 

3. (a) A transition network is a set of vertices, connected by arcs (essentially, a finite state 
automaton). In computational linguistic work, the nodes typicalty represent states, and the arcs 
represent grammatical forms which can be employed in going between the states. A transition net 
can be augmented by hanging "notes" on the arcs of the net. These notes might represent conditions 
on taking that arc or might indicate additional actions to be performed, such as the storing of some 
value in a register. 

(b) singular or plural, tense, gender, definite or indefinite, number, verb voice. 

(c) T i m e  flies like an arroru 

T i m e  noun,verb 
fl ies noun,verb 
like verb,preposition . 

an determiner 
arrow noun 
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(b) A program that generated the best (or better) moves first would find greater profit in the 
alpha-beta technique. 

If the program is able to make a good estimate of the correct range of the eventual terminal 
node, then some searching can be avoided. In this case, guessing1 that the correct node lies in the 
20-25 range permits one to skip searching after the 42 and 40 branches above. 

Hardware 

1. Possible solutions: (i) binary count and decode, (ii) 6-bit shift register, (iii) 3-bit switch-tail 
counter. Solution (iii) is most interesting because it is easier to decode than (i) and allows easy 
self-correction, unlike (ii). The circuit is shown below. 

l e g a l  s ta tes  i l l e g a l  

CLKin 

4. q-p- CLY. 

Q3 Q2 ; 3-)- 
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3. 

true if 
add # 

of I1.. -3 true 

'7 

4. CCD = charge coupled device 
FIFO = first in first out 
LSTTL - low power schottky transistor transistor logic 
CMOS = complementary metal oxide semiconductor 
ECL = emitter coupled logic 
SOS = silicon on sapphire 
UART = universal asynchronous receiver transmitter 
PROM = programmable read only memory 

5. Microprogramming: lower development time and cost, easier to debug, easier to field modify, 
fewer parts (therefore cheaper and more reliable). 

Hardwired: faster, requires less learning time on small projects, less dependent on single 
manufacturer. 

Use hardwired control for high performance, or for applications that require very few chips. 
Use microprogramming where speed is not critical, and cost is. , 

6. One possibility is to have 64K program space (PROM) and 64K data space (RAM). 
However, this assumes that all programs are in PROM and all data in RAM, which is unlikely to 
be true. 

A better solution is to break the memory into a number of pages (approximately 2K bytes 
each). This requires hardware to translate 16-bit processor addresses ro 20-bit memory bus 
addresses using a page table. We would also have to implement I10 or memory operations to 
modify the page table. (Careful design could incorporate this with a virtual memory to allow larger 
apparent memories.) Page switching will be done under software control. One way to do this is to 
have an OS in PROM, which is a nice technique for multiprogramming, but still restricts 
individual programs to 64K addresses. Allowing programs to do their own switching would allow 
full access, but at the cost of more demands on user software and less protection in a 
multiprogrammed environment. 
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7. These  are many possible solutions to this problem, depending on the design of the various 
components and the bus between them. 

O n e  possible control word design is given below. 

R3. . .Ro register number or low order 4 bits of instruction code 

D direction: 1 = write to register 
0 = read from register or immediate 

A 1 = ALU 011 other end 
0 = shifter on other end 

P l  Po A =  1 A = O  
0 ALU output port shifter output port 
I ALU input port 1 shifter input port 
2 ALU input port 2 
3 ALU instruction port shifter instruction port 

X 0 = transfer register (R3.. .KO) tolfrom bus 
1 = transfer R4. . . Ro immediate to bus 

Example: R7 := R1 + R14 

code f o r  add  

Nu ~ner i ca l  Analysis 

1. (a) In the bisection method we start with an interval [ao, bol such that fla,) and f(bo) have  
opposite signs. A t  each stage, we bisect the i~~terva l  by mi (~ j+bj ) /2  and choose the half of the 
interval which retains the change of sign between the endpoints. We continue until the length of 
the interval is sufficiently small. 

In the Newton-Raphson method we start with an initial approximation xo which should be 
close to the root. Then we use the iteration formula 

until x,, - x , ? + ,  is sufficiently small. 
In the secant method we start with xo and x l  close to the root, and use the iteration formula 
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T h e  bisection method always works but is slow (order of convergence = 1). T h e  
Newton-Raphson and secant methods are faster (orders of convergence 2 and 1.618, respectively) if 
xo and x l  are close to the root, but will sometimes fail to converge. Although Newton-Raphson has 
a higher order of convergence, it requires evaluation of both the function and its derivative at each 
step (for an effective order of 4) and so may sometimes be less efficient than the secant method 
which requires only one function evaluation per step. 

(b) See Winter 1975 exam, problem 8. 

2. See Winter 1974 exam, problem 2. 

3. ( a )  Since A + 6A is singular there exists a nonzero vector x such that ( A  + 6 A ) x  = 0. Hence Ax = 

-SAX or x = -A - ' SAX  SO that llx 1 1  r 1 1  A-' 1 1  116A 1 1  Ilx 1 1 .  Since 1 1 %  1 1  > 0, we get 1 6 1 1  A-' 1 1  IISA 1 1 .  
Therefore u(A) = 1 1  A 1 1  1 1  A-' 1 1  r 1 1  A 1 1  I 11  SA 1 1 .  

