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1.  Vector and Matrix Norms [8 pts] 

The following definitions hold for the norm and condition number of a rectangular 
m x n matrix A with respect to a specific matrix norm 

Given the singular value decomposition A = UXvT of the matrix A (where U and V are 
orthogonal and C is the m x n diagonal matrix containing the singular values of A ) 

i. [3 pts] Prove that IIAII, = IH2 using the definition above 

ii. [5 pts] Prove that 

and cond, (A) = a,, / a,, 

where cr,, is the largest singular value of A and a,, the smallest one. 

Solutions 

i. For any x s  Rn \ (61 we have 

Since the mapping X H  v T x  is an isomorphism on Rn \{a} (its inverse is simply 
XH Vx) we have 

l l h l l 2  = max max- IIz(vTxl12 - - max - IIzyII2 
x*o llxl12 x10 pTxll 2 YLO IIylI2 



ii. Let a ,  , i = 1,. . . ,n be the singular values of A, forming the diagonal of the matrix C 

Let ok = am, be the largest and a, = a,, the smallest among them. Then 

and 

llhl12 - IlblI lbel ll  110412 m i n - - m i n - - A 5 L = - = o ,  = a .  
1 nun 

* 2 llxllz lle1ll2 

Therefore, using the definition we have 1 1 ~ 1 1 ,  = amX and cond2(A) = a,, 10- 

2. Differential Equations [lo pts] 

i. [4 pts] Given a square matrix A whose eigenvalues have negative real parts, 
show that the matrix I - A is invertible and the eigenvalues of B = (I - A)-'(I + A) are 

1+Af 
given by the formula A: = - , where A; are the eigenvalues of A 

1 4 ;  

ii. [6 its] Consider the vector ordinary hfferential equation B'= f ( x , ~ )  and the 
implicit trapezoidal method for solving it: 

Prove that this method is unconditionally stable when applied to the model vector ODE 
y" = Ay' for a matrix A whose eigenvalues have negative real parts (that is, show that 

llykll 4 0 as k 9 m , regardless of the value of the step size h ) 



Solutions 

i. The matrix I - A is singular if and only if det(1- A) = 0 .  But this implies that A = 1 
is an eigenvalue of A, which is not the case since all the eigenvalues of A have negative 
real parts. Furthermore, we have 

~ ~ ~ ~ ( z - A ) - ~ ( z + A ) - / u ~ = o  o det[(I -A)-'(z+A)-A(I -A)-'(I - A ) ~ = o  o 

o det[(I -A)-l]det[(l + A)-A(Z - A)]= 0 o det[(I+ A)-A(I -A)]= 0 o 

Therefore, the eigenvalues of A and B = (I - A)-'(I + A) are associated as follows 

ii. Application of the trapezoidal rule in the model equation yields 
h 

?k+l = ?k + ?('~k + AYk+l ) a 

The method is stable if and only if the spectral radius of the matrix (I -$A)-l(I +$A) 

is less than 1. Using the result of (i) the eigenvalues of the matrix above are given as 
i++a; 

Ai = which all have magnitude less than 1 for ~ e { A f }  < 0 (since each Af lies 
I-$$ 

closer to - 1 than to 1 on the complex plane) regardless of the value of h . Therefore, the 
trapezoidal rule is unconditionally stable for this model equation. 

3. Numerical Quadrature [12 pts] 

Conqider a real function f that is differentiable on an interval [a, b] 

i. [3 pts] Find a quadratic polynomial g(x) that approximates f (x) on [a,b] in 

that f '(aj = g'(a) , f '(b) = g'(b) and f ( - ) = (9) [Hint : Consider expressing 
I 

g (x) as !a quadratic polynomial of x - - ( 



b 
. . 
11. [2 pts] Define a numerical quadrature rule for 1 f (x)& by integrating the 

a 

interpolant g(x)  on [a, b] 

iii. [3 pts] Prove that this integration scheme has degree of accuracy equal to 3. 

b 

iv. [2 pts] Define the corresponding composite quadrature rule for if (x)& 
a 

obtain by subdividing [a,b] into the n sub-intervals a + ( k + l ) -  b-a17 
n 

k = 0,1, . . . , n - 1 and applying the basic integration rule on each of them 

v. [2 pts] Consider the composite rule of (iv), the composite midpoint rule and the 
composite Simpson's rule. Under which circumstances would you prefer to use each one 
of them? 

Solutions 

i. Let g (i) = c,(r - 9)' + c,(x - 9) + c,, . Using the given constraints we have 

Therefore 

ii. We have 

iii. The interpolant used approximates exactly polynomials of degree up to 2, thus the 
degree of accuracy is at least 2. We also have 



which is the exact result. To show that the degree of accuracy is exactly 3, we give the 
counterexample f ( x )  = x4 on the interval [- a,  a]  

2 
which is the exact result ( ; a5 ) .  Therefore the method is third order accurate 

iv. The composite rule is 
a + ( k + l v  

b I f (x)& = 2 f f i x )  = 
a  k=O b-a 

a+k- 

n-1 b - a  b - a  (b-a)2 
- x { - f ( a + ( 2 k + ~ ) - ) +  k=o 12 2n 24n [ f ' ( a + ( k + l ) * ) - f ' ( a + k e ) ] }  n 

b - a "-1 b - a  (b-a)' 
= {-x n k=o f ( a  + (2k + I)-)} 2n + 24n2 [ f  '(b) - f '(a)] 

v. If we h o w  the exact value of f ' (a)  and f '(b) , the rule we proved in (iv) is third 
order accurate while only slightly more complex than the midpoint rule and should be 
preferred. Note that this wouldn't work if we tried to approximate f'(a) and f '(b) from 
nearby values of f , since this approximation would have an ~ ( h )  error leading to an 

0 (h3 )  error in the integration formula (same as the midpoint rule). 
If we don't know f ' (a)  and f '(b) and third order accuracy is desired, Simpson's rule 

is the only option. Nevertheless, if first order accuracy is sufficient (for example if f is 
very smooth or if the discretization step h is already very small) the midpoint rule is 
simpler and requires much fewer floating pqint operations. 




