Compilers Comprehensive Exam Solutions (Fall 2001)

This is a 30 minute, closed book exam. The questions (except for the last) are based on the
attached context-free grammar for a toy programming language. The grammar is intended for an
LALR parser generator, such as YACC or Bison. It has some “semantic actions” bul many have
been omitted.

1. When this grammar is run through an LALR parser generator (e.g., YACC) 18 shifi-reduce
conflicts are reporied.

(a)

(k)

Most of the conflicts involved the operators +, =, #, and /. What is the problem, and
how can it be fixed easily without changing the grammar rules?

Thiz iz a simple problem. The grammaor is ombiguous becouse the reladive precedence of
the arithmetic operators iz not specified. The gremmar could be re-written in this case,
but the problem says not to change if. So, the solution is fo use the feature of YACC to
specify precedence using declorofions such as Jleft.

There are two conflicts that seem qualitatively different from the previons ones. One is
a shift/reduce conflict when the next input is the token ID, and the two items in the
offending state are:

block => BEGIN typedecls . constdecls vardecls stmts END (rule 2)
typedecls -> typedecls . typedecl (rule 3}

There is a similar problem with constdecls and vardecls. Explain what is going on
here and suggest a way to fix it. Be specific.

The problem has to do with lookahead. The parser needs to know whether if 45 af the
end of the list of typedecls to determine whether if should reduce the empiy production
for constdecls or not. Bui the lookahead symbol in cither case is same: “TD." If the nest
construct 18 o constdecl or vardecl, if should reduce the constdecl -> /* empty =/
production. Otherwise, it should shift the ID (part of the right hand side of the typedecl
produciion),

Thiz cannot be solved by tweaking precedence, since the parser genuinely needs fo shift
some times and reduce others, based on insufficient information. My inclination would be
o change the language Lo allow declorations to occur i arbitrary order. This eliminales
the need to decide when the typedecls end, simplifies the grammar, and mighi make life
eagier for the programmer. There are meny other language changes that could address
the problem as well

However, we don't always have the freedom to change the language. We could generalize
the language anyway, build o syntax tree, and write code fo check that everything was in
the right order in the tree.

2. Suppose you wanted to write a straightforward recursive descent parser for the same language
{assume the parser does not use backtracking, and does not look ahead more than ene token).
What problems would the context-free grammar pose in its current form? First, would
the conflicts in the previous guestion cause problems? Secomd, would there be additional
problemsT Explain your answers,

Recursive descent parsing is based on LL{1) parsing. All of the above would still be problems,

becanse LALR(1) persing almost deals with o superset of the grammars LL(1) parsing can
deal with, Ambiguity is definitely a problem.

1

13

An additional major problem is left recurgion in the grammar. The grammar would have fo
be re-writien fo eliminate it

Finally, the various declarafions all begin with the same tokens, which will prevent it from
being LL{1). This can be solved by adding a new non-terminal to represent the comment
prefizes of the right-hand sides of these productions.

. Describe what the arithtype(t1, t2) function should do to implement C-like type semantics
for arithmetic operators, incloding error detection.
t1 and t2 should be pointers to records representing daoto types. Both types should be INTE-

GER or FLOAT, otherwise, i should report an error. The return fype should be INTEGER
if both are infegers or FLOAT if one or both are FLOATS.

. Almost all machines have different instructions for integer and fAoating-point operations, and
instructions to comvert between them. Suppose you were implementing a simple code gen-
erator for this language. When would an instruction to convert an integer value to floating
point value be emitted?

If one argument to, say, + iz INTEGER and the other is FLOAT, an instruclion should be
generated to convert the integer argument fo o float before using o floating point add instruc-
tien to compute the value of the expression.

. Deseribe what checkassign function should do, addressing the following questions:

(a) What information should the arguments contain?
(b) What errora should be reported? (It is important to list only those errors that would be
detected here, as opposed to other productions in the grammar.)

The arpuments should be data structures describing variable declarations [whatever iz built in
the declorevar function call). We need to check that the lhs is declared fo be o variable, not a
types or comastants (it's sllegal to assign to constants). Then we need to check that the fype of
the assigned expression is compatible with the type that was declared for the lhs variable.

. Are there circumstances under which performing the optimization of “common subexpression
elimination” would slow down the compiled program? Explain your answer,

Common subezpression elimination saves computalion by storing and reusing subcTzpressions
that appear more than once in the program. It is undesirable if the cost of storing the value is
greater than the cost of compuling . This might be brue becouse the cost of computing if is
incredibly cheap (e.g., incrementing o variable), or becouse fost storage locations (regpisters)
are heavily wsed for other purposes, such as loop inder variables, at o particuler part of the
Frogrenm.

1y

%token BEGIN END TYPE CONST INTEGER FLOAT RECORD VAR ASSIGN ID INT_CONST FLOAT_COMST

Astart program

ok

program

block

typedecls

typedecl

type

vardecls

vardecl

constdecls

constdecl

COnst

stmts

2tmt

block

BEGIN typedecls constdecls vardecls stmts END

typedescls typadecl
/+ empty */

ID *:' TYPE type ';' { declaretype($1, 34); 1

INTEGER { %3 = inttype(); }
FLOAT { 88 = floattype(); }

vardecls vardecl
/% empty %/

ID *:* VAR type ';' { declarevar($i, $4); }

congtdecls constdecl
/+ empty =/

1D +++ CONST type const ';* { declarevar($i, $4); }

INT_CONST
FLDAT_CONST

stmts ';' stmt
/* empty */

block
1he ASSIGN expr °;’ { checkassign($1, $3); }

Y

lhs

axpr

i e T 1]

ID { $% = checkvardecl{lockupdecl($1));

lhs { $% = vartype($1); 1

const { $3 = consttype($1); }

expr '+' expr { $§ = arithtype($1, $3);
expr '-' expr { $§ = arithtype($1, $3);
expr '+' axpr { %% = arithtype($1, $3);
expr '/' expr { $§ = arithtype($1, %3);
(" expr *)* { 3% = 82; }

ot el g et

i