(b) Letting x = A - I ?  and SA = -yxTlxTx,  we have ( A  + 6A)x = Ax + SAX = AA-'? - yxTx / xTx  = 
y - y = 0, SO A + SA is indeed singular. 

We have 

I I  SAz 112 IISA1I2 = max - = max 
llyxi2 112 = -  lly I12 max 1xTz 1 - -  lly I12 

z 11 2 112 2 xTx 112 )I2 XTx z 2 1 1 %  112' 

and since 1 1  A-' I1211y 112 = II A-'9 1121 we get 

(c) We choose 6A = so that A + 6A = , which is clearly singular. 

Then  ) I  A 1 1 ,  = max row sum of absolute values = 3, and similarly IlSAII, = 2 Ic 1 .  Therefore 

4. (a)(c) See Spring 1975 exam, numerical analysis, problem 2. 
(b) In backward error analysis we accept the calculated solution of Ax = b and ask what perturbed 

matrix A + SA or perturbed vector b +  6b would give this solution. In this way we can obtain bounds 
on 116A 1 1  and 11Sb 1 1 .  

Systems 

I .  ( a )  T h e  grammar is unambiguous because the nested b.. . e  blocks can be parsed in only one way 
and the "statement lists" SL are always constructed from left to right. 

(b) After seeing ba with look ahead character ; , it is possible to reduce to bS with look ahead 
character ; . Now if an e follows the semicolon, S should be reduced to SL, but if an a follows the 
semicolon this is wrong. Therefore, it is not possible to parse from left to right with a single 
lookahead character. 

(c) Yes, the grammar is LR(2) because in the above situation we can see if an e or an a follows 
the ; . This  is the only real parsing decision made for this grammar. 
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2. Name is used in the lookup routine to check for multiple accesses to the same identifier. 
Level  is used to determine she static naming level, which specifies the run time stack frame 

(activation record) in which the variable is stored. 
Offset is the location within that stack frame where the variable is stored. 
Type is the declared type of the variable, used to determine if the variable matches on 

assignment and is proper for operations that require a specific type. 
Direct or indirect specify if the address of the variable contains the value of the variable 

or  a pointer to the value of the variable. The latter case is used for reference parameters. 

3. (a) loop unrolling (b) common subexpression elimination (c) strength reduction 

4. (a) Similarity: Can't tell what will be useful in later computations. 
Differences: In a compiler it is feasible to implement: true LRU (least recently used), but not in 

a virtual memory system. Also, the number of registers is fixed in the compilation problem, but  the 
page working set varies. 

(b) In a multipass compiler you can look ahead and determine what will be used in the future as  
well as when it will be used. 

5. (a) When you request the resource, the handler for the resource looks you up in the table for the 
resource. If you are a legitimate user, you get further access to the device without further protection 
checks. 

(b) Add an "ownership" capability to the scheme and consider the capability a resource. You may 
only pass on a capability (like read permission) if you own the capability. Your trusted friend gets 
read pemission but not ownership. 

6. (a) T h e  load table indicates, for each word in the linked module, whether or not that word needs 
relocation (i.e. whether or not the word is a memory address). A bit vector (one bit per word) is a 
good data structure for a relocation map. 

(b) T h e  table would indicate all locations which require filling in at link time, and what they link 
to. T h i s  table is usually stored in the form of singly linked lists threaded through the code. 

Tlreory of Computation 

I .  T h e  language is not regular. Suppose L could be recognized by a finite state machine with n 
states. Consider y = 1000.. . O 1  and x = y2 = 0 1 ~ 1 ~ 1  . The input word w formed by (x, y) 

-7rJ 0-1 Y \ + l  

begins 01 1000 . . , .01.. . . . , where the block of 0's has length 2 n (assuming n z 3). Therefore, the 
-4-J 

n-I + Lnf' 
FSM must loop while reading this block and so must also accept a word zu' formed by adding 3 p  
zeros to this block of ru. But w' corresponds to y' = 100.. .01 and x' = 0100 0100.. .01, which d o  w 0- 
not satisfy x '  = (j ') ' ,  a contradiction. fi+p n - 1 4 . p  n i l  

2. (1)  True. Let T ,  and T 2  accept the two r.e. sets. For any input word zu, let T3 first simulate T I  
on ru. If T ,  accepts, then T3 simulates T2 on w.  Thus T g  accepts exactly those words in L(T,) n 
W , ) .  

(2) True. We reduce the blank-tape halting problem to the given problem. For any Tur ing  
machine T, defrne T' such that on any input beginning with a 1, T' erases i t  and then simulates T 
on a blank tape. It does not matter what T' does on inputs beginning with a 0; let us say that it 
loops forever. Then T halts on a blank tape if and only if T' halts (and accepts) at least one word 
that begins with a 1. Therefore if we had an algorithm to decide the latter problem, we could solve 
the blank-tape halting problem, a contradiction. 
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(3) False. The  language L = { 0" 13" I n r 1 } is context free, but Transpose(L) = ( 1 2'E0'2 I n 2 1 ) 
is not context free. 

