2001 Comprehensive Examination Artificial Intelligence

1. Search. (20 points) Consider a search tree with uniform branching factor b and depth d, and consider a search problem for which there is a single solution in the tree at depth k. A solution at the root of the tree is depth 0 . Give expressions for the worst case cost of finding the solution, in terms of nodes visited, for (a) breadth-first search, (b) depth-first search, and (c) iterative deepening (starting at depth 0 and incrementing by 1 on each iteration. Give closed form expressions, if you can; but sums are okay. If you are unable to do this problem in general, you can still get some points by answering the question for the special case of $b=2$. And, if that is still too daunting, you may be able to scrape out a point or two by fixing k and d as well.
2. Automated Reasoning. (30 points) Two questions related to resolution.
(a) Consider the following pairs of expressions. u, v, w, x, y, z are variables; all other letters are constants. For each pair, say whether or not they are unifiable; if the answer is yes, give the most general unifier.

$$
\begin{aligned}
& p(x, b) \text { and } p(f(y y) y) y) \\
& q(x, f(y, a), g(g(x))) \text { and } q(z, f(z, u), y)
\end{aligned}
$$

(b) Given the following premises, use the resolution method to prove $-p(c, a)$.

$$
\begin{aligned}
& \forall y . \forall z .(p(y, z) \Rightarrow \neg p(z, y)) \\
& \forall x .(p(b, x) \Rightarrow p(a, x)) \\
& p(b, c) \vee p(a, c)
\end{aligned}
$$

Note that this is a question about the resolution method. You will get zero points for proving it in any other way.
3. Probability. (30 points) Adapted from Nilsson's Artificial Intelligence: A New Synthesis. The admissions committee for a major university wants to know the probability that an applicant is qualified given that the person is admitted. It has the belief network shown below.


```
p(a)=0.5
p(b|a)=1
p(b|-a)=0.5
p(c|a)=1
p(c|\nega)=0.5
p(d|b,c)=1
p(d|b, -c)=0.5
p(d|-b,c)=0.5
p(d|}\negb,\negc)=
a- applicant is qualified
b}\mathrm{ -applicant has a high grade point average
c-applicant has a high graduate record examination score
d}\mathrm{ - applicant is admitted
```

What is the probability that an admitted student is qualified? In other words, calculate $p(a \mid d)$.
4. Natural Language. (20 points) Consider the augmented phrase structure grammar shown below.

```
\(S(r(x, z) \wedge r(y, z)) \rightarrow Q(r(b o t h(x, y), z))\)
\(Q(w(u, v)) \rightarrow N P(u) \operatorname{Verb}(w) N P(v)\)
\(N P(x) \rightarrow \operatorname{Noun}(x)\)
\(N P(b o t h(x, y)) \rightarrow N P(x)\) and \(N P(y)\)
Noun(tom) \(\rightarrow\) Tom
Noun(dick) \(\rightarrow\) Dick
Noun(harry) \(\rightarrow\) Harry
\(\operatorname{Noun}\) (mary) \(\rightarrow\) Mary
Verb(hates) \(\rightarrow\) hate
Verb(hates) \(\rightarrow\) hates
```

(a) Given that s is the top-level non-terminal, is there a semantic interpretation for the expression Mary hates Tom and Harry? If so, what is it?
(b) Given that s is the top-level non-terminal, is there a semantic interpretation for the expression Tom and Harry hate Mary? If so, what is it?
(c) Change the augmentations on the existing rules to eliminate ungrammatical sentences like Tom and Harry hates Mary (without eliminating the corresponding grammatical sentences). If you are unable to do this, you can still get partial credit by changing the rules themselves.

