
Automata and Formal Languages Comprehensive Exam (60 Points)

Fall 2005

Problem 1 (10 points)

(a) Show that if L is a regular language, then so is

min(L) = {w : w is in L, but no proper prefix of w is in L}.

(b) Show that if L is a regular language, then so is

init(L) = {w : there exists an x such that wx is in L}.

Hint: For each part, start with a DFA for L and modify it. Include brief arguments justifying your
constructions.
Solution:

(a) Let M be a DFA accepting L (such a machine exists because L is regular). Obtain a new DFA M ′

from M as follows. Add an extra “null” state z which is non-accepting. All transitions from z lead
back to z. To every accepting state q of M , add transitions (for all input symbols) from q to z. If
w ∈ L and no prefix of w is in L, then M will reach an accepting state for the first time once w is fully
consumed. Thus w will lead M ′ to an accepting state. Conversely, if some prefix of w is in L, then
M will first reach an accepting state before w is fully consumed. Thus on input w, the DFA M ′ will
conclude in the null state. Thus M ′ accepts precisely the language min(L).

(b) Let M be a DFA accepting L (such a machine exists because L is regular). Obtain a new DFA M ′

from M as follows. For every state q of M for which there is a (possibly empty) sequence of transitions
from q to an accepting state of M , make q accepting in M ′. (Other states remain non-accepting in
M ′.) Then an input w is accepted by M ′ if and only if there is a string x such wx is accepted by M .
Thus M ′ accepts precisely the language init(L).

Problem 2 (15 points)

Decide whether the following statements are true or false. You will receive 3 points for each correct answer
and -2 points for each incorrect answer.

(a) There is a language L such that neither L nor its complement are recursively enumerable.

(b) Suppose there is a polynomial-time reduction from the language L1 to the language L2. If L1 is
NP-hard, then L2 must be NP-complete.

(c) Suppose there is a polynomial-time reduction from the language L1 to the language L2. If L1 is
NP-complete, then L2 must be NP-hard.

(d) The following language is recursively enumerable: encodings of Turing machines that accept at least
154 different inputs.

(e) The following language is recursively enumerable: encodings of Turing machines that accept at most
154 different inputs.

1



Solution:

(a) true

(b) false

(c) true

(d) true

(e) false

Problem 3 (15 points)

Classify each of the following languages as being in one of the following classes of languages: empty, finite,
regular, context-free, recursive, recursively enumerable, all languages. You must give the smallest class that
contains every possible language fitting the following definitions. For example, the language of a DFA could
be empty or finite, and must always be context-free, but the smallest class that contains all such languages
is that of the regular languages. You will receive 3 points for each correct answer and -2 points for each
incorrect answer.

(a) A subset of a regular language.

(b) The concatentation of two recursively enumerable languages. (Recall that the concatenation of lan-
guages L1 and L2 is L1L2 = {wx |w ∈ L1, x ∈ L2}.)

(c) The concatentation of two recursively enumerable languages, one of which is the complement of the
other.

(d) An NP-complete language.

(e) An NP-hard language.

Solution:

(a) All languages

(b) Recursively enumerable

(c) Recursive

(d) Recursive

(e) All languages

Problem 4 (20 points)

An instance of the Integer Linear Programming Problem is the following: given a set of linear
constraints of the form

∑n
i=1 aixi ≤ c or

∑n
i=1 aixi ≥ c, where the a’s and c’s are integer constants and x1,

x2, . . . , xn are variables, does there exist an assignment of integers to each of the variables that makes all
of the the constraints true? Prove that the Integer Linear Programming Problem is NP-hard.

Solution: Recall the NP-complete 3-SAT problem: given a set of Boolean variables and a set of disjunctions
of 3 literals each, is there a truth assignment that simultaneously satisfies all of the clauses? We can establish
NP-hardness of ILP via a polynomial-time reduction from 3-SAT.

The reduction starts with a 3-SAT instance, given by variables x1, . . . , xn and clauses C1, . . . , Cm, where
Ci has the form l1 ∨ l2 ∨ l3, where l1, l2, l3 are literals (each of the form xj or ¬xj for some j). It then
constructs an instance of ILP as follows. For each Boolean variable xj , there is an integer variable yj with

2



the interpretation that if yj = 1 then xj should be set to “true” and if yj = 0 then xj should be set to
“false”. For every j, add the constraints xj ≥ 0 and xj ≤ 1. For every j, introduce the variable zj and
the constraint zj = 1− yj to model the value of ¬xj . (Strictly speaking, we accomplish this by adding the
inequalities zj ≥ 1 − yj and zj ≤ 1 − yj .) Finally, for every clause of the form li ∨ lj ∨ lk we construct a
constraint (yi, zi) + (yj , zj) + (yk, zk) ≥ 1, where by (e.g.) (yi, zi) we mean yi if li = xi and zi if li = ¬xi.
This reduction runs in linear time, but it remains to verify its correctness.

First suppose that there is a satisfying truth assignment to the given 3-SAT instance. For each Boolean
variable xi, set the corresponding integer variable yi to 1 if xi is set to true in the satisfying assignment and
to 0 otherwise. Set zi = 1 − xi for each i. Each (yi, zi) equals 1 if and only if the corresponding literal is
satisfied by the truth assignment. Since the truth assignment satisfies all of the 3-SAT clauses, the left-hand
side (yi, zi) + (yj , zj) + (yk, zk) of every constraint is at least 1. Thus the assignment to the the integer
variables is also satisfying.

Conversely, suppose there is an assignment to the integral variables of the ILP instance that satisfies all
of the linear constraints. Set xi to true (false) if y = 1 (y = 0). Reversing the argument in the previous
paragraph shows that this a satisfying truth assignment to the given 3-SAT instance.

3


