
 1

Stanford University Computer Science Department
Fall 2002 Comprehensive Exam in Software Systems

Solutions by CS Ph.D. First Years (2006-10-19)

Short Answers (3 each, 30 total)

1.) With respect to transmission of a message from principal A to principal B, distinguish
what is meant by authenticity, privacy, and integrity with respect to that message.

Authenticity – Was it really A who sent the message to B?
Privacy – Could a third party snoop and see the contents of the message or find out that
the message was being sent?
Integrity – Did a third party alter the message while it was in transit?

2.) What is the point of multilevel paging?

To save a tremendous amount of space. Page tables are mostly empty; they are sparse
data structures. If there were only one level, most slots would be blank.

3.) Give an example of a high-level language that uses explicit memory management, and
state what facilities are provided for doing it.

C++. The new and delete operators are used to manage memory.

4.) What is an idempotent operation? Give an example of an idempotent operation, and
contrast it with an example of a non-idempotent operation.

An idempotent operation is one whose results are identical no matter if it’s executed once
or many times. An example is ‘x = x * 0’. A non-idempotent operation is ‘x = x + 1’.

5.) Describe how failure recovery can be made easier by the use of idempotent
operations.

If you experience a failure while you’re in the middle of running the recovery code, there
is no harm in running idempotent failure recovery operations again. This simplifies
recovery code because it doesn’t need to consider what happens if there is a failure
during the recovery process itself.

6.) What’s the difference between a preemptive and a non-preemptive process scheduler?

A preemptive scheduler forces processes to relinquish control of the CPU at certain
times, while a non-preemptive scheduler doesn’t; in a non-preemptive scheduler, the only
way for some other process B to run while process A is running is if process A purposely
yields control of the CPU.

 2

7.) If a physical page is shared between two different processes, is it possible for the page
to be read-write for one process and read-only for the other? If so, how, and if not, why
not?

Yes, the page table entries for the two processes can point to the same physical page
(usually mapped to different virtual addresses), and within each entry are permissions bits
specific to the process. One process’s entry for that page could be marked ‘read-write’
while another one’s could be marked ‘read-only’.

8.) Describe the difference between memory-mapped I/O and programmed I/O. Mention
one typical application of each.

Memory-mapped I/O works by mapping the device into special memory addresses so that
applications can interact with those devices by reading/writing those addresses. An
example is a video card.

Programmed I/O requires special CPU instructions to read/write to a certain port and is
not done through the memory system. Examples are legacy hard drives and mechanisms
to write to a computer’s CMOS memory.

9.) What is the difference between deadlock and starvation in a resource-allocation
system?

Deadlock is when nobody gets a chance to run at all. Starvation is when one party never
gets to run (or rarely gets to run) while other parties are running just fine. Starvation may
be temporary and get relieved as time progresses (perhaps as load decreases), but
deadlock is, by definition, permanent (until the system resets).

10.) A RAID system can fail if two or more of its drives crash within the same hour.
Suppose that in a given hour, a drive can fail with probability p, and that drive failures
are independent. What is the probability of a k-drive RAID system failing in a given
hour?

P(k-drive RAID system failing in some hour) = P(2 or more drives crash within that hour)

P(2 or more drives crash) = 1 – P(exactly 1 drive crashes) – P(no drives crash)

P(exactly 1 drive crashes) = k * p * (1 – p)k-1
P(no drives crash) = (1 – p)k

Thus, P(failure) = P(2 or more drives crash) = 1 – k * p * (1 – p)k-1 – (1 – p)k

 3

Slightly Longer Answers (5 each, 30 total)

11.) When a user program makes a (privileged) system call, in what important way(s) is
the calling sequence different from that of calling another user-level procedure.

When calling a regular user-level procedure, the program saves caller-save registers onto
the stack, pushes the return address and arguments onto the stack, and directly jumps into
the code of the called procedure. However, when making a system call, the program sets
up some register state and simply issues an interrupt to trap into the kernel. The kernel
starts executing in a privileged state, saves the process’s state so that it can be restored
later, does whatever the system call requires, and returns back to the user program in a
non-privileged state.

12.) Describe the priority inversion problem that arises in process scheduling or thread
scheduling. Give a concrete example of circumstances that might cause priority
inversion to occur.

