Stanford University Computer Science Department
Fall 2003 Comprehensive Exam in Software Systems

SOLUTIONS

CLOSED BDOK: 0o notes, texthook, computer, PDA, Internet access, ele,

WRITE ONLY IN BLUE BOOKS: Mo eredit for answers written on these exam pages.
WRITE MAGIC NUMBER on the cover of EACH blue book.

The exam is designed 1o take less than an hour. Most answers should be short.

All guestions are worth the same.

If you need 10 make assumptions to answer a question, state them clearly.

e

1} Toavoid replay attacks, one con either use a randemly-gencrated nonce or a physical
timestamp. Give one advantage of using a nonce over a timestamp, and one advantage of
using a timestamp over a nonce. (You may assume that the resolution of physical timestamps
is sufficient to avoid timestamp value collisions.)

Nonces better because synchronized clocks aren 't required. Timestamps better because you
don’t have to remember every nonce you Ve ever sec.

2} True or false: all side-cffect-free operstions are idempotent, but nol all idempodent operations
are side-effiect-free. Explain vour answer concisely but completely (i.e. if true, explain why
gach part ia troe; if false, explain which pari(s) are false andior give counterexamples).

True, If an operation has no side effects, by definition executing it once is the same as
cxocuting it many times. On the other hand, an operation such as setting a variable to a
specific value does have a side effect, yet is still idempotent.

3} With respect to remote procedure calls (RPC), what is serialization {or marshalling) and why
is it necessary? Are there cases where it is unnecessary”

Serialization or marshalling refers to packing the call and its arguments into a portable formar
for transmission to the RPC server. It is necessary when you are not sure if the machine
architecture of the server is the same as that of the client (and therefore whether types like
integer or Moating-point numbers have the same representation on both). Marshalling is not
needed if the two machines have identical data representations and if the arguments 1n
question do not contain pointers into the client’s address space (which would not be safiely

dereferenceable on the server).
4) Describe a failure mode that might occur if a non-preemptive scheduler is used, and how it
would be avoided with a preemptive scheduler,
One example: a program goes info an infinite loop and never does a blocking 1/0 or other
operation that would yicld the CPU. A preemptive scheduler would regain control on the next
fimer inlerrupt,

5) [Ifa physical page is shared between two different processes, is il possible for the page to be
read-write for one process and read-only for the other? [5o, how, and if not, why not?

d SCCERATHD WS IE (TRCHIOMY-ManDad L) IMMakEs MOre Senise (R0

OGN LGS, DT WA DRI Y =TI e0, WORLLE T TRCARRE, L T Ve ol Lo iRl Y

[=]]

Bil 4.'Illi.'..l.!l'l.'!-:llli'lulll. '.: 1-.|'l'-|ll.'| iy 'l]l'nl'-.l]l.'.-.l.".ll' II.‘:L'L':I."“'M

LY DN Processcs ERedpueClly DS Dill L COMMPECDeE, S0 WOCH Tk DGl feally ELF TRl

3
s a

ormatsc variahles son-conbipuonsly on e Stac)

11} ¥ ou translate the above code to Java, compile and mun it, and again call fisney—1). Does the
behavior differ from the previous case, and if 50, how? Whal is the reason for the difference
in behavior {or lack thereof)?

The Java virtual machine specification requires it 10 do runtime bounds checking, so you'd get
an array bounds exception being thrown,

12} Some (38z provided a system call RENAME fo give a file a new name. [s there any
differcnce between using thiz call to rename a file, vs. just copving the fle (o a new File with
the new name and then deleting the old one? If so, describe the difference. If not, roughly
skeich why there is no difference.

It"s mot the same. Rename modifies the file's metadata bat does not move the file contents to
a different set of disk blocks (unless the file is being moved across filesystems). [Hename 13
usnally faster, but you had 1o explain win it"s faster.)

L3} Wiih respect to 2 virtual memory system, give one argument in favor of large page sizes and
one argument in favor of sgmall page sizes. Cive an example of an appropriate use of cach
type of page.

Small page sizes are usefl when you want o avoid internal fragmentation {wasted space
within & page, leading to wasted space overall). Most user data pages fit this description.
Large pages are appropriate when you want to minimize page swapping because there is a
large set of data that is infrequently swapped or is used all together; kerncl image is a typical
use for large pages.

14) Describe the structore of an inverted page table and how it differs from a conventional page
table. When would you want to use an inverted page table?

Inveried page tables hash from viral to physical address, allowing the page bl to be the
size-of physicab-memory muther than the st2e-of the virtual address spoce. 1 the-virmat-address
space 15 very large andfor is sparsely used, inverted tables may be desirable.

15) When programming in a language that uses garbage collection such as Java, is it possible to
have memory leaks? If not, why not? If so, give an example of a scenario that would cause a
leak to occur,

Yes, circular data structures (such as self-referentinl lmked lists) or references that go out of
scope and arc never used again cannot be garbage collected (becanse there is no way for the
GC to prove that those data structures are no longer accessible).

THE END

