2004 Comprehensive Examination Artificial Intelligence

1. Search.

There are several ways this can be done. The following are examples.
(a) $9,8,7,6,5,4,3,2,1$
(b) $1,2,3,4,5,6,7,8,9$
2. Logic
(a) Incomplete
(b) Incomplete
(c) Complete
(d) Incomplete
(e) Complete

3. Automated Reasoning.

1. $\{-p(a, y), q(a, y)\}$
2. $\{p(a, y),-q(a, y)\}$
3. $\{p(x, f(x)), q(x, g(x))\}$
4. $\{-p(x, y),-q(x, y)\}$
5. $\{-q(a, y)\}$
6. $\{-p(a, y)\}$
7. $\{q(a, g(a))\}$
8. \{\}

4. Probability.

$$
\begin{aligned}
p(\mathrm{~B} 1 \mid \operatorname{Red}) & =p(\operatorname{Red} \mid \mathrm{B} 1)^{*} p(\mathrm{~B} 1) / p(\text { Red }) \\
& =2 / 11^{*} 1 / 3 /(2 / 11+4 / 9+3 / 10)^{*} 1 / 3 \\
& =0.1963
\end{aligned}
$$

5. Natural Language.

(a) There is no semantic interpretation in this case.
(b) hates(tom,mary) \& hates(harry,mary)
(c) One way is to add a number parameter, as shown below.

```
\(S(r(x, z) \wedge r(y, z)) \rightarrow Q(r(b o t h(x, y), z))\)
\(Q(w(u, v)) \rightarrow N P(u, n) \operatorname{Verb}(w, n) N P(v)\)
\(N P(x, \mathrm{~s}) \rightarrow \operatorname{Noun}(x)\)
\(N P(b o t h(x, y), p) \rightarrow N P(x, z)\) and \(N P(y, z)\)
Noun(tom) \(\rightarrow\) Art
Noun(dick) \(\rightarrow\) Bob
Noun(harry) \(\rightarrow\) Cal
Noun(mary) \(\rightarrow\) Deb
Verb(hates,p) \(\rightarrow\) hate
Verb(hates,s) \(\rightarrow\) hates
```

It is also possible to accomplish this by splitting the rules for $Q, N P$, and Verb; but this can be more cumbersome.

