
Systems Software Comprehensive Exam

Fall 2005

Solutions by 2006 First Years

1. Write the shortest non-reentrant legal C function you can and why you think it is 
non-reentrant.

Solution:
int foo() {

static int x;
x++;
return x;

}

This function is not reentrant because it modifies a global (static) variable before 
returning it.  Calling it at different times from different threads will alter the variable 
x and return different results.

2. Your machine can only do 32-bit  loads and stores.   What is  the locking-related 
problem in the following code?  How would you fix it?

struct foo {
lock_t a_lock; // always held before touching a
lock_t b_lock; // always held before touching b

char a;
char b;

};
...

void update_ab(struct foo *f) {
lock(f->a_lock);
f->a++;
unlock(f->a_lock);

lock(f->b_lock);
f->b++;
unlock(f->b-lock);

}

Solution:  The fields a and b in struct foo are both char variables that are 1-byte 
in length, so the compiler will place them together within one 4-byte (32-bit) chunk 
in memory.  Because we can only read/write 32-bits at a time, when we do f->a++, 
we actually have to read the 32-bit chunk containing both the values of a and b, 



modify the 1 byte corresponding to a by incrementing it, and then write back the 
entire 32-bit chunk.  If another thread attempts to modify f->b and that operation 
finishes before the original thread's call to f->a++, then when the new value of a is 
written back to memory, the ORIGINAL value of b is also written back, thus 
clobbering the new b value.  This problem can be solved by adding padding in the 
struct to ensure that a and b are in separate 32-bit chunks.  e.g.,

struct foo {
lock_t a_lock;
lock_t b_lock;
char a;
char padding[3];
char b;

}
3. Your threaded code has no race conditions.  It does have this routine:

foo() {
lock(a);
lock(b);
...
unlock(a);
...
lock(a);
...
unlock(a);
unlock(b);

}
Ignore performance: what is wrong here?

Solution: This code can deadlock as follows.

Thread 1: Thread 2:
lock(a) -
lock(b) -
unlock(a) -

lock(a)
lock(a) WAITING -
- lock(b) WAITING
Deadlock! 

4. In what way is a good proportional-share process scheduling algorithm essentially 
equivalent to a good graphics line-drawing algorithm?  (Use a picture in your answer 
and label it.)

Solution:  In a proportional-share process scheduling algorithm (otherwise known as 
a lottery system), each process has a priority specified by a percent, where all 



currently-active processes have percents that add up to 100%.  Each process gets a 
number of tickets proportional to its priority (say tickets numbered between 1 to 100, 
so if a process has 20% priority, it might receive 20 tickets).  During each scheduling 
quantum, the scheduler picks a random number, and whichever process
owns the ticket for the picked number gets to run.  Thus, on average, processes with 
more tickets (higher priorities) run more than those with less tickets (lower 
priorities).

In a graphics line-drawing algorithm, the challenge is to draw a continuous line (in x 
dimensions, let's say 2 for simplicity) by drawing discrete pixels in a pattern such that 
when one steps back, the pixels form a line with a particular slope.

What the two have in common is taking a continuous process and mapping it into the 
discrete domain.
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Imagine that there are only 2 processes.  On one axis is the amount of time that one 
process runs and on the other axis is the amount of time that the other process runs. 
Given enough samples (and a really long run), this will look like a STRAIGHT LINE 
with slope determined by the relative priorities of the 2 processes (a slope of 1 if each 
process has 50% chance of running at any given scheduling quantum).  However, the 
scheduling world is discrete, so there will be chunks of time (demonstrated by the '#' 
in my pathetic ASCII art) where one process will run and then the other process (or 
maybe the same process) will run.  This sort of draws a line, albeit stochastically.

5. You run program A using kernel threads, and then re-run it using user-level threads. 
How  could  these  two  runs  behave  differently  with  respect  to  load  and  store 
instructions?

Solution:  If you're running your program on one processor, then all the loads/stores 
across different threads are guaranteed to be atomic/sequential.  However, kernel 
threads can run simultaneously on multiple processors, so loads/stores do not have 
this sequential consistency guarantees.  User-level threads can only run on one
processor, so you still have the sequential consistency guarantees.



Another answer we came up with: Loads/stores can can cause page faults, so with 
kernel threads, the kernel knows about page faults and only blocks the 1 thread with 
the faulting instruction, but for user-level threads, if one thread blocks on a page 
fault, the entire process blocks because from the kernel's point-of-view, there is only
one thread.

