
Stanford University 2007

Computer Architecture Comprehensive Exam

Exam Instructions
Answer each of the questions included in the exam. Write all of your answers directly on the examination
paper, including any work that you wish to be considered for partial credit. The examination is open-book,
and you may make use of the text, handouts, your own course notes, and a calculator.

On equations: Wherever possible, make sure to include the equation, the equation rewritten with the
numerical values, and the final solution. Partial credit will be weighted appropriately for each component of
the problem, and providing more information improves the likelihood that partial credit can be awarded.

On writing code: Unless otherwise stated, you are free to use any of the assembly instructions listed in the
Appendix at the back of the book, including pseudoinstructions. You do not need to optimize your MIPS
code unless specifically instructed to do so.

On time: You will have one hour to complete this exam. Budget your time and try to leave some time at
the end to go over your work. The point weightings correspond roughly to the time each problem is expected
to take.

THE STANFORD UNIVERSITY HONOR CODE

The Honor Code is an undertaking of the students, individually and collectively:

1. that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid
in class work, in the preparation of reports, or in any other work that is to be used by the instructor
as the basis of grading;

2. that they will do their share and take an active part in seeing to it that others as well as themselves
uphold the spirit and letter of the Honor Code.

I acknowledge and accept the Honor Code.

Magic Number:

Score Grader

1. Short Answer (15)

2. Pipelining (15)

3. Memory Heirarchy (15)

4. Cache Math (5)

5. MIPS Assembly (10)

TOTAL (60)

- 1 of 10 -



Problem 1: Short Answer (15 points)

Please provide short, concise answers.

(1) (2 points) Your company, Acme Corp., is deciding between two computer systems to deploy its new killer
Road Runner Tracking application. Ben Bitdiddle says that his company’s system has the better performance
because it has the higher clock speed and the higher IPC. Explain why his logic is flawed.

(2) (2 points) Some RISC architectures require the compiler (or assembly programmer) to guarantee that a
register not be accessed for a given number of cycles after it is loaded from memory. Give an advantage and
a disadvantage of this design choice.

(3) (2 points) Ben Bitdiddle is writing an optimizing compiler for an architecture that supports virtual memory.
He notices that his target processor can execute an unaligned 32 bit load more quickly than an 8 bit load.
Is it okay for his compiler to emit 32 bit loads and then ignore the extra 24 bits? Why or why not?

(4) (3 points) Briefly describe the data access pattern of an application for which an LRU (least recently used)
cache replacement policy performs worse than a random replacement policy.

- 2 of 10 -



(5) (3 points) Briefly describe the data access pattern of an application for which a cache with a random
replacement policy performs worse than an LRU replacement policy.

(6) (3 points) Briefly give two ways in which loop unrolling can increase performance and one in which it can
decrease performance.

- 3 of 10 -



Problem 2: Pipelining (15 points)

The National Security Agency has designed a new encryption device called the Conundrum, composed of
nine combinational modules connected as shown in the diagram below:

5 3 1

3 4 2

5 2 1

The device takes an integer value X and computes an encrypted version C(X). In the diagram above each
combinational component is marked with its propagation delay in microseconds; contamination delays are
zero for each component. Assume an ideal (zero-delay) register on both the input and the output of the
device.

(1) (4 points) What is the latency and throughput of the Conundrum device?

latency (µs) throughput (1/µs)

(2) (9 points) The NSA needs to produce a version of the Conundrum device that has a throughput larger
than 1/15 but wants the implementation with smallest latency (cycle time * pipeline depth) that meets
the throughput constraint. Using the diagram below indicate the locations of ideal (zero-delay) registers to
create a pipelined implementation that meets these goals. You may use as many registers as necessary. We’ll
give partial credit for designs with throughput larger than 1/15; full credit for achieving the smallest possible
latency. (Extra copies of this diagram can be found on the following page, but only solutions written on the
diagram below will be graded).

