
Solutions to Compilers Comprehensive, November 7, 2007

1. (10 points)

Suppose a lexical analyzer generator such as lex, flex, jlex, or jflex, were given the series of patterns:

ab
abc
(ab?c)*
. (“.” matches any individual character except newline)

What strings would be recognized in the input abcaccaabbacac by repeated calls to the lexer?

Briefly explain why the lexer would do this.

Solution: abcac|c|a|ab|b|acac

On each call, the lexer matches the longest string it can against its patterns. For example, a, ab, abc,
etc. all match the first part of the input, but abcac is the longest matching prefix.

2. (20 points)

The following is the relevant fragment of a YACC (actually, Bison) grammar for simple Boolean
formulas. This (admittedly odd) grammar translates Boolean expressions to “reverse Polish” notation:
a | b & c is translated to “a b OR c AND.” But, it also transforms the expression to negation
normal form, using De Morgan’s laws to “push NOTs down to the leaves of the formula,” and it does
this on-the-fly without using any additional data structures or variables. The negation normal form
of ˜(a | ˜(b & c) | ˜d) is ˜a & b & c & d).

%union yystacktype {char *name; int flag; }

%start Formula

%token <name> ID
%left ’|’
%left ’&’
%nonassoc ’˜’

%%

F : F ’&’ { $<flag>$ = $<flag>0; } F
{ if ($<flag>0) {printf("OR\n"); } else { printf("AND\n"); }}

| F ’|’ { $<flag>$ = $<flag>0; } F
{ if ($<flag>0) {printf("AND\n"); } else { printf("OR\n"); }}

| ’˜’ { $<flag>$ = !$<flag>0; } F
| ID { printf("%s\n", $1); if ($<flag>0) { printf("NOT\n"); }}
| ’(’ { $<flag>$ = $<flag>0; } F ’)’
;

(a) If the %left and %nonassoc declarations are omitted, bison reports “6 shift/reduce conflicts.”

1

i. What is a shift/reduce conflict in an LALR parser?
Solution: It occurs in a parser state that have both shift and reduce items, where the
lookahead symbols for the reduce item include the next terminal symbol in a shift item.
E.g., the state could have items [A → α · aβ,X] and [B → γ, a].
The parser must commit to a shift or reduce action without sufficient context to determine
which will lead to a successful parse.
In this case, the problem is that the grammar is ambiguous, so both parses will be successful,
but lead to different translations for the logical expression.

ii. Describe one specific conflict that occurs in this example. Solution:
Here are all of them:
F -> F & F . vs F -> F . & F. (left or right associative?)
F -> F | F . vs F -> F . | F. (left or right associative?)
F -> F | F . vs F -> F . & F. (| vs & precedence)
F -> F & F . vs F -> F . | F. (& vs | precedence)
F -> ˜ F . vs F -> F . | F. (˜ vs | precedence)
F -> ˜ F . vs F -> F . & F. (˜ vs & precedence)

iii. The YACC input above does not produce any errors about conflicts, because they are all
resolved. Explain why this happens and how it works.
Solution: The %left and %nonassoc declarations define whether & and | are left
or right associative, and the order of the declarations gives the relative precedence of the
operators (lower precedence first). Bison/YACC/etc. resolve these conflicts by using the
precedence rules to choose which action goes into the ACTION table entry.

(b) This grammar has actions embedded in the middle of the productions. In YACC-style parser
generators, this is “syntactic sugar” for a grammar with more rules, but no embedded actions
(actions appear only at the right-hand ends of productions, to be executed when those produc-
tions are reduced). Please explain this how to de-sugar a grammar like this into one where all
actions occur when productions are reduced.
Solution: For each action, a new non-terminal symbol is generated (say Ai and a new produc-
tion is added (e.g., Ai → ε). The embedded action is performed when this new production is
reduced. YACC goes to some special effort to make $i symbols in the action of this refer to the
proper positions in the value stack, based on the positions of the corresponding symbols in the
original rule, not the newly introduced rule.

