Comprehensive Exam:

Autumn 2002-03

Automata and Formal Languages (60 points)

Problem 1. [10 points]
Recall that a string x is called a substring of another string w if x appears consecutively within w (i.e. $w=y x z$ for some strings y, z).

1. [3 points] Give a regular expression for the language $L=\left\{w \in \Sigma^{*} \mid\right.$ the string papi is a substring of $w\}$, where Σ is the English alphabet.
2. [7 points] Give a deterministic finite automaton for L. (Partial credit for a nondeterministic finite automaton if you cannot get a DFA.)

Problem 2. [10 points]

Decide whether the following statements are TRUE or FALSE. You will receive 2 points for each correct answer and -2 points for each incorrect answer.

1. Nondeterministic and deterministic finite automata recognize the same set of languages.
2. Nondeterministic and deterministic pushdown automata recognize the same set of languages.
3. Nondeterministic and deterministic Turing machines recognize the same set of languages.
4. The intersection of two recursive languages is recursive.
5. The intersection of two context-free languages is context-free.

Problem 3. [15 points] Classify each of the following languages as being in one of the following classes of languages: regular, context-free, recursive, recursively enumerable. You must give the smallest class that contains every possible language fitting the following definitions. For example, the appropriate class for the language of a PDA is context-free. You will receive 3 points for each correct answer and -2 points for each incorrect answer.

1. Call a string w over the alphabet $\Sigma=\{s, r\}$ well-formed if every prefix of w contains at least as many occurrences of letter s as of letter r. What is the appropriate class for the language of well-formed strings ?
2. The language of well-formed strings w over $\Sigma=\{s, r\}$ such that in each prefix of w the number of occurrences of s docs not excced the number of occurrences of r by more than 10 .
3. The language of strings over $\left\{s, r, s^{\prime}, r\right\}$ that are well-formed with respect to both pairs (s, r) and $\left(s^{\prime}, r^{\prime}\right)$, i.e. each prefix contains at least as many occurrences of s as of r, and at least as many occurrences of s^{\prime} as of r^{\prime}.
4. The set of encodings of Turing machines M whose time complexity is not bounded by n^{2}; i.e., $L=\{M \mid$ there exists an input string w such that M performs more than $|w|^{2}$ steps on input $\left.w\right\}$
5. The language $L=\left\{w \in \Sigma^{*} \mid \exists x \in L_{1}, \exists y \in L_{2}\right.$ such that $\left.x=w y\right\}$, where L_{1} is regular and L_{2} is recursively enumerable.

Problem 4. [12 points]
Classify each of the following problems as being in one of the following classes: P (polynomial-time solvable), decidable but not known to be in P (this class includes eg. NP-complete and PSPACE-complete problems), undecidable. You will receive 3 points for each correct answer and -2 points for each incorrect answer.

1. Input: Deterministic finite automata A, B. Question: $L(A) \subseteq L(B)$?
2. Input: Pushdown automaton A, deterministic finite automaton B. Question: $L(A) \subseteq L(B)$?
3. Input: Deterministic finite automaton A, pushdown automaton B. Question: $L(A) \subseteq L(B)$?
4. Input: Nondeterministic finite automata A, B. Question: $L(A) \subseteq L(B)$?

Problem 5. [13 points]
Prove that the FEEDBACK NODE SET problem is NP-complete, using the fact that the NODE COVER problem is NP-complete.
The definitions of these problems are recalled below.

FEEDBACK NODE SET

Input: A directed graph H and a positive integer k.
Question: Is there a set F of at most k nodes such that removing from the graph the nodes of F and their incident edges leaves an acyclic graph? (Such a set F is called a feedback node set of H).

NODE COVER

Input: An undirected graph G and a positive integer k.
Question: Is there a set C of at most k nodes such that every edge of G is incident to at least one node of C ? (Such a set C is called a node cover of G.)

