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1. Vector and Matrix Norms [8 pts]

The following definitions hold for the norm and condition number of a recrangular
mxn matrix A with respect to a specific matrix norm

| Al.-m“"ﬁ cond(A) = [ i uﬁiﬂ] [::u Hﬁq

Given the singular value decomposition A=UZV" of the matix A (where [ and V' are
orthogonal and E is the mxn diagonal matrix containing the singular values of A )

i. [3 pts] Prove that [4]), =|F], using the definition above
ii. [ pts] Prove that
”A'”;g = O and cond,(A) =0, "rﬂ-n'in

where o is the largest singular value of A and o, the smallest one.

Solutions
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Since the mapping x+—»V'x is an isomorphism on R*\{D} (its inverse is simply

x = Vi) we have
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. Let a,, i=1,...,n be the singular values of A, forming the diagonal of the matrix £.
Let o, =7, be the largest and o, = o the smallest among them. Then
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Therefore, using the definition we have |4|, = o, and cond,(A) =0, /O,
2. Differential Equations [10 pts]

i. [4 pts] Given a square matrix A whose eigenvalues have negative real parts,
show that the matrix 1 — A is invertible and the eigenvalues of B=(I— A)J'(I + A) are
+ A

_i;‘

ii. [6pts] Consider the vector ordinary differential equation ¥ = f(x,7) and the
implicit trapezoidal method for solving it

given by the formula A’ = , where A" are the cigenvalues of A
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Prove that this method is unconditionally stable when applied to the model vector ODE
¥ =Ay for a matrix A whose eigenvalues have negative real parts (that is, show that

|7:| = 0 as k — ==, regardless of the value of the step size h)



Solutions

i. The matrix 7— A is singular if and only if det(f — A)=0. But this implies that A =1
is an eigenvalue of A, which is not the case since all the cigenvalues of A have negative
real parts. Furthermore, we have

det|(7 — AV (1 +A)- A1 |=0 det|(T - AV (1 + A)- A1 - AV(T - A)|=0 =
e detf[1 - AV Jaedf(1 + )= A1 - A)]=0 & det][( + A)— A(1 - A)]=0
-:-—bdtl[{&+1]ﬂ-{A-I}If]zﬂﬁdﬂ[ﬁ—g ]=n
Therefore, the eigenvalues of A and B =(F — A)' (I + A) are associated as follows
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ii. Application of the trapezoidal rule in the model equation yields
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The method is stable if and only if the spectral radius of the matrix [f - g&J [f +gﬁ]
is less than 1. Using the result of (i) the eigenvalues of the matrix above are piven as
1+240 :
A :ﬁ which all have magnitude less than 1 for Re[A'} <0 (since each A" lies
2
closer to —1 than to 1 on the complex plane) regardless of the value of & . Therefore, the
trapezoidal rule is unconditionally stable for this model equation.

3. Numerical Quadrature [12 pis]
Consider a real function f that is differentiable on an interval [a,b]

i tjl- pts] Find a guadratic polynomial g(x) that approximates f({x) on [a.F] in

that f’{aj'r =g'a), B =g'(h) and [[ﬂ;b] = g[ﬂ ;h] [Hint : Consider expressing

g{x) as a quadratic polynomial of [.r ... ;hJ]



b
ii. [2 pts] Define a numerical quadrature rule for I_.I"lfﬂrir by integrating the

interpolant g(x) on [a.b]

iii. [3 pts] Prove that this integration scheme has degree of accuracy equal to 3.

]
iv. [2 pts] Define the corresponding composite quadrature rule for _{_,l"l[x]dx we

a+(k+1)
n

b—a b—ﬂ]
n ¥

obtain by subdividing [a.b] into the n sub-intervals [:Hi'

k=101,....,n-1 and applying the basic integration rule on each of them

v. [2 pts] Consider the composite mle of (iv), the composite midpoint rule and the
composile Simpson's rule. Under which circumstances would you prefer to use each one
of them?

Solutions
. a+hy a+h , , .
i. Let glx)=c,| x- 3 +o| x= 5 + ¢, . Using the given constraints we have
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ii. We have
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ili. The interpolant used approximates exactly polynomials of degree up to 2, thus the
degree of accuracy is at least 2. We also have



[Pae=(b-4] = 24 8 g
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which is the exact result, To show that the degree of accuracy is exactly 3, we give the
counterexample fix)= x* on the interval [— a,u]

:[.:“.:ix = 2qa-0* +£i{£{45}+4a"]=%a5
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which is not the exact result {%a” ). Therefore the method is third order accurate

iv. The composite rule is
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v. If we know the exact value of f“(a) and f'(b), the rule we proved in (iv) is third

order accurate while only slightly more complex than the midpoint rule and should be
preferred. Note that this wouldn't work if we tried to approximate ’(a) and f(5) from

nearby values of f, since this approximation would have an Olh) error leading to an
ﬂl{hi} error in the integration formula (same as the midpoint rule).

If we don’t know f'(a) and () and third order accuracy is desired, Simpson’s rule
is the only option. Nevertheless, if first order accuracy is sufficient (for example if f is

very smooth or if the discretization step h is already very small) the midpoint rule is
simpler and requires much fewer floating point operations.





