
Comprehensive Exam: Autumn 2000-01

Automata and Formal Languages (60 points)
Sample Solutions

Problem 1. [lo points]
Consider the language L defined by the regular expression 00*10. Provide a PDA M for this
language using as few states as possible. Note that there is a PDA with only 1 state and
that the number of points you get will depend on the number of states used in your solution.

Solution:
The following PDA with only 1 state accepts the language L(00*10) by empty stack. The
PDA has the following components: Q = {q), C = {0,1), I' = {Zo, X, Y), qo = q, and
F = 1). The transition function is as follows:

Problem 2. [18 points]
Decide whether the following statements are TRUE or FALSE. You will receive 3 points for
each correct answer and -2 points for each incorrect answer.

I . If L1 and Lp are both non-regular, then L1 n L2 must be non-regular.

2. L = {w E {a, b, c)* I w does not contain an equal number of occurrences of a, b, and c)
is context-free.

3. Let L represent the language of a non-deterministic finite-state automaton N; then,
swapping the final and non-final states of N gives a machine N' whose language is the
complement of L.

4. Assume that P # NP. If L1 is in P and L2 is in NP, then L1 n L2 must be in P

5. If L1 and L2 are both in NP, then L1.L2 must be in NP.

6. If L1 is context-free and L2 is NP-complete, then L1 U Lp must be NP-complete.

Solution:

1. False

3. False

4. False

5. True

6. False

Problem 3. [12 points]
Classify each of the following languages as being in one of the following classes of languages:
empty, finite, regular, context-free, recursive, recursively enumerable. You must give the
smallest class that contains every possible language fitting the following definitions. For
example, the language of a DFA M could be empty or finite, and must always be context-
free, but the smallest class that is appropriate is regular.

1. The language L = {aib3ckd1 I i = tk and 3 = 1).

2. The set of strings from (0, I}* which, when viewed as integers written in binary, are
divisible by 3.

3. The language of a non-deterministic finite state automaton (NFA) with only two states.

4. The language of a non-deterministic push-down automaton (NPDA) with only one
state.

5 . The complement of a language L that belongs to P (polynomial time) but is not
context-free.

6. A language L to which we can give a polynomial-time reduction from an undecidable
language.

Solution:

1. Recursive

2. Regular

3. Regular

4. Context-free

5. Recursive

6. Recursively-enumerable

Problem 4. [lo points]
Using a reduction from a known undecidable problem, prove that the following problem is
undecidable: Determine whether a Turing machine M halts on all inputs from (0, I)* that
represent a valid encoding of some Turing machine. (You may assume any standard scheme
for encoding a Turing machine into a string of 0's and 1's.)

Solution:
Let LM = {< M >I M halts on any input w which is a valid encoding of a Turing machine).
The halting problem is undecidable: Determine whether a Turing machine M halts on a

particular input w. We define the language LH = {< M, w >(M halts on w) to represent
the halting problem.

We will give a reduction from LH to LM, thereby establishing the undecidability of
LM. Given an instance of the halting problem, say M and w, the reduction constructs a new
Turing machine M'. The machine M' ignores its input and simulates M on input w. Clearly,
if M halts on w, then M' halts on all w' which are valid encodings of Turing machines (in
fact, it halts on all inputs w'). Furthermore, if M does not halt on w, then M' does not halt
on any w'. It follows that < M, w >E LH if and only if M' E LM, establishing the validity
of the reduction. Since the reduction is easy to compute, it follows that LM is undecidable.

Problem 5. [lo points]
Recall the decision problems called 2-S-AT and 3-SAT. These are the versions of the satisfi-
ability problems for 2-CNF and 3-CNF boolean formulas, respectively.

a). Prove that 2-SAT is polynomial-time reducible to 3-SAT. (Describe a reduction and
justify its correctness.)

b). Given that 3-SAT is NP-complete, is the result in part (a) sufficient to prove the
NP-completeness of 2-SAT? Explain.

Solution:
a). We describe a polynomial-time reduction from 2-SAT to 3-SAT. Given a 2-SAT

formula F(X1, . . . , X,), the reductions a 3-SAT formula G(X1,. . . , X,, 2, A, B) as follows.
We create 3 new variables 2, A, and B. For each clause Xi U X j in F, we create a clause

Xi U X j UZ in G. Also, we add to G four additional clauses: Z U A U B , Z u ZU B, Z U A u B,
and Z U 21 U B. Quite clearly, the reduction can be computed in polynomial time. We now
establish the validity of the reduction by showing that F has a satisfying truth assignment
if and only if G has a satisfying truth assignment.

If F has a satisfying truth assignment, we can get a satisfying truth assignment for G as
follows: use the same truth values for XI , . . . , Xn and 2, A, B to TRUE don't care about A
and B). It is easy to verify that G is satisified by this truth assignment.

If G has a satisfying truth assignment, then Z must be set to TRUE; otherwise, there
is no way to satisfy the four additional clauses. It follows that the same truth assignment,
restricted to XI , . . . , Xn7 is a satisfying truth assignment for F.

b). No, this is not sufficient to prove the NP-completeness of 2-SAT. A reduction from
3-SAT to 2-SAT would have implied the NP-hardness of 2-SAT, but this reduction is in the
reverse direction. In fact, 2-SAT can be solved in polynomial time and hence is unlikely to
be NP-complete.