3. One  possible correct (and brief) proof is the following: 

11 -(-A*B)*(B*C) from P 
21 -(-I)* -(-A*B))* -(-AaB)*(B*C) from P, with AtD, Bt-(wAaB) and CtBaC 
31 -D Y ~ ( N A Y B )  R 1 ,2  
41 N(-EY-D)*(-D*~(-A*B)) from P, with At-E, Bt-D, and CC-(-A*B) 
51 NEWD R 3 , 4  

We have now succeed in proving that every WFF of the form NEXHD is a theorem. Hence, W E  * 
-(-Em-D) is also a theorem. 

from 5, with E t E  and Dc-EY-D 
R 5 ,6  

4. T h e  program fragment "reverses" the array a from element 1 to element n. An appropriate 
invariant is: 

V j  ( ( lsjsn) 2 aljl = ao[if j > min(i, n-i+l) then j else n-j+ll ) 

5. (a) A suitable program is: 

i:= 1; j:=n; 
loop: if i> j  then go to done; 

if a[ilic then begin i:=i+l; go to loop end; 
i f  a[jlrc then begin j:=j-1; go to loop end; 
i := &I; 
a[il := a[jl; 
a[jl := a[il; 
i:=i+ 1; j:=j- 1; 
go  to loop; 

done: 

(b) Letting ao[l:n] be the initial array, one form of the correctness statement is: 

permutes (a ,  A Vk, I ( (1 sk ,  lsn A a[kl<c A a[ll>c) 3 k<l ) 

(c) A suitable invariant (attached to the label loop) is: 

permutes (a,  ao) A Vk, 1 ( (l<k<i A j<lsn) 3 (a[kl<c A a[lI>c) ) 
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Spring 1977/78 Computer Science Comprehensive ~xam 
Part  1 -- Written Exam 
May 20, 1978 (9:00 - 12:oo;  1:30 - 4:30) 
Polya Hall, Room 1U. 

READ THIS FIRST! 

1. The exam contains questions drawn from s i x  areas of computer science 
The t o t a l  possible score i s  360 points, 60 i n  each area. Hint: 
6 hours equals 360 minutes, t h i s  may help you plan your time. 

2.  Please do your S e s t  t o  relax d u r i n g t h e  lunchbreak.  You may not - 
. consult any references or  colleagues or  wr i te  d ra f t s  of answers during 

t h i s  period. Jus t  relax.  

3 ,  Write your exam number i n  t he  upper right-hand corner of each page. 
Be sure t h a t  you have a l l  3C) pages of the  exam. 

4. Stra tegic  considerations: (a) To pass t h i s  exam a t  t h e  Ph.D. level,  
you should not leave any of the  s i x  subject  areas  completely blank, 
as  there  w i l l  be a minimum competence requirement of roughly 20 points 
i n  each area. The t o t a l  scores of everybody who passes t h i s  minimum 
requirement w i l l  then be used t o  determine whether o r  not the  wri t ten 
exam as a whole i s  passed. Therefore your policy should be f i r s t  t o  
es tab l i sh  a competency i n  each area, then t o  maximize your t o t a l  score. 
(b) To pass t h i s  exam a t  the  l a s t e r s  ' or  CS Minor leve l ,  simply t r y  
t o  maximize your t o t a l  score. 

5 .  Please wri te  legibly,  with a pen or  sharp pencil .  If you need extra 
space, i n s e r t  addi t ional  sheets; remesber t o  follow ins t ruc t ions  3 
and 5 on these sheets.  Paper w i l l  be available.  

6 .  %ow your work, as  p a r t i a l  c red i t  w i l l  be given f o r  incomplete answers. 
( ~ u t  don' t show it on the back of a page. ) 

7. Tnis exam i s  open book: You may use whatever books and notes you have 
already brought with you and m y  l i b r a r y  books provided by the  committee 

8. Sign the honor code statement blow.  h his page w i l l  be removed from 
your exam during the grading process.)  

9. The committee suggests t h a t  you read over the  en t i r e  exam quickly once, 
i n  order t o  help i n  a l locat ing your time. We a l so  suggest t h a t  you 
re f ra in  from panic. GOOD LUCK. 

10. The programing problern w i l l  be available a% 9 a.m. on Thursday, ).lay 25 
i n  Polya 253 . It w i l l  be due a t  noon on Tuesday, ?.lay 30 i n  Polya 253 . 
Preliminary r e s u l t s  from the  writ ten exam w i l l  be avai lable  when you 
pick up the  programming problems. 

In  recognition of and i n  the  s p i r i t  of the  Honor Code, I c e r t i f y  t h a t  
I have nei-ther received nor giver? unpermitted a id  on t h i s  exam. 

Signed 
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