Priority inversion is when a lower-priority process holds a lock (or some other resource)
that a higher-priority process is waiting on, so the higher-priority process doesn’t get to
execute, thus inverting their priorities. A concrete example is the following: Suppose that
there is a high priority process H and a low priority process L. L grabs a lock and then H
tries to grab it. H can’t run because L has the lock. However, now a medium priority
process M appears, and because it has higher priority than L, it runs more often. L will
eventually finish what it’s doing and release the lock, but in the meantime, M runs much
more often than H, even though it has lower priority than H, hence the priority inversion.

13.) Suppose you have a word-sized variable Foo that is shared among many concurrent
threads. You would like to serialize accesses to this variable, to prevent conflicting
updates. Unfortunately, you’re writing in a language that doesn’t provide language-level
constructs for writing a monitor procedure (i.e., doesn’t have features like Java’s
synchronized keyword).

(a) Assume your OS provides a mutex/locking facility. Using any suitable pseudocode
syntax, write the pseudocode for updateFoo(int newFoo) using mutexes and/or locks.

int Foo;
mutex fooMutex;
updateFoo(int newFoo) {
 lock(&fooMutex);
 Foo = newFoo;
 unlock(&fooMutex);
}

(b) Assume your OS provides simple nonblocking atomic operations, like test-and-set or
compare-and-swap, on word-sized operands. Write the pseudocode for updateFoo(int

 4

newFoo) using nonblocking atomic operations. (Note! For part (b), do not use
nonblocking operations to implement locks! Write true nonblocking code.)

int Foo;
updateFoo(int newFoo) {
 CAS(&Foo, Foo, newFoo); // compare-and-swap
}

14.) Suppose now that Foo is not an int but a data structure FooStruct that is several
words long, and updateFoo(FooStruct newFoo) must atomically update the entire
contents of this data structure. Can you still write only nonblocking code for updateFoo?
If so, show the pseudocode. If not, explain why it can’t be done. (Note: as in part (b) of
the previous question, using atomic instructions to implement locks does not count as
nonblocking code! Nonblocking code avoids spinwaits.)

No, because there is no way to atomically write more than 1 word. There might be
interruptions from other threads while a FooStruct is in the process of being updated.

15.) Suppose that a CPU scheduling algorithm favors those processes that have used the
least processor time in the recent past. Explain why this algorithm will favor I/O-bound
processes; then explain why it will not permanently starve CPU-bound processes.

It will favor I/O-bound processes because those are likely to be blocking (waiting) on I/O
lots of the time, and hence qualify for ‘using the least processor time in the recent past.’
However, it will not starve CPU-bound processes because after those I/O-bound
processes get a chance to run for a bit, the CPU-bound processes now quality as ‘using
the least processor time in the recent past.’ Also, because those processes are I/O-bound,
they are likely to just do a little bit of work and then block for a long time, giving plenty
of time for the CPU-bound processes to execute.

16.) Typically, a true LRU replacement policy can be used for managing blocks in the
buffer cache of the file system, whereas only approximations of LRU are used to keep
track of pages in a virtual memory system. Why is this so?

Speed. True LRU requires timestamps and is much more costly in terms of speed than an
LRU approximation (such as the clock algorithm). When dealing with the buffer cache,
the order of magnitude in speed is bounded by hard disk access times, which are much
slower than CPU calculation times, so it’s reasonable to implement true LRU. However,
when dealing with virtual memory, which must be accessed more often and needs to be
much faster, true LRU is simply too slow.

17.) Suppose a new CPU design has the following feature: there are multiple copies of
the register file; at any given time, exactly one of these copies or “banks” can be accessed
by user code; and a privileged instruction must be executed to change which “bank” is
being used. How might the OS exploit such a CPU feature, and what benefit(s) would be
gained?

 5

The OS can exploit this feature to perform context switches more efficiently. Normally,
to perform a context switch, the registers for the exiting process must be saved away in
memory, usually somewhere in its own stack, and the register values for the entering
process must be loaded from memory into the actual registers in the register file. This
can be a slow operation. With multiple register files, the OS can simply execute a
privileged instruction to switch banks when processes are being switched.

