
Comprehensive Exam: Autumn 2000-01 

Automata and Formal Languages (60 points) 
Sample Solutions 

Problem 1. [ lo points] 
Consider the language L defined by the regular expression 00*10. Provide a PDA M for this 
language using as few states as possible. Note that there is a PDA with only 1 state and 
that the number of points you get will depend on the number of states used in your solution. 

Solution: 
The following PDA with only 1 state accepts the language L(00*10) by empty stack. The 
PDA has the following components: Q = {q), C = {0,1), I' = {Zo, X, Y), qo = q, and 
F = 1). The transition function is as follows: 

Problem 2. [18 points] 
Decide whether the following statements are TRUE or FALSE. You will receive 3 points for 
each correct answer and -2 points for each incorrect answer. 

I .  If L1 and Lp are both non-regular, then L1 n L2 must be non-regular. 

2. L = {w E {a,  b, c)* I w does not contain an equal number of occurrences of a, b, and c) 
is context-free. 

3. Let L represent the language of a non-deterministic finite-state automaton N; then, 
swapping the final and non-final states of N gives a machine N' whose language is the 
complement of L. 

4. Assume that P # NP. If L1 is in P and L2 is in NP, then L1 n L2 must be in P 

5. If L1 and L2 are both in NP, then L1.L2 must be in NP. 

6. If L1 is context-free and L2 is NP-complete, then L1 U Lp must be NP-complete. 

Solution: 

1. False 



3. False 

4. False 

5. True 

6. False 

Problem 3. [12 points] 
Classify each of the following languages as being in one of the following classes of languages: 
empty, finite, regular, context-free, recursive, recursively enumerable. You must give the 
smallest class that contains every possible language fitting the following definitions. For 
example, the language of a DFA M could be empty or finite, and must always be context- 
free, but the smallest class that is appropriate is regular. 

1. The language L = {aib3ckd1 I i = tk and 3 = 1). 

2. The set of strings from (0, I}* which, when viewed as integers written in binary, are 
divisible by 3. 

3. The language of a non-deterministic finite state automaton (NFA) with only two states. 

4. The language of a non-deterministic push-down automaton (NPDA) with only one 
state. 

5 .  The complement of a language L that belongs to P (polynomial time) but is not 
context-free. 

6. A language L to which we can give a polynomial-time reduction from an undecidable 
language. 

Solution: 

1. Recursive 

2. Regular 

3. Regular 

4. Context-free 

5. Recursive 

6. Recursively-enumerable 



Problem 4. [ lo  points] 
Using a reduction from a known undecidable problem, prove that the following problem is 
undecidable: Determine whether a Turing machine M halts on all inputs from (0, I)* that 
represent a valid encoding of some Turing machine. (You may assume any standard scheme 
for encoding a Turing machine into a string of 0's and 1's.) 

Solution: 
Let LM = {< M >I M halts on any input w which is a valid encoding of a Turing machine). 
The halting problem is undecidable: Determine whether a Turing machine M halts on a 

particular input w. We define the language LH = {< M, w >( M halts on w) to represent 
the halting problem. 

We will give a reduction from LH to LM, thereby establishing the undecidability of 
LM. Given an instance of the halting problem, say M and w, the reduction constructs a new 
Turing machine M'. The machine M' ignores its input and simulates M on input w. Clearly, 
if M halts on w, then M' halts on all w' which are valid encodings of Turing machines (in 
fact, it halts on all inputs w'). Furthermore, if M does not halt on w, then M' does not halt 
on any w'. It follows that < M, w >E  LH if and only if M' E LM, establishing the validity 
of the reduction. Since the reduction is easy to compute, it follows that LM is undecidable. 

Problem 5. [ lo  points] 
Recall the decision problems called 2-S-AT and 3-SAT. These are the versions of the satisfi- 
ability problems for 2-CNF and 3-CNF boolean formulas, respectively. 

a). Prove that 2-SAT is polynomial-time reducible to 3-SAT. (Describe a reduction and 
justify its correctness.) 

b). Given that 3-SAT is NP-complete, is the result in part (a) sufficient to  prove the 
NP-completeness of 2-SAT? Explain. 

Solution: 
a). We describe a polynomial-time reduction from 2-SAT to 3-SAT. Given a 2-SAT 

formula F(X1, .  . . , X,), the reductions a 3-SAT formula G(X1,. . . , X,, 2, A, B) as follows. 
We create 3 new variables 2, A, and B. For each clause Xi U X j  in F, we create a clause 

Xi U X j  UZ in G. Also, we add to G four additional clauses: Z U A U B ,  Z u ZU B, Z U A u B, 
and Z U 21 U B. Quite clearly, the reduction can be computed in polynomial time. We now 
establish the validity of the reduction by showing that F has a satisfying truth assignment 
if and only if G has a satisfying truth assignment. 

If F has a satisfying truth assignment, we can get a satisfying truth assignment for G as 
follows: use the same truth values for XI , .  . . , Xn and 2, A, B to TRUE don't care about A 
and B). It is easy to verify that G is satisified by this truth assignment. 

If G has a satisfying truth assignment, then Z must be set to  TRUE; otherwise, there 
is no way to satisfy the four additional clauses. It follows that the same truth assignment, 
restricted to XI ,  . . . , Xn7 is a satisfying truth assignment for F.  

b). No, this is not sufficient to prove the NP-completeness of 2-SAT. A reduction from 
3-SAT to 2-SAT would have implied the NP-hardness of 2-SAT, but this reduction is in the 
reverse direction. In fact, 2-SAT can be solved in polynomial time and hence is unlikely to 
be NP-complete. 