6. Draw the structure of a standard 32-bit virtual address with 4K pages.  What bad 
things happen if you switch the order of the two components?

Solution:
[ 20 bits for virtual page number (VPN) ][ 12 bits for page offset ]
Backwards:
[ 12 bits for page offset ][ 20 bits for virtual page number (VPN) ]

The reason why the least significant bits are assigned to the page offset is that you 
often access nearby bytes together (spatial locality), so you want those to map to the 
same page.  If you get the order backwards and instead assign the least significant 
bits to the VPN, then you lose spatial locality (locality of reference) and you get 
horrendous performance because every time you access nearby bytes in memory, you 
end up accessing completely different pages, thus killing your TLB hit rate and 
causing other slowdowns. 

7. Your (ancient) machine has an 8K, direct mapped, physical cache with 4K pages. 
Program A is using an 8K, page-aligned array, whose first page maps to physical 
page 31.  Give the set of physical pages that the second page of the array should be 
mapped to and why.

Solution:  Any even-numbered page would work.
There are two parts to this problem:

- First, you have an 8K direct-mapped cache reference by physical addresses. 8K = 
213, so here's how 32-bit addresses map to the cache:
[ 19 bits (cache tag) ][ 13 bits (cache index) ]

- Second, you have a virtual memory system with 4K pages, so here's how 32-bit 
addresses map to the virtual memory (recall that 4K=212)
[ 20 bits (page number) ][ 12 bits (page offset) ]

You have an 8K, page-aligned array whose first page maps to physical page 31.  This 
first page contains the first half of the array, and the second half of the array fits 
entirely on some other page.  So where does this array reside in physical memory? 
Let's dissect the page number 31:

This is the address range of the first half of the array:



[ 20 bits (page number) ][ 12 bits (page offset) ]
0000 0000 0000 0001 1111  0000 0000 0000
0000 0000 0000 0001 1111  FFFF FFFF FFFF

Now where does this array fit into our 8K direct-mapped cache?  Well, let's see:

[ 19 bits (cache tag)  ][ 13 bits (cache index) ]
0000 0000 0000 0001 111 1 0000 0000 0000
0000 0000 0000 0001 111 1 FFFF FFFF FFFF

Notice that the cache tag is 0b1111, and the cache indices range from:
1 0000 0000 0000 to 1 FFFF FFFF FFFF.  This is the 4K that comprises the 
upper-half of the 8K cache.  Now, in order to maximize cache hits, we want to put 
the second-half of the array in the LOWER-HALF of the 8K cache.  How can we do 
that?  By ensuring that the MSB (most significant bit) of the cache index is a 0. 
What does that mean in terms of the physical page number?  It must end in 0.

Cache: [ 19 bits (cache tag) ][ 13 bits (cache index) ]
???? ???? ???? ???? ??? 0 0000 0000 0000
???? ???? ???? ???? ??? 0 FFFF FFFF FFFF

VM: [ 20 bits (page number)  ][12 bits (page offset)]

It doesn't matter what the rest of the physical page number is, as long as it ends in a 
0, which means that it must be EVEN.

8. What address space layout will be the best for a linear page table as compared to a 
hashed page table and vice versa?  (Make sure to say why.)

Solution:  Linear page table is better for densely-filled memory because a hashed 
page table will have lots of collisions with a densely-filled memory.  Hashed page 
table is good for sparsely-filled memory because a linear page table will waste more 
space with a sparsely-filled memory.

9. Give the simplest example of a chunk of data and a predictable access pattern that 
LRU will perform optimally bad on.  In the absence of prefetching, what is the best 
realistic algorithm to use?

Solution:  LRU is terrible whenever you have a working set that is 1 larger than the 
size of your cache, and you're accessing the elements repeatedly in a loop.

Example, 3 addresses (0, 1, 2) and size-2 cache:
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, etc...  Every single access is a cache miss!

Random replacement is the best realistic algorithm to use. 



10. Joebob, your mortal enemy, gives you a USB stick that you want to mount as a file 
system on your computer.  Give the type of checks that the file system should do 
before treating the USB data as a valid file system.

Solution:  You should check that the FS is well-formed - e.g., no cycles in directory 
structure, the . and .. entries point to right places, link counts are correct, etc.

11. You create a file on a Unix file system (such as FFS).  Roughly: what meta data do 
you modify, what errors could you get, what order do you write the metadata out in?

