Solutions
1a)Denote r=Ax-b; x=argminfr|, =argmin "7 = argmin( x™ 4" Ax - 2(4"B)" x+ 5" b)
Differentiating with respect to x and setting the result to zero, we get 24" Ax~24"b =0, or
AT dx=ATh (2)
4 is of full column rank => A" 4 is nonsingular => {2) has a unique solution,
A" A is symmetric and positive definite == we can compute its Cholesky factorization
ATA=LIT,
where L - lower tnangular. This allows us to reduce (2) to solving the tnangular systems
Ly=A"b, FMx=y,

b)First we want to decompose A into the product Q[g] (0 :mxm orthogonal, R:nxn upper-

triangular, since A is of full column rank, R is nonsingular.
To reduce A to the upper-tnangular form, we successively apply Householder transformations

R ! .
H_.HA= [ - ] . where H‘.:f—z-‘r'—:’-- ==  orthogonal and symmetric.
v, ¥

H | reflects a vector against the hyperplane v . We choose v, so that /| zeros out the subdiagonal
part of the ith column &, of the current state of 4 - (H_ . H 4)

If a’ = {a, with the upper i-1 enines set to 0}, then v, = E,'tHEz",‘LE,, where the sign is chosen so as
to avoid cancellation

R .
Mow, using this decomposition 1;'.";|':"J-'!f=|:ﬂ]~ o' =H,k H,

o

x = argmin | 4x - b, = argrrﬁn|k3’.ir- Q‘HJ: = arg min

b
let 0 'h = |:If:|i ] . Bomxl, b (m-m)xl;
3

«=asgmin] 2 |~ saminitc .- spmnfc a1, -1
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Computations Accuracy

| Normal equations ATA - =mn’ flops, relative error in x 1s
Cholesky factorization - = % flops proportional to (comd(4))*
Triangular systems - ({n”)
= + ”-—; flops

Householder 2 2 3 relative error in x is
transformations ~ 2w+ = flops proportional to
cond( A} + fr|, (cond(A))*

For nearly square problems, m = n, the two methods require about the same amounts of work, but for

m == n normal equations method is about 2 times cheaper than Householder method. On the other
hand, the Householder method 15 more accurate.

2 a) Via elementary symbolic calculations we obtain y(f)=e*. As 1 =, (1) = +0.

Ah Ak 1+ Ah /2 1+ahf 2
h .I—-n—- — ]+—- = - i =
) Yial 1} LA EL ¥ ]—.lh."iyi ! [l—ithJ
y, =0 lj‘“i <1, (2+Ah) <(2-Ah)*, 4dh<—a4ih, Ak <0,

and since we assume A >0, this is true for all negative A

..r{!l-n.]‘"kj"' .lr[:'rb-ﬂ '-}Ih]}h

¢) We have Yo =X + 2 (1)
For the true solution  »(f) we can write
M) = pie)+ L el @
where £ 15 some unknown term. From Taylor expansion we have two formulas:
(x+H)+ fix=h #*
SEAIED rw+ T, E A
f{x+-‘i}z;f{x—-'ﬂ_f” ﬁ#*r Bl <)o,

Regrouping (2) and applving th:s-e formulas, we get:
‘f .F{fhl} ) .]'"{fl-»,l}i"'.}’(fe} {!h”*}_'_ff&?_}r“t "'?]'_Th [E !?!}hl whete

ebol, bl e HeloL bl o

MNow denoting &, =y, — w1, ) and subtracting (1)-{2), we get

5 =g oWV ) S YD) ey Ve ) = S, Y D)
4+l k 2

h-¢.
2 g

Then using Lipschitz.-mntim.'rry of f,
Lh
<l o Sl 0= <0+ Es |+l

|Jl+|



|l Lhi2) gl _[1+Lhi2) e Bl
- Lml‘*' Lh12 - Lhizl [+2]  for A=

To simplify this, consider the general situation: x,,, <ax, +5 Applying this inequality recursively,
E

IEM

3 a ""_I- 5 .
weget x, sa'x, +ha" +at 4+ +D=a‘x, +b . The first term in our case disappears,

&

1+Lh2f
1-Lhi2
N=yp =1;
because p{0) = y, = 1 therefore |5,|= 2}’ TS A2
—Lhi2
i e
F.
Now since &k =1, [h, |I+£’ME| b5 =e¢™  and hence

1-Likhiz| ** E-EL

=
£

+==:f-‘r]| Els‘l e +s(h) -1
IE[ 2|.f‘| {I LRI2Y= =

where _h- < (]|y{£ +||_ymll]¢ W', and e(h)—0 as h—0. Thus |§,|<Ch’ for sufficiently
small k.

3a) Let I(x)= fla)+(x— a}M. then

1) = fftrkir f@)s-ay+ =2 ’ SOT@ _ ¢ ax @+ LELD) - - LOSC)

&
b)Let I, = [ f(x)de, A=b-a.

Fla+n= fla)+ flan +f'{.§;|%, I = f{a}&-}f'{a}%-ﬁ A-*;—, |4 < Lf']L_

¥ L] II i -'ﬁ'= ﬂ? LA
f{f’—i'}=f{f'}—fib,\-'+ff§1}—i-a fu=f{b}ﬂ—f(ﬁ]?+ﬂ?- Bt="Ar "l
Averaging the two expressions for [, we obtain
3 k] .&3
fff‘”];ﬂ”ﬁ;‘”ﬁﬂ if+c'%~ where :’::igﬁ. This implies |7, ~1|< |1, =
) Let /17, " be the true integral and our estimate correspondingly for the ith subinterval, Then

L=, 130
=l
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