Stanford University Computer Science Department
2001 Comprehensive Exam in Databases

e The exam is open book and noles.

e There are 7 problems on the exam, with a varying number of points for each problem and
subproblem for a total of 60 points (i.c., one point per minute). It is suggested that you look
through the entire exam before getting started, in order to plan your strategy.

e Please write your solutions in the spaces provided on the exam. Make sure your solutions
are neat and clearly marked.

o Simplicity and clarity of solutions will count. You may get as few as 0 points for a problem
if your solution is far more complicated than necessary, or if we cannot understand your
solution.

MAGIC NUMBER:
Problem 11i3|4|56?1-ﬂTAL
Max.points | 8 [7 [7 [10]12[4[12] 60
Points

The following is a statement of the Stanford University Honor Code:

A The Honor Code is an underiaking of the students, individually and collectively:

I that they will not give or receive aid in examinations; that they will not give or receive
unpermitied aid in elass work, in the preparation of reports, or in any other work that is
to be used by the instructor as the baxis of grading;

2. that they will do their share and take an active part in seeing to it that others az well as
themselves uphold the spirit and letter of the Honor Code.

B. The faculty on its part manifesty ity confidence in the honor of itz students by refraining from
procioring examinations and fFom foking unusea! and errearonable precaulions io prevent
the forms of dishonesty mentioned above. The faculty will also avoid, as far as practicable,
academic procedures that ereate tempiations to vielate the Horor Code.

- While the faculty alone has the right and obligation to setf academic requirements, the
seudents and faculty will work together to extablith optimal conditions for hororable
academic work.

Stanford University Computer Science Department
2001 Comprehensive Exam in Databases

SAMPLE SOLUTIONS

1. Entity-Relationship Model (B points)

An office “coffee club” assigns three tasks each day; the tasks are: (1) Clean the pot.
(2) Brew the coffee. (3) Buy the supplies. Each day, each of the jobs is assigned to one
of the members, and no member can be assigned to two jobs on the same day. We wish
to design a database in which we shall store the assignments of jobs to members for each
day, and also store some information about members: their name, phone number and email
address. You may assume there are more than three members in the club. The database
should enforce the constraints on assignments of jobs as best it can. Give an appropriate ETR
diagram for this database, and explain your reasoning.

REZ X

E Assigned Days

Jobs

2. Functional Dependencies (7 points)

Suppose we are given a relation R{A, B, C, D) with functional dependencies ABC — D
and D —+ AB.

{a} What are the keys for R?
{A,B,C} and {C, D}
(b) Is R in third normal form? Explain your reasoning,
Yes; all anributes are prime, so there cannot be a violation.
(c) Is R in Boyce-Codd normal form? Explain your reasoning.
No; D is nor a superkey, so) — AB is a BCNF violation.

]

(a) For the first part of the problem assume that scores are unique within the relation. Write
a single SQL query over the Player relation that takes a player name as an argument
(denoted :n in the query) and returns the player’s ranking by score. For example, if
the <name, score:> tuples in the Player relation are:

<Tim, 168>
<Kelly, 130=>
<Shelkby, 129>
«<Miles, 110>
<EBmma, 92>
<Rachel, 75>

then for :n = Tim the query result should be 1, for :n = Shelby the query result
should be 3, for : n = Rachel the query result should be 6, etc. Write the query here:

SELECT COUNT (*)
FROM Player
WHERE Sscore >=
(SELECT score FROM Player P where P.name = :n)

{b) Now suppose that scores are not unique within relation Player. In this case, the
players are in groups that are ranked according to score. You are to write a single SQL
query that takes a player name as an argument (denoted : n in the query) and retumns the
rank of the player’s group. For example, if the <name, score> tuples in the Player
relation are:

<Tim, 168>
<Eelly, 130>
<Shelby, 130>
<Miles, 130>
<Emma, 92>
<Rachal, T5=>
<Richard, 75>

then for :n = Tim the query result should be 1; for :n = Kelly, :n = Shelby, or
:n1 = Miles, the query result should be 2; for :n = Emma the guery result should be
3; for :n = Rachel or :n = Richard the query result should be 4. Remember that
simplicity of solutions does count, Write the query here:

SELECT COUNT (DISTINCT =score)
FROM FPlayer
WHERE SCore »=
[SELECT score FEOM Player P where P.name = :n)

30

6. Constraints (4 points)

What familiar constraint type is encoded by the following SQL general assertion?
Your answer should contain at mast twe words.

CREATE ASSERTION Mystery RS
(HOT EXISTS (SELECT * FROM R
WHERE R.A NOT IN (SELECT E FROM 5) 1)

Answer. referential integriry
7. ODL and OQL (12 points)
Consider the following ODL (Object Definition Language) schema.

interface Applicant {extent Apps, key SSN) {
attribute integer SSN;
attribute Struct<string first, string last> name;
ralationship Set<Job> applied
inverse Job::applicants; }

interface Job (extent Jobs, key |(company, city) |{
attribute string company;
attribute string city;
relationghip Set<hipplicant> applicants
inverse Applicant::applied }

(a) Is the relationship between applicants and jobs enforced by this schema one-one, one-
many, many-one, or many-many?
LTIy

(b) What is the simplest modification we can make to the schema to enforce that each ap-
plicant can apply for only one job?
Change relationship Set<Job> applied
te relationship Job applied.

(e) Using OQL (Object Query Language), write a query to find the SSN and last name of
all applicants who have applied for a job in Palo Alto. Do not repeat (SSN, last-name)
pairs in the result, even if the applicant has applied for many jobs in Palo Alto.

SELECT DISTINCT Struct(a.SSH, a.name.last)
FROM Apps a, a.applied j
WHERE j.city = "Palo Alto"

31

