
2001 Programming Languages Comp. Solutionswritten by 2006 Ph.D. First-Years1. Lifetime and Sope: Within a funtion, if one variable is delared stati and the otherone is delared non-stati, then the two variables have the same sope (aessible onlywithin that funtion) but have di�erent lifetimes (the stati variable has a lifetime last-ing the duration of the program exeution while the non-stati variable has a lifetimelasting the duration of a partiular funtion all).2. Stati and Dynami Sope: Stati sope is resolved at ompile-time (use the valueof the variable delared in the losest enlosing blok); dynami sope is resolved atexeution-time (use the value of the variable losest to the urrent funtion's ativationreord on the stak). Exeptions are a language feature that uses dynami sope.3. Tail Reursion: The primary advantage of tail reursion is spae savings. Time re-quirement is still O(n) but spae requirement is O(1) beause new ativation reordsaren't being pushed onto the stak for eah reursive all.4. Parameter Passing:(a) At the beginning of the all to inrement(), the value of y on the stak (0) isopied to the slot where x is alloated on the stak. Then x is inremented to 1,and when the funtion returns, the stak pointer is moved bak up and the valueof x is lost. The all doesn't inrement y beause its value was opied to anotherloation, and the value in that loation (not y) is inremented.(b) inrement(&y)() The C++ pass-by-referene ode is a bit less eÆient than the pass-by-value Code in part (a) beause it must perform a pointer dereferene before inrementingthe value of x. However, it atually does the orret thing, whih is to inrementthe value of y in the alling funtion, whereas the pass-by-value ode doesn't doanything useful. In general, pass-by-referene is more eÆient beause you anpass a pointer to a large data struture instead of passing the data struture itselfby value, whih requires that a opy be made on the stak.5. Type Conversion(a) sizeof(double)� sizeof(float)� sizeof(long)� sizeof(int)� sizeof(har)(that's implied by the hierarhy in the passage, but we don't think it's true ingeneral beause a long is usually longer than a float)(b) A type higher in the hierarhy ontains more bytes than a type lower in thehierarhy, so no information is lost when onverting from lower to higher beauseall of those bytes an �t (usually with more room to spare).() Car probably requires a larger representation in memory beause it ontains atleast all the �elds of Vehile, and most likely, some additional �elds.
1



(d) No, it's not onsistent, beause onverting from Car* to Vehile* is onverting apointer referring to something with a larger representation in memory (sublass)into something with a smaller representation in memory (superlass), whereasonverting from int to float is onverting from something with a smaller repre-sentation to something with a larger representation.(e) It makes more sense to onvert from Car to Vehile. A problem with onvertingfrom Car to Vehile is that you an't aess Car-spei� �elds. A problem withonverting from Vehile to Car is that you attempt to aess Car-spei� �elds,whih don't exist in Vehile. The latter is a more serious problem beause youan read junk data.

2


