
Stanford University Computer Science Department

1 Fall 2004 Comprehensive Exam in Software Systems 1
SOLUTIONS

1. CLOSED BOOK. no notes, textbook, computer, PDA, Internet access, etc.
2. WRITE ONLY IN BLUE BOOKS: No credit for answers written on these exam pages.
3. EXPLAIN YOUR REASONING. Answers with no explanation are insufficient.
4. The exam is designed to take about an hour if you budget 1 paint per minute.
5. If you need to make assumptions to answer a question, state them clearly.

1) [5] Consider a virtual memory system with a single-level page table. The (dimensionless) page fault
ratc for a particular workload is r; the average DRAM access time is d; the average time to service a
page fault isJ the (dimensionless) TLB hit rate is h. Write the expression for the average memory
access time in this system.

This was tricky to compute, so I gave credit for either of two methods. If you break it down by
whether a given access page faults or not, keeping in mind that a page fault takes time f plus two
memory lookups (TLB miss + the actual access), you get r (f + 2d)+(l-r)(hd + (1-h)2d). If you
break it down by whether a given access hits in the TLB or not, you get hd + (1-h)((l-r)2d + r (2d+f)

2) [5] Consider three CPU scheduling disciplines: shortest-job-first, preemptive round-robin, and first-
come-first-served. For each of these, if it is starvation-pee, explain why; if it's not, briefly describe a
scenario in which starvation could occur.

SJF is not starvation-free: short jobs could continue to arrive that always get favored over pending
longer jobs. FCFS is starvation free as long as jobs terminate in bounded time. Preemptive RR is
starvation-free because each process necessarily gets CPU time due to timer interrupts.

3) [4] Suppose a particular process makes a total ofp page references, of which n<=p are to distinct
pages. (The ordering of page references is not known.) The process is allocated m frames of physical
memory, initially all empty. In terms of these variables, give a lower bound and an upper bound on
the number of page faults this process will experience, no matter what page-replacement strategy is
used, and explain your reasoning.

No matter what, at least n page faults will occur since each page is touched at least once and the
process's £rames all start out empty. If m>=n , then after these n faults there will be no evictions, so
the upper bound is n. If m<n , in the worst case every access after the m ' th could still cause a fault
(systematic eviction) so the worst case is p. It was OK to say the worst case is p as long as you
qualified it with "if m<n ".

4) [4] Debuggers like gdb let you set brealcpoints that are triggered whenever a program variable, say V,
is accessed or modified. How is this implemented? Under what circumstances, if any, does the usual
implementation incur a performance cost when variables other than V are accessed? (To simplify the
explanation, you may assume that we're only referring to global variables whose memory placement
is known at load time.)

Page tables are modified to force a trap (usually due to an illegal page access) when the page
containing V is accessed. Of course, since there may be other variables also stored on this page, a

check is required (comparing the page offset of the address) to confirm whether the access is to V; if
not, it's a "false alarm". So a performance penalty is incurred on every access to the page containing
V. Note that debuggers aren't compilers, and they don't require you to recompile your program to put
in guard code. Saying that "exceptions are thrown" when the variable is accessed is just rephrasing the
question, so it doesn't count. (What triggers the exception?)

5) [4] Give an example of a scenario where memory-mapped 110 makes more sense than programmed
UO, and why memory-mapped would be better. Then give an example of the opposite case.

A typical use of memory-mapped I/O is a video framebuffer since the framebuffer size is static and
we're modifying entries in place. A typical use of PI0 is short data transfers for character-mode
devices or for accessing device registers that are used to synthesize a stream of data when sampled
over time. ~ o t e that speed is not the main issue.

6) [4] To successfully prevent user programs from causing damage to other programs or the OS,
hardware support is required. Name two hardware mechanisms in modern CPU's that supports this
goal, and for each one, describe what specific kind(s) of damage it prevents.

Virtual memory, supported by the MMU, prevents processes from stomping on or reading each others'
data. Privilege levels prevent user processes from executing certain instructions or code blocks that are
reserved exclusively to the OS for inter-process resource management.

7) [4] Why would some OS's support multiple page sizes instead of just one page size? What additional
page-management issues does this raise?

Using very large pages for OS code and shared read-only data reduces the number of page table
entries and TLB entries that must be used to manage them. (Saying "reduces internal fragmentation" is
not enough, since that's a basic principle of pages. The issue is what situations would benefit from this
property.) However, it requires keeping track of whether pages "overlap", i.e. whether a given frame is
part of a larger or a smaller page (some processors solve this by forbidding overlap, so that a single
region can either be one big page or chopped up into small pages, but not both), and complicates
physical address computation (the number of bits to use for page number and offset will depend on
page length), page table walking and TLB lookup.

8) [4] Describe the mechanism of priority inheritance and give an example of the kind of problem it's
intended to solve.

