
thnfbrd Vniversity computer Science Department
2001 Comprehensive Exam in Databases

The exam is open book and notes.

The= are 7 problems on the exam, with a varying number of points for each problem and
subproblem for a total of 60 points (i.e., one point per minute). It is suggested that you look
through the entire exam before getting started, in order to plan your strategy.

Please write your solutions in the spaces provided on the exam. Make sure your solutions
are neat and clearly marked.

Simplicity and clarity of solutions will count. You may get as few as 0 points for a problem
if your solution is far more complicated than necessary, or if we cannot understand your
solution.

MAGIC NUMBER:

Problem I I 1 1 2 1 3 1 4 I 5 161 7 1TOTAL1

The following is a statement of the Stanford University Honor Code:

Max. points
Points

The Honor Code is an undertaking of the students, individually and collectively:
I . that they will not give or receive aid in examinations; that they will not give or receive

unpermirted aid in class work, in the preparation of reports, or in any other work that is
to be used by the instructor as the basis of grading;

2. that they will do their share and take an active part in seeing to it that others as well as
themselves uphold the spirit and letter of the Honor Code.

The faculty on its part manifests its confidence in the honor of its students by refiainingfiom
proctoring examinations andpom taking unusual and unreasonabZe precautiom to prevent
the forms of dishonesty mentioned above. The facul@ will aho avoid, as far as practicable,
academic procedures that create temptations to violate the Honor Code.

While the faculty alone has the right and obligation to set academic requirements, the
students and faculq will work together to establish optimal conditions for honorable
academic work

I I

8 7
I I

4 7
L

10 12 12 60

S w o r d University computer-science Department
2001 Comprehensive Exam in Databases

SAMPLE SOLUTIONS

1. Entity-Relationship Model (8 points)

An office "coffee club" assigns three tasks each day; the tasks are: (1) Clem the pot.
(2) Brew the coffee. (3) Buy the supplies. Each day, each of the jobs is assigned to one
of the members, and no member can be assigned to two jobs on the same day. We wish
to design a database in which we shall store the assignments of jobs to members for each
day, and also store some information about members: their name, phone number and email
address. You may assume there are more than three members in the club. The database
should enforce the constraints on assignments of jobs as best it can. Give an appropriate El'
diagram for this database, and explain your reasoning.

Members Days

2. Functional Dependencies (7 points)

Suppose we are given a relation R(A, B, C, D) with functional dependencies ABC +- D
and D + AB.

(a) What are the keys for R?

{ A , B, C) and {C,
(b) Is R in third normal form? Explain your reasoning.

Yes; all attributes are prime, so there cannot be a violation.

(c) Is R in Boyce-Codd normal form? Explain your reasoning.
No; D is not a superkey, so D + AB is a BCNF violation.

Consider a relation R(A, B, C), and suppose that in each of the columns A, B, and C, no
value can appear more than once (although the same value could appear in two or three
different columns).

(a) List all of the nontrivial multivalued dependencies satisfied by R.
A - t , B , A + C , B + A , B + C , C + A , C + B

(b) Suppose the constraint on R is relaxed so that column A can have a value appearing
more than once, but B and C still do not have duplicate values in their columns. Now,
list all of the nontrivial MVD's satisfied by R.
B - + A , B + C , C + A , C + B

4. Relational Algebra (10 points)

Suppose we are given a relation Sells(bal; beel; price), whose tuples (a, b, c) mean that bar
a sells beer b at price c. Write in the "classical" relational algebra (operations union, inter-
section, difference, selection, projection, product, renaming, and the natural and theta-joins)
the following queries. You may use complete expressions, expression trees, or sequences of
assignments to local variables as you wish,

(a) Find the bars that sell two different beers at the same price.

Sellsl(bar,beerl,price) := Sells
Templ(bar,beer,beerl,price) := Sells NATURAL JOIN Sells1
Temp2(bar1beer,beerl,price) := SIGMA_{beer!=beerl}(Templ)
Answer (bar) : = PI-bar (Temp2)

(b) Find the greatest price at which any beer is sold at any bar.

Templ (price) := PI-price (Sells)
Temp2(pricel,price2) := Templ * Templ
Temp3(pricel1price2) := SIGMA_{pricel<price2}(Temp2)
Temp4 (price) : = PI-pricel (Temp3)
Answer (price) := Templ - Temp4

5. SQL (12 points)

A school chess team maintains rankings of its players based on scores, using the following
relation:

Player(name, score) / / name is a key

(a) For the first part of the problem assume that scores are unique within the relation. Write
a single SQL query over the Player relation that takes a player name as an argument
(denoted : n in the query) and returns the player's ranking by score. For example, if
the ~narne, scores tuples in the Player relation are:

then for : n = Tim the query result should be 1, for : n = Shelby the query result
should be 3, for : n = Rachel the query result should be 6, etc. Write the query here:

SELECT COUNT (*)
FROM Player
WHERE score >=

(SELECT score FROM Player P where P-name = :n)

(b) Now suppose that scores are not unique within relation Player. In this case, the
players are in groups that are ranked according to score. You are to write a single SQL
query that takes a player name as an argument (denoted : n i r the query) and returns the
rank of the player's group. For example, if the <name, score> tuples in the Player
relation are:

then for : n = Tim the query result should be 1; for : n = Kelly, : n = Shelby, or
: n = Miles, the query result should be 2; for : n = Emma the query result should be
3; for : n = Rachel or : n = Richard the query result should be 4. Remember that
simplicity of solutions does count. Write the query here:

SELECT COUNT(DIST1NCT score)
FROM Player
WHERE score >=

(SELECT score FROM Player P where P.name = :n)

6. Conatrain& (4 points)

What familiar constraint type is encoded by the following SQL general assertion?
Your answer should contain at most two words.

CREATE ASSERTION Mystery AS
(NOT EXISTS (SELECT * FROM R

WHERE R.A NOT IN (SELECT B FROM S)))

Answer: referential integrity

7. ODL and OQL (12 points)

Consider the following ODL (Object Definition Language) schema.

interface Applicant (extent Apps, key SSN) {
attribute integer SSN;
attribute Structcstring first, string last> name;
relationship Set<Jobv applied

inverse Job::applicants;)

interface Job (extent Jobs, key (company, city) {
attribute string company;
attribute string city;
relationship Set<Applicant> applicants

inverse App1icant::applied)

(a) Is the relationship between applicants and jobs enforced by this schema one-one, one-
many, many-one, or many-many?
many-many

(b) What is the simplest modification we can make to the schema to enforce that each ap-
plicant can apply for only one job?
Change relationship SetCJobv applied
to relationship Job applied.

(c) Using OQL (Object Query Language), write a query to find the SSN and last name of
all applicants who have applied for a job in Pa10 Alto. Do not repeat (SSN,last-name)
pairs in the result, even if the applicant has applied for many jobs in Palo Alto.

SELECT DISTINCT Struct(a.SSN, a.name.last)
FROM Apps a, a. applied j
WHERE j.city = "Palo Alto"

