
Stanford University
Computer Science Department

Fall 2005 Comprehensive Exam in
Compilers

1. Closed Book, - NO laptop. Write only in the Blue Book provided.
2. The exam is timed for one hour.
3 . Write your Magic Number on this sheet and the Blue Book; DO

NOT WRITE YOUR NAME.

The following is a statement of the Stanford University Honor Code:

A. The Honor Code is an undertaking of the students, individually and collectively:
1. that they will not give or receive aid in examinations; that they will not give or

receive un-permitted aid in class work, in the preparation of reports, or in any
other work that is to be used by the instructor as the basis of grading;

2. that they will do their share and take an active part in seeing to it that others as
well as themselves uphold the spirit and letter of the Honor Code.

B. The faculty on its part manifests its confidence in the honor of its students by
refraining from proctoring examinations and from taking unusual and
unreasonable precautions to prevent the forms of dishonesty mentioned above.
The faculty will also avoid, as far as practicable, academic procedures that create
temptations to violate the Honor Code.

C. While the faculty alone has the right and obligation to set academic requirements, the
students and faculty will work together to establish optimal conditions for
honorable academic work.

By writing my Magic Number below, I certify that I acknowledge and accept the Honor Code.

Compilers Comprehensive, November 2005

This is a 60 minute, closed book exam. Please mark your answers in the blue book.

1. (10 points)

Suppose you were implementing a lexical analyzer for the C programming language in a tool like Lex
or Flex. Suppose the entire input to the compiler were:

divbypointer(doub1e num, double *pdenom)

{
return num/*pdenom;

1

Describe two ways of handling comments.

(a) Method 1 uses a regular expression that matches a complete comment as a single lexeme.

(b) Method 2 recognizes / * and then enters a special "start condition," in which * / and any single
character are recognized as lexemes. When * / is recognized, it returns to the default start
condition, in which C language tokens are recognized.

Briefly discuss how each method would handle the example above, and discuss the practical merits of
each.

2. (15 points) These questions are about the handling of variables by a compiler for a simple language
like C. In your answers, address only the compiler behavior that is necessary for code generation. Do
not address type checking or other aspects of semantic analysis are not strictly necessary to emit code
for correct programs.

(a) Describe the compiler's processing of a global variable g of type int, both at the point of
declaration and at the point of use.

(b) How is the handling of a local variable declaration of type int different from the handling of
the global variable of the same type?

(c) What information does the compiler have to maintain in the symbol table to generate code for
A [i l .f [j]?

3. (10 points)

Why would it be useful for an optimizing compiler to have optimizations on an intermediate repre-
sentation (such as 3-address code) and peephole optimization at the instruction level?

4. (35 points) Consider the following context-free grammar:

(a) (3 points) Show that the grammar is ambiguous.

(b) (10 points) Write the canonical collections of LR(1) items for this grammar.

(c) (2 points) Identify all conflicting items, and the types of the conflicts (e.g., "shift-reduce conflict
in state 3 on 8').

(d) (5 points) Could the original grammar be converted into an LALR(1) parser that parses all input
correctly by resolving conflicts, in the way that YACC and similar parser generators allow? If
so, how should they be resolved? In either case, please explain (briefly).

(e) (5 points) Rewrite the grammar in an equivalent form that is suitable for LL parsing and mini-
mizes the use of stack space.

(f) (5 points) Rewrite the grammar in an equivalent form that is directly suitable for LR parsing
(i.e., does not result in conflicts) and minimizes the use of stack space.

(g) (5 points) In your modified LL(1) grammar, show the sequence of stack contents and inputs
when parsing the input bbcaa.

