Automata and Formal Languages Comprehensive Exam

Fall 2004

Problem 1 (10 points)

Give context-free grammars generating the following languages over the alphabet $\{0, 1\}$ (you need not prove the correctness of your grammars):

- (a) {aⁱb^ja^{i+j+k}b^k : i, j, k ≥ 0};
- (b) all strings with an equal number of a's and b's.

Solution:

(a)

S	\rightarrow	AC	(1)
A	\rightarrow	aAa	(2)
Α	\rightarrow	В	(3)
В	\rightarrow	bBa	(4)
B	\rightarrow	ε	(5)
C	\rightarrow	aCb	(6)

(b)

s	\rightarrow	aSbS	(8)
---	---------------	------	-----

(7)

- $S \rightarrow bSaS$ (9)
- $S \rightarrow \epsilon$ (10)

Problem 2 (15 points)

Decide whether the following statements are TRUE or FALSE. You will receive 3 points for each correct answer and -2 points for each incorrect answer.

 $C \rightarrow$

6

- (a) If L₁ and L₂ are both non-regular, then L₁ ∩ L₂ must be non-regular.
- (b) Suppose there is a polynomial-time reduction from the language L₁ to the language L₂. It is possible that L₁ is solvable in polynomial time but L₂ is not even in NP.
- (c) Suppose there is a polynomial-time reduction from the language L₁ to the language L₂. If L₁ is recursive, then L₂ must be recursive.
- (d) Every infinite regular set contains a subset that is not recursively enumerable.
- (e) Every infinite recursively enumerable set contains an infinite subset that is recursive.

Solution:

- (a) FALSE
- (b) TRUE
- (c) FALSE
- (d) TRUE
- (e) TRUE

Problem 3 (15 points)

Classify each of the following languages as being in one of the following classes of languages: empty, finite, regular, context-free, recursive, recursively enumerable. You must give the smallest class that contains every possible language fitting the following definitions. For example, the language of a DFA could be empty or finite, and must always be context-free, but the smallest class that contains all such languages is that of the regular languages. You will receive 3 points for each correct answer and -2 points for each incorrect answer.

- (a) The intersection of a context-free language and a regular language.
- (b) The intersection of a recursive language and a regular language.
- (c) The languages accepted by nondeterministic pushdown automata with a single state that accept by empty stack.
- (d) The languages accepted by nondeterministic pushdown automata with two stacks.
- (e) The complement of a language in NP.

Solution:

- (a) Context-free
- (b) Recursive
- (c) Context-free
- (d) Recursively enumerable
- (e) Recursive

Problem 4 (15 points)

Specify which of the following problems are decidable and which are undecidable. You will receive 3 points for each correct answer and -2 points for each incorrect answer.

- (a) Given a Turing machine M, does M halt when started with an empty tape?
- (b) Given a context-free language L and a regular language R, is L ⊆ R?
- (c) Given a context-free language L and a regular language R, is R ⊆ L?
- (d) Given a DFA, does it accept on only finitely many inputs?
- (e) Given a PDA, does it accept on only finitely many inputs?

Solution:

(a) Undecidable

- (b) Decidable
- (c) Undecidable
- (d) Decidable
- (e) Decidable

Problem 5 (15 points)

A monotone 2-SAT formula is a 2-CNF Boolean formula $F(x_1, ..., x_n)$ that does not contain negated variables. For example:

$$F(x_1, x_2, x_3, x_4) = (x_1 \lor x_2) \land (x_2 \lor x_4) \land (x_1 \lor x_4) \land (x_2 \lor x_3).$$

It is clear that there always exists a truth assignment for the variables $x_1, ..., x_n$ satisfying the formula F—simply set each variable to TRUE.

Consider the following problem called MONOTONE 2-SAT: given a monotone 2-SAT formula F and a positive integer k, determine whether there exists a truth assignment satisfying F such that the number of variables set to TRUE is at most k.

Prove that the MONOTONE 2-SAT problem is NP-complete. (Hint: Think about the NP-complete VERTEX COVER problem.)

Solution: Recall that in a graph G = (V, E) with $V = \{1, 2, ..., n\}$, a vertex cover is a set $C \subseteq V$ of vertices such that for each edge $(i, j) \in E$, at least one of its endpoints is in C: $\{i, j\} \cap C \neq \emptyset$. The VERTEX COVER problem is the following: given a graph G = (V, E) and a positive integer k, does G contain a vertex cover of size at most k? We know that VC is NP-hard, and establish NP-hardness of MONOTONE 2-SAT via a polynomial-time reduction from VC.

The reduction starts with a VC instance $\langle G, k \rangle$ and creates an instance $\langle F, k \rangle$ of MONOTONE 2-SAT, where the monotone 2-CNF formula F is defined as follows: for each vertex $i \in V$, create a Boolean variable x_i ; for each edge $(i, j) \in E$, create a clause $x_i \vee x_j$. The reduction runs in linear time, but it remains to verify its correctness.

Suppose G has a vertex cover C of size at most k. Consider the truth assignment for the variables in F in which $x_i = \text{TRUE}$ if and only if $i \in C$; clearly, the number of TRUE variables is at most k. We claim that this is a satisfying truth assignment for F. To establish the claim, consider an arbitrary clause $x_i \lor x_j$ of F. Since (i, j) must be an edge of G, and hence C must contain at least one of i and j, it follows that at least one of x_i and x_j is assigned TRUE and hence the clause is satisfied.

Suppose now that there is a satisfying truth assignment for F with no more than k variables set to TRUE. Consider the set of vertices $C = \{i : x_i = \text{TRUE}\}$; clearly, $|C| \le k$. We claim that C is a vertex cover for G. To see this, focus on any one edge $(i, j) \in E$. Since F must have a clause $x_i \lor x_j$, and that clause is satisfied, at least one of x_i and x_j is assigned TRUE and so at least one end-point of the edge (i, j) belongs to C.

Finally, MONOTONE 2-SAT is in NP because the feasibility of a candidate solution (i.e., a truth assignment) can be checked in polynomial time.