Automata and Formal Languages (60 points)
 Sample Solutions

Problem 1. [10 points]
Consider the language L defined by the regular expression $00^{\circ} 10$. Provide a PDA M for this language using as few states as possible. Note that there is a PDA with only 1 state and that the number of points you get will depend on the number of states used in your solution.

Solution:
The following PDA with only 1 state accepts the language $L\left(00^{*} 10\right)$ by empty -stack. The PDA has the following components: $Q=\{q\}, \Sigma=\{0,1\}, \Gamma=\left\{Z_{0}, X, Y\right\}, q_{0}=q$, and $F=\{ \}$. The transition function is as follows:

$$
\begin{aligned}
\delta\left(q, 0, Z_{0}\right) & =\{(q, X)\} \\
\delta(q, 0, X) & =\{(q, X)\} \\
\delta(q, 1, X) & =\{(q, Y)\} \\
\delta(q, 0, Y) & =\{(q, \epsilon)\}
\end{aligned}
$$

Problem 2. (18 points)
Decide whether the following statements are TRUE or FALSE. You will receive 8 points for each correct answer and -2 points for each incorrect answer.

1. If L_{1} and L_{2} are both non-regular, then $L_{1} \cap L_{2}$ must be non-regular.
2. $L=\{w \in\{a, b, c\} * w$ does not contain an equal number of occurrences of a, b, and $c\}$ is context-free.
3. Let L represent the language of a non-deterministic finite-state automaton N; then, swapping the final and non-final states of N gives a machine $N^{\prime \prime}$ whose language is the complement of L.
4. Assume that $\mathrm{P} \neq \mathrm{NP}$. If L_{1} is in P and L_{2} is in NP , then $L_{1} \cap L_{2}$ must be in P.
5. If L_{1} and L_{2} are beth in NP, then $L_{1} \cdot L_{2}$ must be in NP.
6. If L_{1} is context-free and L_{2} is NP-complete, then $L_{1} \cup L_{2}$ must be NP-complete.

Solution:

1. False
2. False
3. Ealse
4. True
5. False

Problem 3. [12 points]
Classify each of the following languages as being in one of the following classes of languages: empty, finite, regular, context-free, recursive, recursively enumerable. You must give the smallest class that contains every possible language fitting the following definitions. For example, the language of a DFA M could be empty or finite, and must always be contextfree, but the smallest class that is appropriate is regular.

1. The language $L=\left\{a^{i} b^{5} e^{k} d^{1} \mid ;=k\right.$ and $\left.j=1\right\}$.
2. The set of strings from $\{0,1\}^{*}$ which, when viewed as integers written in binary, are divisible by 3 .
3. The language of a non-deterministic finite state automaton (NFA) with only two states.
4. The language of a non-deterministic push-down automaton (NPDA) with only one state.
5. The complement of a language L that belongs to P (polynomial time) but is not context-free.
6. A langtage L to which we can give a polynomial-time reduction from an undecidable language.

Solution:

1. Recursive

2. Regular
3. Regular
4. Context-free
5. Recursive
6. Recursively-enumerable

Problem 4. [10 points]
Using a reduction from a known undecidable problem, prove that the following problem is undecidable: Determine whether a Turing machine M halts on all inputs from $\{0,1\}^{*}$ that represent a valid encoding of some Turing machine. (You may assume any standard scheme for encoding a Turing machine into a string of 0 's and 1 's.)

Solution:
Let $L_{M}=\{\langle M\rangle \mid M$ halts on any input w which is a valid encoding of a Turing machine $\}$.
The halting problem is undecidable: Determine whether a Turing machine M halts on a particular input w. We define the language $L_{H}=\{<M, w\rangle \mid M$ halts on $\left.w\right\}$ to represent the halting problem.

We will give a reduction from L_{H} to L_{M}, thereby establishing the undecidability of L_{M}. Given an instance of the halting problem, say M and w, the reduction constructs a new Turing machine M^{\prime}. The machine M^{\prime} ignores its input and simulates M on input w. Clearly, if M halts on w, then M^{\prime} halts on all w^{\prime} which are valid encodings of Turing machines (in fact, it halts on all inputs w^{\prime}). Furthermore, if M does not halt on w, then M^{\prime} does not halt on any w^{\prime}. It follows that $<M, w>\in L_{H}$ if and only if $M^{\prime} \in L_{M}$, establishing the validity of the reduction. Since the reduction is easy to compute, it follows that L_{M} is undecidable.

Problem 5. [10 points]

Recall the decision problems called 2-SAT and 3-SAT. These are the versions of the satisfiability problems for 2-CNF and 3-CNF boolean formulas, respectively.
a). Prove that 2-SAT is polynomial-time reducible to 3-SAT. (Describe a reduction and justify its correctness.)
b). Given that 3-SAT is NP-complete, is the result in part (a) sufficient to prove the NP-completeness of 2-SAT? Explain.

Solution:

a). We describe a polynomial-time reduction from 2-SAT to 3-SAT. Given a 2-SAT formula $F\left(X_{1}, \ldots, X_{n}\right)$, the reductions a 3-SAT formula $G\left(X_{1}, \ldots, X_{n}, Z, A, B\right)$ as follows.

We create 3 new variables Z, A, and B. For each clause $X_{i} \cup X_{j}$ in F, we create a clause $X_{i} \cup X_{j} \cup \bar{Z}$ in G. Also, we add to G four additional clauses: $Z \cup A \cup B, Z \cup \bar{A} \cup B, Z \cup A \cup \bar{B}$, and $Z \cup \bar{A} \cup \bar{B}$. Quite clearly, the reduction can be computed in polynomial time. We now establish the validity of the reduction by showing that F has a satisfying truth assignment if and only if G has a satisfying truth assignment.

If F has a satisfying truth assignment, we can get a satisfying truth assignment for G as follows: use the same truth values for X_{1}, \ldots, X_{n} and Z, A, B to TRUE don't care about A and B). It is easy to verify that G is satisified by this truth assignment.

If G has a satisfying truth assignment, then Z must be set to TRUE; otherwise, there is no way to satisfy the four additional clauses. It follows that the same truth assignment, restricted to X_{1}, \ldots, X_{n}, is a satisfying truth assignment for F.
b). No, this is not sufficient to prove the NP-completeness of 2-SAT. A reduction from 3-SAT to 2-SAT would have implied the NP-hardness of 2-SAT, but this reduction is in the reverse direction. In fact, 2-SAT can be solved in polynomial time and hence is unlikely to be NP-complete.