Consider threads 1 ,2 ,3 with decreasing priorities. 3 is running but has a resource needed by 1 (so 1 is
blocked and 3 is about to release the resource so 1 can run). But 2 is on the ready queue, so 2 is
scheduled and pre-empts 3. Now 1 cannot proceed because the resource it needs is still held by a
lower-priority but not-running thread (3). Note: you need 3 threads to illustrate this.

9) [3] With respect to remote procedure calls (RPC), what is serialization (or marshalling) and why is it
necessary? Are there cases where it is unnecessary?

Marshalling involves converting procedure call arguments (or return values) into a common
representation for communication between machines that may have different architectures; for
example, the packing of strings and the representation of floating point and integer values may differ
between two machines, so marshalling converts them to a common intermediate form. It also follows
pointers from data structures to collect all logical data structure members into a contiguous
representation. If it is known that the representations of data structures and packing semantics are
identical on both machines (which is a stronger requirement than just having the two machines use the
same ISA), the first step can be omitted but the second is still needed.

10) [3] Describe one failure mode that might occur if a non-preemptive scheduler is used, and how it
would be avoided with a preemptive scheduler.

One example: a program goes into an infinite loop and never does a blocking I/O or other operation
that would yield the CPU. A preemptive scheduler would regain control on the next timer interrupt.

11) [3] A particular email message you're sending is so sensitive that you wish to both encrypt and sign it
(both using public-key cryptography). Under what circumstances, if any, would you encrypt it first
and then'sign it? Under what circumstances, if any, would you sign it first and then encrypt it? (In
other words, what's the practical effect of doing it one way vs. the other?)

Encrypt first, then sign, if it's OK for others to know who the sender is. Sign first, then encrypt, if you
want only the designated receiver to be able to verify that you are the sender.

12) [3] True or false: all side-effect-free operations are idempotent, but not all idempotent operations are
side-effect-free. Explain your answer concisely but completely (i.e. if true, explain why each part is
true; if false, explain which part(s) are false andlor give counterexamples).

True. If an operation has no side effects, by definition executing it once is the same as executing it
many times. On the other hand, an operation such as setting a variable to a specific value does have a
side effect, yet is still idempotent.

13) [2] To avoid replay attacks, one can either use a randomly-generated nonce or a physical timestamp.
Give one advantage of using a nonce over a timestamp, and one advantage of using a timestamp over
a nonce. (You may assume that the resolution of physical timestamps is sufficient to avoid timestamp
value collisions.)

Nonces better because synchronized clocks aren't required. Timestamps better because you don't
have to remember every nonce you've ever seen.

14) [2] Describe one type of file access control that can be performed with access-control lists (such as
AFS uses) but cannot be performed with file permissions (such as traditional Unix filesystems use).

One example: I can delegate (or revoke) write permission to a subset of users who are not all part of a
common administrative group; you could allow everyone except one user to access a file.

15) [2] You're asked to take an existing Java program and rewrite it in C++. What benefit would you
gain by doing so? What benefit, if any, would you lose by doing so?

Gain: C t t is generally a lot faster than Java since it's not interpreted. Lose: Java is type-safe, C++
isn't. Note, you lose binary portability but not necessarily source portability. If you claimed portability
as your only lost property, you had to specify binary portability. -

16) [2] What's the difference between a credential and a capability?

A credential proves that something (or someone) is what it says it is; a certificate signed by a trusted
certificate issuer is an example. A capability allows the holder (who may be anyone) to take the
particular action or use the particular resource specified by the capability, i.e. it is not specific to a
principal.

17) [2] What's the difference between thrashing and deadlock?

Thrashing: processes can in theory make progress, but their aggregate resource needs exceed the
ability of thc scheduler; more time is spent shuffling resources than doing work, so proccsscs make
little or no forward progress. Deadlock: Processes cannot make progress even in principle since there
is a loop in their logical waits-for resource graph.

18) [2] Give one example of how a filesystem might become corrupted, other than corruption of data in
the Bles themselves

The directory entry pointing to an inode or other metadata block may be lost. Or, the file metadata
may not match the file's actual characteristics (e.g., length in bytes) because a failure occurred after

the file was updated but before the metadata was updated. Trashed "file descriptors" don't count, since
they are not part of the filesystem and can usually be destroyed without resulting in filesystem
inconsistency (though it may result in lost writes). Similarly, synchronization-related race conditions
between clients writing a file do not damage the filesystem, they just leave it in a consistent-but-wrong
(from program's point of view) state.

19) [2] Your C program has a bug that causes it to accidentally dereference a nonexistent array element,
e.g. a[10] where array a[] has been statically declared as containing 8 elements. What happens when
this bug occurs at runtime, and why?

You get a segmentation fault or illegal access fault,j?orn the OS. C++ doesn't have runtime bounds
checking so you don 't get an array bounds exception.

THE END