5 3 1

3 4 2

5 2 1

(3) (2 points) What is the latency of your pipelined implementation?

latency (µs) throughput (1/µs)

- 4 of 10 -



5 3 1

3 4 2

5 2 1

5 3 1

3 4 2

5 2 1

5 3 1

3 4 2

5 2 1

5 3 1

3 4 2

5 2 1

5 3 1

3 4 2

5 2 1

5 3 1

3 4 2

5 2 1

(These diagrams are for scratch work; no solution written here will be graded. Record your
solution on the previous page.)

- 5 of 10 -



Problem 3: Memory Heirarchy (15 points)

Assume you have a 1 GHz processor with 2-levels of cache and DRAM main memory. The first level cache is
split for instructions and data. The system does not use early restart or critical word first, i.e. data blocks
must be completely transfered before their results are available. The memory system has the following
parameters (Note that here 1KB = 1024 bytes):

Hit Time Miss Rate Block Size
Level-1 cache 1 cycle 6% for data 32 bytes

2% for instruction
Level-2 cache 12 cycles + (1 cycle per 64 bits) 2% 256 bytes
DRAM 70ns + (10ns per 8 bytes) – –

The system includes a TLB with a miss rate of 0.5% for data and never incurs a TLB miss for instructions.
The TLB miss penalty is 300 cycles and TLB hits take place in parallel with level-1 cache access. All caches
in the system are virtually indexed and physically tagged. Assume that the system never swaps memory out
to disk.

(1) (5 points) What is the average memory access time (AMAT) in clock cycles for instructions?

- 6 of 10 -



(2) (5 points) What is the AMAT in clock cycles for data? Assume all data accesses are loads.

- 7 of 10 -



(3) (5 points) Suppose that we measure the following instruction mix for a program:

Loads: 25%, Stores: 15%, Integer: 30%, Floating-Point: 20%, Branches: 10%

Assume that the processor is using the 5-stage pipeline (base CPI of 1.0). Data hazards cause an average
penalty of 0.9 cycles for floating point operations. Integer operations run at maximum throughput. The
processor uses the predict-branch-not-taken technique, which turns out to be correct for 80% of the branches.
For the remaining branches, there is a 1 cycle stall. What is the average CPI of this program including
memory misses (from questions a and b)? Assume that stores have the same AMAT as loads.

- 8 of 10 -



Problem 4: Cache Math (5 points)

Answers to this question may be in the form of a bare number (decimal or hex), 2n, or nk (= n∗210 = n∗1024),
for example, 65536, 0x10000, 216, or 64k are all equivalent and acceptable answers.

Consider a 256kb 4-way set associative cache with 256 byte cache lines for a processor that uses 64-bit data
words and 48-bit byte addresses. Assume the variable x, of type uint64 t, is stored in memory at location
0x4A85 B413 A518.

(1) (2 points) Fill in the bit ranges in the following diagram. Bit ranges should be inclusive. For example, if a
field uses bits 0, 1, 2, and 3, label it 3:0.

47 : : : : 0
tag set word in line byte in word

(2) (3 points) Assume that x is present in the cache, and char* ptr = 0x4A85 B400 0000. Determine if the
following accesses will cause a cache miss. For each access circle MISS if it must cause a miss, HIT if it will
never cause a miss, or NOT ENOUGH INFO.

*(ptr + 0x11 A538) MISS HIT NOT ENOUGH INFO

*(ptr + 0x13 A588) MISS HIT NOT ENOUGH INFO

*(ptr + 0x13 0218) MISS HIT NOT ENOUGH INFO

- 9 of 10 -



Problem 5: MIPS Assembly (10 points)

Here is mips assembly for a function with the signature (in C):

int f(char* a, char* b);

Remember, in a MIPS function call, ra contains the return address, a0 and a1 contain the first and second
arguments, respectively, and upon return v0 contains the return value. The s# registers must be preserved
across procedure calls. Also remember that standard MIPS has a branch delay slot.

00000000 <f>:
0: lb v1,0(a0)
4: lb v0,0(a1)
8: addiu a0,a0,1
c: subu v0,v1,v0
10: bnez v0,20 <f+0x20>
14: addiu a1,a1,1
18: bnez v1,0 <f>
1c: nop
20: jr ra
24: nop

(1) (7 points) Explain briefly, in english, what this function does.

(2) (3 points) Give one optimization that can be performed on the assembly code.

- 10 of 10 -


