
Comprehensive Exam: Algorithms and Concrete Mathematics
Autumn 2007

This is a one hour closed-book exam and the point total for all questions is 60.

In questions that ask you to provide an algorithm, please explain the algorithm in words and
diagrams, no need to write code or pseudo code. Also, for any algorithm, prove correctness
and prove its running time. No credit will be given for exponential-time algorithms. Polyno-
mial but slow algorithms will get some partial credit. Amount of credit will depend on how
much slower they are compared to what is achievable using the knowledge in the reading list.
Correct and fast algorithms with incomplete proof of correctness will get small number of points.

For full credit, the answers should be short and precise. Long and convoluted answers will not
get full credit even if they are correct.

1. [14 pts] Please answer ”true” or ”false” to each one of the following questions. Correct
answers will give you (2 pts) each while wrong answers will reduce your score by (2 pts)
each.

(a) There exists ε > 0 such that nε = O(log n).

Answer: FALSE

(b) Suppose T (n) is given by the recurrence T (n) = T (bn/ log nc) + n; T (1) = 1. Then,
T (n) = Θ(n).

Answer: TRUE. Lower bound is obvious. Upper bound follows from the fact that
bn/ log nc is bounded by n/2 for large enough n.

(c) Given a heap data structure (organized with minimum on top), it is possible to find
the second-smallest element in constant time.

Answer: TRUE

(d) There exists a deterministic linear time algorithm that, given two English words with
at most n characters each, determines whether they are anagrams of each other.

Answer: TRUE. Count the frequency of all 26 letters and compare.

(e) In comparison model, the lower bound on finding median of n input numbers is
Ω(n log n).

Answer: FALSE. Median can be computed in linear time.

(f) You are given a graph G = (V, E) with positive lengths on edges and a shortest
path P from v ∈ V to u ∈ V . Next, lengths are transformed by computing square
of the length of each edge. (If old edge length was w, new one is w2). Claim: it is
guaranteed that P is a shortest path from v to u with respect to new lengths as well.

Answer: FALSE. Example: graph with three nodes, w(ab) = w(bc) = 1, and
w(ac) = 2. Edge ac is shortest path between a and c in the original graph. After
squaring of the costs this is not true anymore.

(g) Given a weighted graph and two nodes, it is possible to list all shortest paths between
these two nodes in polynomial time.

Answer: FALSE. There can be an exponential number of shortest paths.

2. [18 pts] You have a single classroom and a list of lectures that you would like to use the
classroom for. Each lecture is specified by start time and end time. Your goal is to come
up with a schedule that maximizes the number of lectures scheduled in the classroom
under the constraint that no two scheduled lectures can overlap. For example, if one
lecture needs the 1pm to 2pm slot and the other one needs 1:30pm to 3pm slot, at most
one of these lectures can be scheduled. Design an efficient algorithm to solve the problem.
Prove correctness and running time.

Answer: Sketch of the algorithm. Greedy approach: sort by finish time; pick the first
lecture, allocate it, delete overlapping lectures, repeat. Claim: there exists an optimum

2

solution that includes the first lecture we allocated. Proof: Take any optimum solution
and replace the first allocated lecture in this solution with the first lecture in our solution.
Our lecture finishes no later than the first allocated lecture in the OPT, thus no overlaps
created, and thus the modified solution is legal. This solution has the same number of
lectures scheduled and includes the first lecture in our solution. QED. The claim implies
that we can greedily commit to the earliest-finish-time lecture. Once the lectures are
sorted, each iteration (picking the next lecture and deciding whether we schedule it or
drop it) takes constant time. Total running time is O(n log n).

3. [12 pts] Prove that if edge weights of a graph are unique (no two edges have the same
weight), then there is unique solution to the minimum-cost spanning tree problem.

Answer: Let T be the tree produced by Kruskal’s algorithm and let T ′ be a different
minimum-cost tree. Let uv be the first edge where Kruskal’s algorithm disagrees with T ′,
i.e. this is the smallest-weight edge that Kruskal’s algorithm put into T but uv is not
part of T ′. [Observe that this is the only possible disagreement since if uv was rejected
by Kruskal’s algorithm, it closes a cycle together with already chosen edges. But all these
edges are in T ′ as well.] Add uv to T ′, creating a cycle. Note that the path from u to v
in T ′ has to include at least one edge with higher weight than w(uv) since when uv was
chosen by Kruskal’s algorithm, there was no path from u to v using already chosen edges.
Cut-and-paste argument finishes the proof.

4. [16 pts] Given an acyclic directed graph G = (V, E) and a node s ∈ V , describe an
algorithm to find the number of paths from s to each one of the nodes in V .

Answer: First compute topological sort. Then use a simple dynamic programming.
For any vertex v, let P [v] denote the number of paths from s to v. Initialize P [v] = 0 for
all v ∈ V , and set P [s] = 1. Compute the recurrence P [v] =

∑
uv∈E P [u] in topological

order.

Topological sort guarantees that P [v] depends only on values of P [] for nodes that are
before v in topological sort. Thus, when we compute P [v], the P [] values for all these
nodes were already computed. Topological sort can be implemented to run in O(|E|+|V |).
Second phase of the algorithm scans nodes one-by-one, each time examining all incoming
edges, again giving O(|E|+ |V |).

3

