Computer Science Department Stanford University

Comprehensive Examination in Numerical Analysis Fall 2004

Note: You may use a result you are asked to prove in subsequent questions even if you have not been able to prove it.

1. Norms and orthogonality [10pts]

- 1. [4pts] Let $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n$ be an orthonormal basis for \mathbb{R}^n and \mathbf{A} a $n \times n$ matrix. If $\mathbf{A}\mathbf{q}_1, \mathbf{A}\mathbf{q}_2, \ldots, \mathbf{A}\mathbf{q}_n$ is an orthonormal set as well, prove that \mathbf{A} must be orthogonal.
- 2. Let \mathbf{A}, \mathbf{B} be $n \times n$ nonsingular matrices satisfying $\|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{B}\mathbf{x}\|_2$ for every $\mathbf{x} \in \mathbb{R}^n$.
 - (a) [3pts] Show that **A** and **B** have the same singular values. (*Hint:* Show that $\mathbf{A}^T \mathbf{A} = \mathbf{B}^T \mathbf{B}$)
 - (b) [3pts] Show that $\mathbf{A} = \mathbf{QB}$ for an orthogonal matrix \mathbf{Q} .

2. Optimization and least squares [10 pts]

If **A** is an $m \times n$, m > n matrix with full column rank and $\mathbf{b} \in \mathbb{R}^m$, we know that the least squares solution to the overdetermined system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is given by the system of normal equations $\mathbf{A}^T \mathbf{A} \mathbf{x}_0 = \mathbf{A}^T \mathbf{b}$ and corresponds to the vector $\mathbf{x}_0 \in \mathbb{R}^n$ that minimizes $\phi(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$.

1. [4pts] Consider the modified functional

$$\hat{\phi}(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \mathbf{x}^T \mathbf{B}\mathbf{x} - 2\mathbf{c}^T \mathbf{x}$$

where **B** is an $n \times n$ symmetric and positive definite matrix, and $\mathbf{c} \in \mathbb{R}^n$. Show that we can find the value of **x** that minimizes $\hat{\phi}(\mathbf{x})$ by solving the following modification of the system of normal equations

$$\left(\mathbf{A}^T\mathbf{A} + \mathbf{B}\right)\mathbf{x}_0 = \mathbf{A}^T\mathbf{b} + \mathbf{c}$$

2. [1pt] Explain why we can find a symmetric, positive definite matrix \mathbf{M} such that $\mathbf{B} = \mathbf{M}^2 = \mathbf{M}^T \mathbf{M}$.

3. [4pts] Show that the value of **x** that minimizes $\hat{\phi}(\mathbf{x})$ can alternatively be found by finding the least squares solution of the following modification of the original overdetermined system

$$\left(\begin{array}{c} \mathbf{A} \\ \mathbf{M} \end{array}\right) \mathbf{x} = \left(\begin{array}{c} \mathbf{b} \\ \mathbf{M}^{-1}c \end{array}\right)$$

where \mathbf{M} is the matrix defined in (3)

4. [1pts] Why would you prefer either of the approaches described in (1) or (3) to solve the given minimization problem?

3. Differential equations [10pts]

Consider the scalar ordinary differential equation $y' = \lambda y$, $\lambda \in R$ and the following methods for solving it

Forward Euler :
$$y_{k+1} = y_k + hy'_k$$

Backward Euler : $y_{k+1} = y_k + hy'_{k+1}$
Trapezoidal : $y_{k+1} = y_k + \frac{h}{2}(y'_k + y'_{k+1})$

- 1. [4pts] Prove that taking one step of forward Euler to get from y_k to y_{k+1} followed by a step of backward Euler to get from y_{k+1} to y_{k+2} is equivalent to taking one trapezoidal step from y_k to y_{k+2} (note that the integration interval will be equal to 2h for a step from y_k to y_{k+2}).
- 2. [4pts] Prove that we get the same result if we use backward Euler for the first step and forward Euler for the second.
- 3. [2pts] Explain why both methods described in (1) and (2) are stable for any $\lambda < 0$