
Compilers Comprehensive, November 7, 2007

1. (10 points)

Suppose a lexical analyzer generator such as lex, flex, jlex,or jflex, were given the series of patterns:

ab
abc
(ab?c)*
. (“.” matches any individual character except newline)

What strings would be recognized in the inputabcaccaabbacac by repeated calls to the lexer?

Briefly explain why the lexer would do this.

2. (20 points)

The following is the relevant fragment of a YACC (actually, Bison) grammar for simple Boolean
formulas. This (admittedly odd) grammar translates Boolean expressions to “reverse Polish” notation:
a | b & c is translated to “a b OR c AND.” But, it also transforms the expression to negation
normal form, using De Morgan’s laws to “push NOTs down to the leaves of the formula,” and it does
this on-the-fly without using any additional data structures or variables. The negation normal form
of ˜(a | ˜(b & c) | ˜d) is ˜a & b & c & d) .

%union yystacktype {char * name; int flag; }

%start Formula

%token <name> ID
%left ’|’
%left ’&’
%nonassoc ’˜’

%%

F : F ’&’ { $<flag>$ = $<flag>0; } F
{ if ($<flag>0) {printf("OR\n"); } else { printf("AND\n"); }}

| F ’|’ { $<flag>$ = $<flag>0; } F
{ if ($<flag>0) {printf("AND\n"); } else { printf("OR\n"); }}

| ’˜’ { $<flag>$ = !$<flag>0; } F
| ID { printf("%s\n", $1); if ($<flag>0) { printf("NOT\n"); }}
| ’(’ { $<flag>$ = $<flag>0; } F ’)’
;

(a) If the%left and%nonassoc declarations are omitted, bison reports “6 shift/reduce conflicts.”

i. What is a shift/reduce conflict in an LALR parser?

ii. Describe one specific conflict that occurs in this example.

1

iii. The YACC input above does not produce any errors about conflicts, because they are all
resolved. Explain why this happens and how it works.

(b) This grammar has actions embedded in the middle of the productions. In YACC-style parser
generators, this is “syntactic sugar” for a grammar with more rules, but no embedded actions
(actions appear only at the right-hand ends of productions,to be executed when those produc-
tions are reduced). Please explain this how to de-sugar a grammar like this into one where all
actions occur when productions are reduced.

(c) Basically, how does the YACC grammar with actions work? How does the parser keep track of
whether the next sub-expression is in a negated context, especially when it exits the scope of a
negation (as when it finishes parsing˜(b & c) in the above example)?

3. (15 points)

Describe an implementation for a symbol table supporting the following operations. You should
assume that, for practical purposes, hash table insertionsand lookups require constant time. If your
solution does not meet the performance goals below, it will still receive some credit so long as it is
clearly correct. You may assume that a symbol is bound only once in each scope.

• pushscope() – mark a new declaration scope, e.g., at the beginning of a function declaration.
This should be a constant-time operation.

• popscope() – restore the symbol table to its state just before the matching pushscope. This
should takeO(k) time, wherek is the number of symbols declared in the scope that is popped.

• declare(symbol, decl) – Associate “symbol” with “decl” in the current scope. decl is
a datastructure describing, for example, a variable or a type declaration for the symbol. This
should take constant time (not counting the time to construct the decl).

• lookup(symbol) – Find and return the decl most recently associated with symbol in a scope
that has not been popped. This should take constant time.

4. (15 points) How does compile-time function (or method) overloading interact with type-checking in
programming language implementations? Briefly discuss howtype evaluation could work in two
scenarios: when overloaded functions are resolved based only on the types of the arguments of the
functions, and when the return type of overloaded functionsis used to resolve overloading, in addition
to the argument types. Don’t worry about automatic type conversions (e.g., promotion from integers
to floats) or inheritance.

2