(c) Basically, how does the YACC grammar with actions work? How does the parser keep track of
whether the next sub-expression is in a negated context, especially when it exits the scope of a
negation (as when it finishes parsing ˜(b & c) in the above example)?
Solution: Whenever the grammar is about to parse a F, it makes sure that the value on top of
the value stack is 1 iff F is in a negated context (it copies the flag as necessary). When parsing
an F, this is $0, which refers to the position on the value stack just before $1, i.e. just under the
position for the leftmost symbol of the RHS of the current production. When the parser reduces
a ˜ formula, the flag saying whether the current context is negated, leaving the flag for the next
outer context in the right position on the stack for the next formula.

3. (15 points)

Describe an implementation for a symbol table supporting the following operations. You should
assume that, for practical purposes, hash table insertions and lookups require constant time. If your

2

solution does not meet the performance goals below, it will still receive some credit so long as it is
clearly correct. You may assume that a symbol is bound only once in each scope.

• pushscope() – mark a new declaration scope, e.g., at the beginning of a function declaration.
This should be a constant-time operation.

• popscope() – restore the symbol table to its state just before the matching pushscope. This
should take O(k) time, where k is the number of symbols declared in the scope that is popped.

• declare(symbol, decl) – Associate “symbol” with “decl” in the current scope. decl is
a datastructure describing, for example, a variable or a type declaration for the symbol. This
should take constant time (not counting the time to construct the decl).

• lookup(symbol) – Find and return the decl most recently associated with symbol in a scope
that has not been popped. This should take constant time.

Solution: We assume that symbols are strings or records with strings an other data, and that decls are
pointers to records representing decls. A symbol table entry is a record with a pointer to a symbol, a
pointer to a decl, a “saved” link to another entry (or null) and a “next in scope” link to another decl.
There is a hash table with symbols as keys and entries as values, and a separate “scopes” stack of
pointers to entries.

pushscope(): pushes a null onto the scope stack.

declare(symbol, decl): Allocate a new entry, set the symbol and decl fields to symbol and
decl, set next in scope to the top entry in the scope stack, overwrite the top of the scope stack with
the new entry, set the ‘’saved” field to the current value of key in the hash table (or null if there is no
value), store key → symbol in the hash table.

lookup(symbol) -> decl: Lookup symbol in hash table. Report an error if there is no value.
Otherwise, return the contents of the decl field in the entry that is found.

popscope(): Get entry on top of scope stack. Iterate over the linked list of entries created by
the “next in scope” fields, removing each entry from the hash table using the “symbol” field and
storing the “saved” value of the entry under the key (if non-null) Pop the scope stack. (Note: A nice
implementation of a hash table might provide a way to update or delete the entry directly without
hashing multiple times).

4. (15 points) How does compile-time function (or method) overloading interact with type-checking in
programming language implementations? Briefly discuss how type evaluation could work in two
scenarios: when overloaded functions are resolved based only on the types of the arguments of the
functions, and when the return type of overloaded functions is used to resolve overloading, in addition
to the argument types. Don’t worry about automatic type conversions (e.g., promotion from integers
to floats) or inheritance.

Solution: Without overloading, type checking usually involves assigning types to expressions bottom-
up: given the types of the children of an operator or function call, the result type can be determined.
Type errors are detected when the children of the operator or function have inappropriate types.

If function overloading depends only on the function arguments (children), types can still be assigned
by a bottom-up pass. Once the types of the arguments to a function call have been determined, the
compiler can find the correct overloaded function definition that matches those types. If no such

3

function exists, it is a type error. If there are multiple matching functions, it should also be an error.
Otherwise, there is a unique function, and the return type of that function is the type of the current
expression.

If the function return type can be used to resolve ambiguities, the match of the correct function de-
pends on what type the surrounding context “wants.” E.g., the function call is an argument to another
function call, which needs a particular type, or is assigned to a variable of a particular type. If only
one of the overloaded function definitions results in a correctly typed expression, that is the correct
function to choose. If there are no functions or multiple functions, it is an error. In this case, assigning
types involves both top-down and bottom-up passes – and may need to be repeated to propagate type
constraints over the abstract syntax tree.

4

