# Automata and Formal Languages Comprehensive Exam 

Fall 2004

## Problem 1 (10 points)

Give context-free grammars generating the following languages over the alphabet $\{0,1\}$ (you need not prove the correctness of your grammars):
(a) $\left\{a^{i} b^{j} a^{i+j+k} b^{k}: i, j, k \geq 0\right\} ;$
(b) all strings with an equal number of $a^{\prime}$ 's and $b^{\prime}$ 's.

## Solution:

(a)

$$
\begin{align*}
& S \rightarrow A C  \tag{1}\\
& A \rightarrow a A a  \tag{2}\\
& A \rightarrow B  \tag{3}\\
& B \rightarrow b B a  \tag{4}\\
& B \rightarrow \epsilon  \tag{5}\\
& C \rightarrow a C b  \tag{6}\\
& C \rightarrow \epsilon \tag{7}
\end{align*}
$$

(b)

$$
\begin{align*}
& S \rightarrow a S b S  \tag{8}\\
& S \rightarrow b S a S  \tag{9}\\
& S \rightarrow \epsilon \tag{10}
\end{align*}
$$

## Problem 2 (15 points)

Decide whether the following statements are TRUE or false. You will receive 3 points for each correct answer and -2 points for each incorrect answer.
(a) If $L_{1}$ and $L_{2}$ are both non-regular, then $L_{1} \cap L_{2}$ must be non-regular.
(b) Suppose there is a polynomial-time reduction from the language $L_{1}$ to the language $L_{2}$. It is possible that $L_{1}$ is solvable in polynomial time but $L_{3}$ is not even in NP.
(c) Suppose there is a polynomial-time reduction from the language $L_{1}$ to the language $L_{2}$. If $L_{1}$ is recursive, then $L_{2}$ must be recursive.
(d) Every infinite regular set contains a subset that is not recursively enumerable.
(e) Every infinite recursively enumerable set contains an infinite subset that is recursive.

## Solution:

(a) PALSE
(b) TRUE
(c) FALSE
(d) TRUE
(e) TRUE

## Problem 3 (15 points)

Classify each of the following languages as being in one of the following classes of languages: empty, finite, regular, context-free, recursive, recursively enumerable. You must give the smallest class that contains every possible language fitting the following definitions. For example, the language of a DFA could be empty or finite, and must always be context-free, but the smallest class that contains all such languages is that of the regular languages. You will receive 9 points for each correct answer and -2 points for each incorrect answer.
(a) The intersection of a context-free language and a regular language.
(b) The intersection of a recursive language and a regular language.
(c) The languages accepted by nondeterministic pushdown automata with a single state that accept by empty stack.
(d) The languages accepted by nondeterministic pushdown automata with two stacks.
(e) The complement of a language in NP.

## Solution:

(a) Context-free
(b) Recursive
(c) Context-free
(d) Recursively enumerable
(e) Recursive

## Problem 4 (15 points)

Specify which of the following problems are decidable and which are undecidable. You will receive 3 points for each correct answer and -2 points for each incorrect answer.
(a) Given a Turing machine $M$, does $M$ halt when started with an empty tape?
(b) Given a context-free language $L$ and a regular language $R$, is $L \subseteq R$ ?
(c) Given a context-free language $L$ and a regular language $R$, is $R \subseteq L$ ?
(d) Given a DFA, does it accept on only finitely many inputs?
(e) Given a PDA, does it accept on only finitely many inputs?

## Solution:

(a) Undecidable
(b) Decidable
(c) Undecidable
(d) Decidable
(e) Decidable

## Problem 5 (15 points)

A monotone 2-SAT formula is a 2-CNF Boolean formula $F\left(x_{1}, \ldots, x_{n}\right)$ that does not contain negated variables. For example:

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

It is clear that there always exists a truth assignment for the variables $x_{1}, \ldots, x_{n}$ satisfying the formula $F$-simply set each variable to TRUE.

Consider the following problem called MONOTONE 2-SAT: given a monotone 2-SAT formula $F$ and a positive integer $k$, determine whether there exists a truth assignment satisfying $F$ such that the number of variables set to TRUE is at most $k$.

Prove that the MONOTONE 2-SAT problem is NP-complete. (Hint: Think about the NP-complete VERTEX COVER problem.)

Solution: Recall that in a graph $G=(V, E)$ with $V=\{1,2, \ldots, n\}$, a vertex cover is a set $C \subseteq V$ of vertices such that for each edge $(i, j) \in E$, at least one of its endpoints is in $C$ : $\{i, j\} \cap C \neq 0$. The VERTEX COVER problem is the following: given a graph $G=(V, E)$ and a positive integer $k$, does $G$ contain a vertex cover of size at most $k$ ? We know that VC is NP-hard, and establish NP-hardness of MONOTONE 2-SAT via a polynomial-time reduction from VC.

The reduction starts with a VC instance $\langle G, k\rangle$ and creates an instance $\langle F, k\rangle$ of MONOTONE 2-SAT, where the monotone 2-CNF formula $F$ is defined as follows: for each vertex $i \in V$, create a Boolean variable $x_{i}$; for each edge $(i, j) \in E$, create a clause $x_{i} \vee x_{j}$. The reduction runs in linear time, but it remains to verify its correctness.

Suppose $G$ has a vertex cover $C$ of sise at most $k$. Consider the truth assignment for the variables in $F$ in which $x_{i}=$ TRUE if and only if $i \in C$; clearly, the number of TRUE variables is at most $k$. We claim that this is a satlsfying truth assignment for $F$. To establish the claim, consider an arbitrary clause $x_{i} \vee x_{j}$ of $F$. Since ( $i, j$ ) must be an edge of $G$, and hence $C$ must contain at least one of $i$ and $j$, it follows that at least one of $x_{i}$ and $x_{j}$ is assigned TRUE and hence the clause is satisfied.

Suppose now that there is a satisfying truth assignment for $F$ with no more than $k$ variables set to TRUE. Consider the set of vertices $C=\left\{i: x_{i}=\right.$ TRUE $\}$; clearly, $|C| \leq k$. We claim that $C$ is a vertex cover for $G$. To see this, focus on any one edge $(i, j) \in E$. Since $F$ must have a clause $x_{i} \vee x_{j}$, and that clause is satlsfied, at least one of $x_{i}$ and $x_{j}$ is assigned TRUE and so at least one end-point of the edge $(i, j)$ belongs to $C$.

Finally, MONOTONE 2-SAT is in NP because the feasibility of a candidate solution (i.e., a truth assignment) can be checked in polynomial time.

