AI Comp 2003 solutions (by CS PhD 2006)

Peerapong Dhangwatnotai

October 25, 2006

1 Search

- a) $2^{k+1}-1$
- b) $2^{d+1} 2^{d-k+1} + 1$ (complete tree except descendants of the solution node)
- c) $2^{k+2} k 3$. We can get this from summing up the cost of breadth-first search with max depth = 0, 1, ..., k.

$$\sum_{i=0}^{k} \text{complete tree of depth i} = \sum_{i=0}^{k} 2^{i+1} - 1$$
 (1)

$$= \left(\sum_{i=0}^{k+1} 2^i\right) - 1 - \sum_{i=0}^{k} 1 \tag{2}$$

$$= 2^{k+2} - 1 - 1 - (k+1) \tag{3}$$

$$= 2^{k+2} - k - 3 \tag{4}$$

2 Logic

- a) True.
- b) False. $\phi = p \vee q$. $\Gamma = \{p\}$. $\Delta = \{q\}$
- c) True.
- d) True.
- e) True. Tautology

3 Automated Reasoning

- 1. $\neg \forall x (p(x) \Rightarrow r(x))$ (negate the conclusion and add to our premises)
- 2. $\forall x(p(x) \Rightarrow \exists y(q(x,y) \lor q(y,x)))$ (premise)
- 3. $\forall x \forall y ((q(x,y) \lor q(y,x)) \Rightarrow r(x))$ (premise)
- 4. $\neg \forall x \neg p(x) \lor r(x)$ (eliminate implication from 1)
- 5. $\forall x(\neg p(x) \lor \exists y(q(x,y) \lor q(y,x)))$ (eliminate implication from 2)
- 6. $\forall x \forall y (\neg (q(x,y) \lor q(y,x)) \lor r(x))$ (eliminate implication from 3)
- 7. $\exists x(p(x) \land \neg r(x))$ (push negation inside, 4)
- 8. $\forall x \forall y ((\neg q(x,y) \land \neg q(y,x)) \lor r(x))$ (push negation inside, 6)
- 9. $\neg p(x) \lor (q(x, f(x)) \lor q(f(x), x))$ (skolemize, 5)

- 10. $(p(C) \land \neg r(C))$ (skolemize, 7)
- 11. $((\neg q(x, f(x)) \land \neg q(f(x), x)) \lor r(x))$ (skolemize, 8)
- 12. $(\neg q(x, f(x)) \lor r(x)) \land (\neg q(f(x), x) \lor r(x))$ (distribute \lor , 11)
- 13. p(C) (split up \wedge , 10)
- 14. $\neg r(C)$ (split up \land , 10)
- 15. $(\neg q(x, f(x)) \lor r(x))$ (split up \land , 12)
- 16. $(\neg q(f(x), x) \lor r(x))$ (split up \land , 12)
- 17. $\neg q(C, f(C))$ (resolving 15 and 14 by setting x to C)
- 18. $\neg q(f(C), C)$ (resolving 16 and 14 by setting x to C)
- 19. $q(C, f(C)) \vee q(f(C), C)$ (resolving 9 and 13 by setting x to C)
- 20. q(f(C), C) (resolving 19 and 17)
- 21. \perp (false) (resolving 18 and 20)
- 22. $\forall x(p(x) \Rightarrow r(x))$ (Negation of one of the premises is true)

Probability 4

a) $1/\binom{6}{3}$

$$p(d_2 = g|d_1 = g) = \frac{p(d_2 = g, d_1 = g)}{p(d_1 = g)}$$

$$= \frac{1/3}{1/3 \cdot 1 + 1/3 \cdot 1/2}$$

$$= \frac{2}{3}$$
(5)
$$(5)$$

$$= \frac{1/3}{1/3 \cdot 1 + 1/3 \cdot 1/2} \tag{6}$$

$$= \frac{2}{3} \tag{7}$$

5 Learning

- a) There are two answers. One makes "a" the root node and "d" the child nodes. But you can switch them and make "d" the root node. The tree has depth 1 (beginning with depth 0).
- b) Since the probability that "Goal" is 1 is $\frac{1}{2}$, $p = \frac{1}{2}$ and $n = \frac{1}{2}$. Therefore, -(p * log p) (n * log n) =
- c) If a is 1, the probability that Goal is 1 is $\frac{1}{2}$. If a is 0, the probability that Goal is 1 is $\frac{1}{2}$. Therefore, information needed is 1 for both cases.
- d) Info gain from a is 0. Since the tree correctly classifies all examples, information gain from d given a is 1 - (info gain from a) = 1.