
Comprehensive Exam: Programming Languages Autumn 2007

1. (15 points) . Short Answer
Answer each question in a few words or phrases.

(a) (3 points) Can a language that does not allow explicit deallocation and uses a
correct implementation of garbage collection have dangling pointers? Justify your
answer.
Answer: This answer is no. The only time a piece of heap memory is freed by a
correct garbage collector is when the program no longer can access it. Since dangling
pointers occur when memory is freed when a program may still access it, there are
no dangling pointers as a result of correct garbage collection.

(b) (3 points) What is a closure and what problem does it solve?
Answer: A closure is a pair consisting of a pointer to code and a pointer to an
activation record, used to represent a function and its lexical environment. Closures
are used to preserve static scope when a function is passed to another function, or
returned from a function.

(c) (3 points) Explain the difference between subtyping and inheritance (in at most
two sentences).
Answer: Subtyping is a relation between interfaces and inheritance is a relation
between implementations.

(d) (3 points) Assume that Rectangle is a subtype of Shape, written Rectangle <:
Shape. Which of the following subtype relationships hold in principle?

i. (Shape→ Rectangle) <: (Rectangle→ Rectangle)
ii. (Rectangle→ Shape) <: (Rectangle→ Rectangle)

Answer: The first subtype relationship is correct, because function types are con-
travariant in the argument type.

(e) (3 points) Why do static fields of a Java class have to be initialized when the class
is loaded? Why can’t we initialize static fields when the program starts?
Answer: Static fields are initialized when a class is loaded because this is the first
point at which initialization is possible. It is important to initialize fields before they
are accessed, and static fields may be used by static methods before any instances
(objects) of the class are created.

2. (10 points) . Type Inference on Parse Graph
Use the parse graph below to follow the steps of the ML type inference algorithm on the
function declaration

fun f(g) = g(g) - 3;

Write the type associated with each node of the graph, as the type inference algorithm
proceeds from the bottom of the graph up towards the root. What is the output of the
type checker?

Answer: The function is not typeable in ML; the type checker reports error.

e
e
e
e
e
e

e
e

e
e

e

¶
¶

¶
¶

@
@

@

@
@

@
%

%
%

¡
¡

¡

­
­

­
­

­
­

­
­

­
­

­
­

@

@

@−

g

3

int→ int→ int

g

λ

Answer: The type algorithm determines that the type a of g must satisfy some constraint
of the form a = a → b. This form of constraint cannot be solved by substituting type
expressions for type variables.

3. (11 points) . Parameter passing comparison
For the following Algol-like program, write the number printed by running the program
under each of the listed parameter passing mechanisms.

In pass-by-value-result, also called call-by-value-result and copy-in/copy-out, parameters
are passed by value, with an added twist. More specifically, suppose a function f with a
pass-by-value-result parameter u is called with actual parameter v. The activation record
for f will contain a location for formal parameter u that is initialized to the R-value of
v. Within the body of f, the identifier u is treated as an assignable variable. On return
from the call to f, the actual parameter v is assigned the R-value of u.

begin
integer i;

procedure pass (x, y);
integer x, y; // types of the formal parameters
begin

x := x + 3;
y := x + 5;
x := y;
i := i + 7

end

i := 1;
pass (i, i);
print i

end

(a) (3 points) pass-by-value
Answer: 8

2

(b) (4 points) pass-by-reference
Answer: 16

(c) (4 points) pass-by-value/result
Answer: 9

4. (12 points) . Phantom Members
A C++ class may have virtual members that may be redefined in derived classes. However,
there is no way to “undefine” a virtual (or non-virtual) member. Suppose we extend C++

by adding another kind of member, called a phantom member, that is treated as virtual,
but only defined in derived classes if an explicit definition is given. In other words, a
“phantom” function is not inherited unless its name is listed in the derived class. For
example, if we have two classes

class A {
...
public:

phantom void f(){...}
...

};
class B : public A {
...
public:

... /* no definition of f */
};

then f would appear in the vtbl for A objects and, if x is an A object, x.f() would be
allowed. However, if f is not declared in B, then f might not need to appear in the vtbl
for B objects and, if x is a B object, x.f() would not be allowed.

