AUTO JOLLITIONS

Comprehensive Exam:

Autumn 2000-01

Automata and Formal Languages (60 points) Sample Solutions

Problem 1. [10 points]

Consider the language L defined by the regular expression 00*10. Provide a PDA M for this language using as few states as possible. Note that there is a PDA with only 1 state and that the number of points you get will depend on the number of states used in your solution.

Solution:

The following PDA with only 1 state accepts the language $L(00^*10)$ by empty stack. The PDA has the following components: $Q = \{q\}, \Sigma = \{0, 1\}, \Gamma = \{Z_0, X, Y\}, q_0 = q$, and $F = \{\}$. The transition function is as follows:

$\delta(q, 0, Z_0)$	-	$\{(q, X)\}$
$\delta(q, 0, X)$	=	$\{(q, X)\}\$
$\delta(q, 1, X)$	-	$\{(q, Y)\}$
$\delta(q, 0, Y)$		$\{(q, \epsilon)\}$

Problem 2. [18 points]

Decide whether the following statements are TRUE or FALSE. You will receive 3 points for each correct answer and -2 points for each incorrect answer.

- If L₁ and L₂ are both non-regular, then L₁ ∩ L₂ must be non-regular.
- L = {w ∈ {a, b, c}* | w does not contain an equal number of occurrences of a, b, and c} is context-free.
- Let L represent the language of a non-deterministic finite-state automaton N; then, swapping the final and non-final states of N gives a machine N' whose language is the complement of L.
- Assume that P ≠ NP. If L₁ is in P and L₂ is in NP, then L₁ ∩ L₂ must be in P.
- If L₁ and L₂ are both in NP, then L₁.L₂ must be in NP.
- If L₁ is context-free and L₂ is NP-complete, then L₁ ∪ L₂ must be NP-complete.

Solution:

1. False

- False
- False
- 5. True
- 6. False

Problem 3. [12 points]

Classify each of the following languages as being in one of the following classes of languages: empty, finite, regular, context-free, recursive, recursively enumerable. You must give the smallest class that contains every possible language fitting the following definitions. For example, the language of a DFA M could be empty or finite, and must always be contextfree, but the smallest class that is appropriate is regular.

- 1. The language $L = \{a^i b^j c^k d^l \mid i = k \text{ and } j = l\}$.
- The set of strings from {0,1}* which, when viewed as integers written in binary, are divisible by 3.
- 3. The language of a non-deterministic finite state automaton (NFA) with only two states.
- The language of a non-deterministic push-down automaton (NPDA) with only one state.
- The complement of a language L that belongs to P (polynomial time) but is not context-free.
- A language L to which we can give a polynomial-time reduction from an undecidable language.

Solution:

- 1. Recursive
- 2. Regular
- Regular
- Context-free
- 5. Recursive
- Recursively-enumerable

Problem 4. [10 points]

Using a reduction from a known undecidable problem, prove that the following problem is undecidable: Determine whether a Turing machine M halts on all inputs from $\{0, 1\}^*$ that represent a valid encoding of some Turing machine. (You may assume any standard scheme for encoding a Turing machine into a string of 0's and 1's.)

Solution:

Let $L_M = \{ \langle M \rangle | M \text{ halts on any input } w \text{ which is a valid encoding of a Turing machine} \}$.

The halting problem is undecidable: Determine whether a Turing machine M halts on a particular input w. We define the language $L_H = \{ \langle M, w \rangle | M \text{ halts on } w \}$ to represent the halting problem.

We will give a reduction from L_H to L_M , thereby establishing the undecidability of L_M . Given an instance of the halting problem, say M and w, the reduction constructs a new Turing machine M'. The machine M' ignores its input and simulates M on input w. Clearly, if M halts on w, then M' halts on all w' which are valid encodings of Turing machines (in fact, it halts on all inputs w'). Furthermore, if M does not halt on w, then M' does not halt on any w'. It follows that $\langle M, w \rangle \in L_H$ if and only if $M' \in L_M$, establishing the validity of the reduction. Since the reduction is easy to compute, it follows that L_M is undecidable.

Problem 5. [10 points]

Recall the decision problems called 2-SAT and 3-SAT. These are the versions of the satisfiability problems for 2-CNF and 3-CNF boolean formulas, respectively.

a). Prove that 2-SAT is polynomial-time reducible to 3-SAT. (Describe a reduction and justify its correctness.)

b). Given that 3-SAT is NP-complete, is the result in part (a) sufficient to prove the NP-completeness of 2-SAT? Explain.

Solution:

a). We describe a polynomial-time reduction from 2-SAT to 3-SAT. Given a 2-SAT formula F(X₁,..., X_n), the reductions a 3-SAT formula G(X₁,..., X_n, Z, A, B) as follows.

We create 3 new variables Z, A, and B. For each clause $X_i \cup X_j$ in F, we create a clause $X_i \cup X_j \cup \overline{Z}$ in G. Also, we add to G four additional clauses: $Z \cup A \cup B$, $Z \cup \overline{A} \cup B$, $Z \cup A \cup \overline{B}$, and $Z \cup \overline{A} \cup \overline{B}$. Quite clearly, the reduction can be computed in polynomial time. We now establish the validity of the reduction by showing that F has a satisfying truth assignment if and only if G has a satisfying truth assignment.

If F has a satisfying truth assignment, we can get a satisfying truth assignment for G as follows: use the same truth values for X_1, \ldots, X_n and Z, A, B to TRUE don't care about A and B). It is easy to verify that G is satisified by this truth assignment.

If G has a satisfying truth assignment, then Z must be set to TRUE; otherwise, there is no way to satisfy the four additional clauses. It follows that the same truth assignment, restricted to $X_1, ..., X_n$, is a satisfying truth assignment for F.

b). No, this is not sufficient to prove the NP-completeness of 2-SAT. A reduction from 3-SAT to 2-SAT would have implied the NP-hardness of 2-SAT, but this reduction is in the reverse direction. In fact, 2-SAT can be solved in polynomial time and hence is unlikely to be NP-complete.