Solution:  Metadata modified: inodes, inode reference count, timestamp, pointers to 
data blocks, directory entry

Possible errors: out of disk space, out of inodes, permission errors, hardware errors

Order to write metadata out to disk:
1.) Create and initialize data blocks
2.) Allocate and initialize inode to point to data blocks
3.) Add the filename to the directory entry and point it to the appropriate inode

You want to do things in this order because if you crash sometime in the middle, you 
won't be left with a pointer to garbage. General rule: always initialize something 
before setting a pointer to it.

12. Among NFS's operations are:
//write nbytes from buf into offset of the file named by fh
write(fh, offset, buf, nbytes)

//make directory “name” in directory named by dh
mkdir(dh, name)

It sends these requests across a lossy network, so may obviously have to retransmit 
them.  Discuss: what problems could occur because of retransmission for these two 
operations and a (partial) fix.

Solution:  If you do 2 successive writes of different contents to the same file, the two 
write commands could arrive out-of-order if the network is slow and retransimission 
is necessary.  This could be a problem if, say, you did write(file, "FOO") and then 
write(file, "BAR").  After the second write, you might expect that the file contains 
"BAR", but if they arrive out-of-order, then the "FOO" write might come after the
"BAR" write.  Similar problem with mkdir.

One partial fix is to put some sort of sequence numbers to ensure in-order delivery.

(We're not sure whether NFS guarantees in-order delivery even in the presence of 



retramissions, etc.)

13. You have a distributed file system.  What is the perfect guarantee it could give for 
cache consistency?  What would you have to do to implement this?  Is there any way 
an application running on top of this perfect consistency could see stale data?

Solution:  Perfect cache consistency guarantee is called 'write-to-read' consistency, 
which means that when one client reads a file, it should have the latest contents of the 
last thing that anybody else ever wrote to the file.  You would need to lock files a lot 
in order to implement this and update all local clients' caches whenever there is a 
write to a file by one client.

We were unsure about if there was any way that an app running on top of perfect 
consistency could see stale data:

Yes - If the network is slow, then the clients' cache updates might not happen fast 
enough so that clients can still see stale data.

No - by definition, it's perfect.

14. Many  distributed  file  systems  implement  close-to-open  consistency.   Give  an 
intuitive statement of what this is, and two reasons you might prefer it over perfect 
consistency (including one non-performance reason).

Solution:  Close-to-open consistency means that whenever a client opens a file, he is 
guaranteed to at least see the data on the file at the time when it was last closed.  This 
is a weaker guarantee than 'write-to-read' consistency because another client may 
have that same file opened and be writing to it.

Advantages:
Performance - You no longer have to invalidate/update everyone's cache whenever 
you do a write or use that many locks, etc.  You just need to do updates when you 
close a file, which is much less frequent.

Robustness - If you're writing to a file and then crash or have your data corrupted 
without closing the file, other clients don't see your corrupted version.  (This isn't a 
great reason, so somebody could probably think of a better one ...) 

15. Let's say you have a network interrupt handler that looks something like:
interrupt_handler() {

while(there are packets to receive)
pull pkt off network interface
enqueue(pkt);

while(there are packets to transmit)



dequeue from transmit queue
give to network interface

}
You  notice  that  sometimes  no  packets  come  out  of  the  system  for  awhile,  in 
situations where they should.  Similarly, you notice that sometimes applications do 
not run, but should.  What problems in this code could cause this behavior?  Give a 
sketch of how to fix it.

Solution:  No packets coming out of system for a while, when there are packets to 
transmit - This is a case of starvation and can occur whenever there are a constant 
stream of packets to receive.  The interrupt handler keeps on handling received 
packets and never gets to send packets.

Applications don't run - The applications can suffer from starvation when all the time 
is spent in the interrupt handler.  This can occur whenever there is a constant stream 
of packets being sent or received.

The problem is that the interrupt handler does not give up control as long as there are 
packets to receive and/or transmit, and there is no way to interrupt the interrupt 
handler (because interrupts are run with interrupts disabled).

One solution might be to modify the code so that 2 things happen:
1.) The transmit loop has a chance of running even if lots of packets are being 
received
2.) The application has a chance of running even if lots of packets are being sent or 
received

One possibility is a lottery system where, in the interrupt handler, the receive handler 
has 1/3 chance of running, the transmit handler has 1/3 chance of running, and the 
application itself has 1/3 chance of running. Then as the program progresses, 
dynamically change those percentages to adapt to the rate at which the different 
handlers and application execute, providing a kind of negative feedback.  A simpler 
scheme would be to put a limit of how many packets to process in a particular time 
range.


