
Comprehensive Exam: Programming Languages Autumn 2001
This is a 30-minute closed-book exam and the point total for all questions is 30.

AU of the intended answers may be written within the space provided. You may use the
back of the preceding page for scratch work. If you to use the back side of a page to write part
of your answer, be sure to mark your answer clearly.

The following is a statement of the Stanford University Honor Code:

A. The Honor Code is an undertaking of the students, individually and collectively:

(1) that they will not give or receive aid in examinations; that they will not give or
receive unpmitted aid in class work, in the preparation of reports, or in any other
work that is to be used by the instructor as the basis of grading;

(2) that they will do their share and take an active part in seeing to it that others as
well as themselves uphold the spirit and letter of the Honor Code.

B. The fsculty on its part manifests its codidence in the honor of its students by refraining
fiom proctoring examinations and fiom taking unusual and unreasonable precautions to
prevent the forms of dishonesty mentioned above. The faculty will also avoid, as far as
practicable, academic procedures that create temptations to violaie the Honor Code.

C. While the faculty alone has the right and obiigation to set academic requirements, the
students and fscufty will work together to establish optimal conditions for honorable
academic work,

By writing my L'magic number" below, I certify that I acknowledge and accept the Honor
Code.

(Number)

1 Prob I# l 1 # 2 1 # 3 1 # 3 1 # 3 (T o t a l I
Score I I I I I I
Max1 4 1 4 1 4 1 8 1101 30

1. (4 points) Lifetime and Scope. Define lifetime of a data object and swpe of a declaration.

Describe a situation in which two variable declarations with the same scope produce two
locations with different lifetimes.

2. (4 points) Static and Dynamic Scope. Explain the difference between static and dynamic
scope. Give an example of a language or language feature that uses dynamic scope.

3. (4 points) Tail Recursion. What is the primary advantage of optimizing tail recursive
functions so that recursive calls are eliminated? Specifically, suppose that a call f (n) to
an unoptimized tail-recursive function f runs in time and space O(n). If an optimizing
compiler performs the optimization commonly called "tail recursion elimination," what
are the time and space requirements of a call f (n)? Use "big-oh" notation; your answers
should be O(1) or O(n) or O(n2) or something of this form.

4. (8 points) Parameter Passing
The C programming language uses pass-by-value patameter passing, while C++ also has
pass-by-reference.

(a) (4 points) Describe the sequence of storage allocations and assignments associated
with the execution of the function call increment (y) in the following C fragment.

void increment (in t X) (
x++ ;

3;
int y o ;
...
increment (y) ;

Explain why the call increment(y) does not increment y.

(b) (1 points) Write the call to increment, passing y, so that the call to increment in
the following fragment increments the value of y.

void increment (in t * x) C
(*XI++ ;

1;
i n t y=O ;

(c) (3 points) Is the following C++ code, using pass-by-reference, more efliicient than
the pass-by-value code in part (a)? &plain. Why is pass-by-reference often more
efficient?

void increment (int & x) I
x++ ;

3;
int y=O;
...
increment (y) ;

5. (1 0 points) %e Conversion
This question asks you to read two short passages from documents explaining C++ and
comment on their content and the connections between them.

Explanation of type conversion, from W++ i n Hypertext":
Most operators assume that their operands are of the same type. Thus, it is not possible to
add an integer and a string - what would be the meaning of such an operation? However,
if this rule of 'sameness' were enforced too strictly, it would make C++ an awkward
language. For example, it makes sense to add an integer to a long or to a double. To
handle this C++ allows what are called implicit conversions (also called type coercions)
of one operand to the type of a second operand - when the conversion is appropriate. In
the example involving the addition of an int and a long, the integer would be converted
to a long. In the example involving an int and a double, the integer would be converted
to a double. Such conversions are called 'implicit' conversions because they take place
automatically.

C++ provides a set of conversion rules (also called 'promotion' rules) that guide the type
of implicit conversions that take place.

The built-in types of C++ are arranged in order &om 'lower' to 'higher' types, where a
value of a lower type can be implicitly converted to a value of a higher type. 'Higher' here
essentially means that the type can hold all the information contained in a 'lower' type
and no information is lost in a conversion. Thus, C++ will implicitly convert an int to a
double but not a double to an int. In the latter case, information is lost when the 'data'
to the right of the decimal point is truncated.

Here is part of the conversion hierarchy:

double
float

10%

int
char

Explanation of type conversion, from "C++ FAQ Liten:
Is it OK to convert a pointer from a derived class to its base class?

Yes. An object of a derived class is a kind of the base class. Therefore the conversion from
a derived class pointer to a base class pointer is perfectly safe, and happens all the time.
For example, if I am pointing at a car, I am in fact pointing at a vehicle, so converting a
Car* to a Vehicle* is perfectly safe and normal:

void f (Vehicle* v);
void g(Car* c) f (c) ;) // Perfec t ly s a fe ; no cas t

Questions

(a) (1 points) Based on the first passage, what do you believe are the relative sizes
(number of bytes) of double, f l o a t , long, int , char.

(b) (2 points) Why does this passage "'Higher' here essentially means that the type
can hold all the information contained in a 'lower' type and no information is lost
in a conversion." suggest that there is a correlation between implicit conversion and
the number of bytes used to represent a datum?

(c) (2 points) If Car is a derived class with public base class Vehicle, which class of
object is likely to require a larger representation in memory?

(d) (2 points) Is the order of conversion from Car * to Vehicle * consistent with the
order of conversation from i n t to f loat? Explain.

(e) (3 points) Does it make more sense to convert from Car to Vehicle or Vehicle
to Car? Explain one problem with each form of conversion.

