
2001 Programming Languages Comp. Solutionswritten by 2006 Ph.D. First-Years1. Lifetime and S
ope: Within a fun
tion, if one variable is de
lared stati
 and the otherone is de
lared non-stati
, then the two variables have the same s
ope (a

essible onlywithin that fun
tion) but have di�erent lifetimes (the stati
 variable has a lifetime last-ing the duration of the program exe
ution while the non-stati
 variable has a lifetimelasting the duration of a parti
ular fun
tion 
all).2. Stati
 and Dynami
 S
ope: Stati
 s
ope is resolved at 
ompile-time (use the valueof the variable de
lared in the 
losest en
losing blo
k); dynami
 s
ope is resolved atexe
ution-time (use the value of the variable 
losest to the 
urrent fun
tion's a
tivationre
ord on the sta
k). Ex
eptions are a language feature that uses dynami
 s
ope.3. Tail Re
ursion: The primary advantage of tail re
ursion is spa
e savings. Time re-quirement is still O(n) but spa
e requirement is O(1) be
ause new a
tivation re
ordsaren't being pushed onto the sta
k for ea
h re
ursive 
all.4. Parameter Passing:(a) At the beginning of the 
all to in
rement(), the value of y on the sta
k (0) is
opied to the slot where x is allo
ated on the sta
k. Then x is in
remented to 1,and when the fun
tion returns, the sta
k pointer is moved ba
k up and the valueof x is lost. The 
all doesn't in
rement y be
ause its value was 
opied to anotherlo
ation, and the value in that lo
ation (not y) is in
remented.(b) in
rement(&y)(
) The C++ pass-by-referen
e 
ode is a bit less eÆ
ient than the pass-by-value C
ode in part (a) be
ause it must perform a pointer dereferen
e before in
rementingthe value of x. However, it a
tually does the 
orre
t thing, whi
h is to in
rementthe value of y in the 
alling fun
tion, whereas the pass-by-value 
ode doesn't doanything useful. In general, pass-by-referen
e is more eÆ
ient be
ause you 
anpass a pointer to a large data stru
ture instead of passing the data stru
ture itselfby value, whi
h requires that a 
opy be made on the sta
k.5. Type Conversion(a) sizeof(double)� sizeof(float)� sizeof(long)� sizeof(int)� sizeof(
har)(that's implied by the hierar
hy in the passage, but we don't think it's true ingeneral be
ause a long is usually longer than a float)(b) A type higher in the hierar
hy 
ontains more bytes than a type lower in thehierar
hy, so no information is lost when 
onverting from lower to higher be
auseall of those bytes 
an �t (usually with more room to spare).(
) Car probably requires a larger representation in memory be
ause it 
ontains atleast all the �elds of Vehi
le, and most likely, some additional �elds.
1



(d) No, it's not 
onsistent, be
ause 
onverting from Car* to Vehi
le* is 
onverting apointer referring to something with a larger representation in memory (sub
lass)into something with a smaller representation in memory (super
lass), whereas
onverting from int to float is 
onverting from something with a smaller repre-sentation to something with a larger representation.(e) It makes more sense to 
onvert from Car to Vehi
le. A problem with 
onvertingfrom Car to Vehi
le is that you 
an't a

ess Car-spe
i�
 �elds. A problem with
onverting from Vehi
le to Car is that you attempt to a

ess Car-spe
i�
 �elds,whi
h don't exist in Vehi
le. The latter is a more serious problem be
ause you
an read junk data.

2


