
d ~ & n m ~ .
Solutions to Compilers Comprehensive, October 2000 0

This is a 60 minute open book exam (but do not use computers). All answers should be written
in the blue book (not on the exam). Clear, organized answers to essay questions is important.

1. (10 points) In your blue book, indicate whether each language is LL(l), LR(l), both, or
neither.

(a) S + aSalaSblc

(b) S -+ SalbSlc

(c) S + aSalbSJc

(d) S + aSalbSbJe

(e) S -+ SaJbJc

Solution

There were two interpretations of this problem: (1) Can the grammar be rewritten into
an equivalent form that has the desired property; (2) does the grammar have the desired
property as it is given. I intended the second interpretation, but graded by guessing what
interpretation the student had in mind.

Here are the answers for the first interpretation:

(a) S -+ aSaJaSbJc both

(b) S + SaJbSJc both

(c) S -+ aSaJbSlc both

(d) S + aSaJbSbJe neither

(e) S -+ Salblc both

Here are the answers for the second intepretation:

(a) S + aSaJaSbJc LR(1) (not LL(1) because not left factored)

(b) S + SaJbSJc Neither (ambiguous)

(c) S + aSaJbSlc LL(1) and LR(1)

(d) S + aSaJbSbJe Neither (not a deterministic CFL)

(e) S + SaJbJc LR(1) but not LL(1) (left recursion)

2. (20 points)

The following YACC grammar parses simple Polish expressions (e.g., *+12+34, which is equal
to 21).

Show what actions need to be added to print the equivalent reverse Polish expressions (e.g.,
12+34+*). Assume that the lexical analyzer returns the numerical value of the number de-
scribed by NUM

Solution:

NUM (printf("%d ", $1); 3
'+' R R
'* ' R R

R NUM C printf ("%d " , $1) ; 1
1 '+' R R C printf (I1 + ");)

I '* ' R R (printf (I1* ") ;)
9

Now add actions to print Polish expressions, given reverse Polish:

S R

Solution.

If we use the same actions from the previous solution, the result prints in RPN, not PN (the
operators are printed after the reductions of the R's).

Here's something else that doesn't work:

The problem is a shiftlreduce conflict: shift NUM (from R + NUM) or reduce the implicit
production MI + E that was added for the new action?

It is difficult to output the result on-the-fly during parsing because the last operator in the
input has to be printed first. We have to parse the whole input before we can print anything.
The solution before builds up the entire output in a string, then prints it at the end of parsing.
Another approach would be to build a tree and then print it in PN.

S R (printf ("%s\nI8, $1) ;)

R NUM

char *str = (char *) calloc(1,12) ;
sprintf (s tr , "%d8', $1) ; $$ = s tr ;

1
I R R '+'

char *str = (char *) calloc(1, strlen($l) + strlen($2) + 1) ;
sprintf (s tr , "+ %s %s", $1, $2); $$ = s t r ;

>
I R R I*'

char *str = (char *) calloc(1, strlen($l) + strlen($2) + 1) ;
sprintf (s tr , "* %s %s" , $1, $2) ; $$ = s t r ;

1
I

3. (20 points) Describe some well-known compiler optimizations that could be usefully applied
to the following code, and why they would improve the code. Be specific about what parts of
the code would be improved and why. The most basic optimizations will count most heavily
in grading this question.

struct s (
int f1;
double f 2;

3;

struct s A C1001;

int main(void1

int i;
for (i=l; iC1OO; i++) (

ACi] .fl = ACi-11 .fl - 1;
>
return f (A) ;

3

Solution

There is significant variation in terminology, and sometimes the same effect can be achieved
from different avenues. Here is a sample answer.

Unoptimized, computing the address of ACi] requires generating code to do something like:
globalsaddress + Aoffset + 12 * 4 * fetch(stackpointer + localsoffset + ioffset)
where "globalsadress" , "Aoff" , "localsoffset" and "ioffset" are all constant. Constant-folding
could compute globalsaddress+Aof f set, localsof f set+iof f set, and 12*4 before the pro-
gram is run (at compile time and load time).

stackpointer+localsof f set+iof f set (getting the variable i) will appear twice, so Common
subexpression elimination could be used to compute it only once (and save the result for later
re-use). A sophisticated compiler could attempt to do algebraic transformations to make the
address of A[i].fl into a common subexpression (A[i-l].fl is a constant offset from this), but
re-arranging expressions in the right way is not necessarily easy.

The loop optimization Reduction in strength could be used to avoid multiplying by 48 every
time the array is indexed in the loop (instead, 48 could be added to the array address each
time) .
If the loop were unrolled, there would be an opportunity to eliminate a different common
subexpression, since the address of A[i] on one iteration is the same as A[i-1] on the next.

4. (10 points) This question asks for practical reasons to prefer one way of writing parser over
another.

(a) Give three good reasons to write a recursive descent parser by hand, even though highly
efficient automatic parser generators are freely available.
Solution:

a The grammar is simple, and I don't want to require people building the system to
have YACC.

a No good parser generator is available (e.g., in the early days of Java).
a Greater flexibility, e.g., to look ahead more than one symbol or use other information

to decide on an action.
a Error recovery may be more flexible and understandable.
a etc.

(b) Give three good reasons to use an LALR parser generator such as YACC instead of
writing a recursive descent parser by hand.
Solution:

a It's easier, because parser construction is automatic.
a LALR(1) parsing is more powerful than recursive descent, which is basically LL(1).

E.g., left recursion in the grammar works.
a The context free grammar is more readable, and is easier to make consistent with

the source language specification.
a The resulting parser is likely to be faster. h

- --
a etc.