(a) (8 points) Are phantom members consistent with the design of C++, or is there
some general property of the way the language is designed and implemented that
would be destroyed? If so, explain what this property is, why it is important, and
why it is destroyed.
Answer: If we add phantom functions to the language, then it will be possible to use
public inheritance and not get a subtype. This is because we might choose to leave
a phantom function undefined in a subclass. This breaks a property of C++that an
initial segment of the vtable of a derived class matches the form of the vtable its
base class. However, it might be possible for for C++ to allow phantom members
and recognize that some derived classes do not result in subtypes.

(b) (4 points) JavaScript does allow a method of an object to be removed. Explain
why this is consistent with the design goals and implementation mechanisms for
JavaScript, referring to your answer to part (a) as appropriate.
Answer: JavaScript uses run-time type checking, so does not rely on static typing
or subtyping for implementation efficiency or correctness.

5. (12 points) . Race Conditions
The program on the following page contains two classes: RaceInducer creates a field
counter that is the source of data races, and field counter is an object of class DoubleCounter,
which supports methods incrementBoth and getDifference. For each of the following
questions, justify your answer briefly.

3

(a) (3 points) If incrementBoth and getDifference were never allowed to execute at
the same time, what would this program print?
Answer: The difference will always be 0, so a sequence of + signs will be printed,
with a newline every 60 + signes.

(b) (3 points) In the program, dif value in run is always either 0 or 1. Why is that?
Why can’t the difference exceed 1 or become negative?
Answer: Method incrementBoth is the only method that changes the values of x
and y, and only one thread calls incrementBoth in this program. Therefore, every
time that x is incremented, y is incremented next before x can be incremented again.
The only reason the difference would be non-zero is if getDifference is allowed to
execute while incrementBoth is running. Therefore, the difference is either 0 or 1.

(c) (2 points) One way to ensure that data races do not occur would be to insert
synchronization primitives. For example, declaring

public synchronized int getDifference() {...}
public int incrementBoth() {...}

would prevent two threads from executing in method getDifference at the same
time. Is this enough to ensure that getDifference always returns 0?
Answer: No. Only one thread will be executing getDifference, however, another
thread can run while incrementBoth is running, leading to the same kind of behavior
as before.

(d) (2 points) Is the following declaration

public int getDifference() {...}
public synchronized int incrementBoth() {...}

sufficient to ensure that getDifference always returns 0?
Answer: No. Again, only one thread will be executing incrementBoth, however,
another thread can run getDifference at the same time. As a result, while the first
thread is running, the second will get access to partially modified values, leading to
the same exact problem as before.

(e) (2 points) If the following declaration is used,

public synchronized int getDifference() {...}
public synchronized int incrementBoth() {...}

what will the output be? Explain.
Answer: A bunch of + signs will be printed. This version places a lock on the only
DoubleCounter object in the program ensures that only one thread will be running
either of these methods at once. In other words, these two methods will be executed
sequentially.

4

class RaceInducer extends Thread {
// this object is shared between all instances of this class

static DoubleCounter counter;
static volatile boolean done = false;

public void run() {
try {

for (int i = 0; i < 1000; i++) {
if (i % 60 == 0) {

// insert line break
System.out.println();

}
int dif_value = counter.getDifference();
// prints either a ’+’ or a ’-’
System.out.print("+-".charAt(dif_value));
sleep(20); // suspends the current thread

}
done = true;

} catch (InterruptedException e) {
return;

}
}

// entry point into the program
public static void main(String[] x) {

Thread ri = new RaceInducer();
counter = new DoubleCounter();
try {

ri.start(); // starts a new thread and calls run()
while (!done) {

counter.incrementBoth();
sleep(30); // suspends the current thread

}
ri.join();

} catch (InterruptedException e) {
return;

}
}

}

/**
* Shared data structure.
* */
class DoubleCounter {

protected int x = 0, y = 0;

public int getDifference() {
return x - y;

}

public void incrementBoth() throws InterruptedException {
x++;
Thread.sleep(9);
y++;

}
}

5

