
Comprehensive Exam: Algorithms and Concrete Mathematics 
Autumn 2000 

1. (1 0 points) Big-Oh notation, Running times 
For each of the following functions, circle the best upper bound from among the choices 
given. You only need to circle one answer in each case. For example, if you say that a 
function is O(n), you do not need to also say that it is also O(n2), O(nlogn), and so on. 

(a) (1 points) f (n) = &i 
Choose: O(n) O(n2) O(n3) O(1ogn) O(n1ogn) 0(2n) none 
Answer: O(n) 

(b) (1 points) f (n) = ( fi + I)(+ - 1 ) f i  
Choose: O(n) O(n2) O(n3) O(1ogn) O(n1ogn) 0(2n) none 
Answer: O(n2) 

(c) (2 points) f (n) = 422n3 + 5n2 log n + 121231234 
Choose: O(n) O(n2) O(n3) O(1ogn) O(n1ogn) 0(2n) none 
Answer: O(n3) 

(d) (2 points) f (n) = nn 
Choose: O(n) O(n2) O(n3) O(1ogn) O(n1ogn) 0(2n) none 
Answer: None of the above. 

For each of the following programs (or fra.gments thereof) give a good upper bound on 
the running time of the algorithm using "big-Oh" notation, as a function of the value of 
n. 

(e) (2 points) 

for i from 1 to n do 
for j from i to n do 

( something that is O(1og n) ) 

Answer: O(n2 log n)  

(f)  (2 points) 

/* print n in binary if n > 1; mod runs in constant time */ 
bprint(n) 

if n > 0 then 
bprint(Ln/2J); 
print(n mod 2); 



Answer: O(1og n)  

2. (20 points) Recurrences. 
Solve each of these three recurrences. You may give a.n exact solut~ion, or give a. good 
upper-bound using big-oh notation. 

(a,) (5 points) If f (n) = f (7212) + log n, with f (1) = 0, then find a closed form expres- 
sion for f (n). 
Answer: f (n) = (log2 n + log n)/2 = 0(1og2 n) 

(b) (5points) If g(n) = 2g(n/2)+ d n ) ,  with g(0) = 0 and g(1) = 1, then find a. closed 
form expression for g(n). 

Answer: g(n) = q n  - *fi= O(n) 

(c) (10 points) If h(n) = h(n/2) + h(n/4), with h(0) = h(1) = 1, then find a closed- 
form expression for h(n). 
Answer: h(n) = f iogn where F, is the nth Fibonacci number. 

3. (1 0 points) Matching. 
One day, upon returning from the laundroma.t, I realize that, as usual, I've lost a few 
socks. In fact, no two of my socks are an exact match! Luckily, though, some of them are 

. close and I have a similarity scoring function: any two socks i and j have an associated 
score 0 I sij I 1 which is large if they are very similar and small if they are very different. 
Naturally, sij = sji for all i and j. I have an even number of socks and decide to try to 
put my socks together two-by-two so as  to maximize the sum of scores. 

I decide to use the following greedy algorithm: 

Repeat until all socks have mates: 

Pick a random unmated sock i. 

Among the other unmated socks, find the sock 3 so tha.t sij is ma.ximum 
(i.e., no other unmated sock k has Sik > sij). 

Show that this method may produce a poor matching. More specifically, the score for 
a matching is the sum of the similarty scores for the pairs I pick. Show that for any 
0 < 6 < 1, there is a set of socks, and simila,rity scoring function as described above, so 
that if I pick socks in a particular order I will get a score less than 6 times the score for 
the best overall matching of this set of socks. 

b Answer: Consider four socks, a, b, c, and d, with s,b = 1, s h  = 3 ,  and all other scores 
equal to 0. If the first sock I randomly pick is c, I will match it with b for a score of less 
than 6, where the best possible score (from putting a with b and c with d) would be 1. 



4. (1 0 points) Amortized Analysis. 
A bank offers a combined savings/checking account with options to deposit $1000 to the 
savings account, deposit $1000 to  checking, withdraw an integer mu1 tiple of $1000 from 
the savings account, withdraw an integer multiple of $1000 from checking, or transfer 
an integer multiple of $1000 from the savings to the checking account. Each of these 
operations has a certain overhead cost to the bank, but actually storing the money costs 
them nothing. (In the event that you attempt to withdraw more money from an account 
than you actua.11~ have in that account, or to transfer more money from savings than you 
have in sa,vings, the operations fails and costs nothing to  the bank.) Below is a table of 
the operations and the overhead costs to the ba.nk for each of them (assume Q and P are 
consta.nts): 

Option Actual Cost to the Bank 
Deposit $1000 to Savings Q 

Deposit $1000 to Checking a 
Withdraw k x $1000 from savings a f k 0  
Wi thd ra .~  k x $1000 from checking a f k p  
Transfer k x $1000 from savings to checking Q + k,B 

. , (a) (5 points) Say you open an account today with a ba.lance of $0. Show that the . A  

bank can offset the overhead costs from your first n opera.tions by simply charging 
a.n O(1) service fee every time you deposit to savings or checking. That  is, give 
an amount the bank could charge so that, regardless of your first n operations, the 
overhead would not exceed the total service charge, and show why this fee would 
offset the overhead costs. 
Answer: Amortized cost of 3crf20) for each deposit to savings, a.nd of 2(cr+P) for 
each deposit to checking. Every thousand dollars deposited to savings costs cr + P 
exactly, a.nd then can cost a.t most twice this much again, if it is transferred to 
checking and then withdrawn (if it is withdrawn directly from savings, or if it is 
transferred or withdrawn in along with more money, the individual cost of moving 
just this thousand dollars is even less than 2(a  + 0)). Therefore the cost given is 
sufficient. A simila,r argument can be made for deposits to checking. 

(b) (5 points) Now say the bank adds a sixth option: "transfer an integer mu1 tiple of 
$1000 from checking to savings," and assume that the bank decides it will still only 
charge a service fee for deposits, and that this fee will still be constant. Show that, 
no matter wha.t the service fee is, you could open a new account (also with an initial 
ba.lance of $0) and perform a series of operations so tha.t the bank would lose money. 
Answer: Assume the bank applies a consta.nt fee of 1 for each deposit to savings, 
and of m for each deposit to checking. Let k = max(1,m). Simply deposit one 



thousand dollars into savings and then transfer it back and forth over an over. If 
you transfer it back and forth 3 times (rounding up to the nearest integer, of 
course), you will cost the bank 2k. 

5, (1 0 points) Dynamic Programming. 
Assume you ha.ve an I-foot log (i.e., a tree trunk, not a loga,rithm) tha,t has a few 
marks spraypainted on it, indicating that you need to sa.w it a.t these places. For 
exa.mple, the log may look like the one below: 

where the numbers indicate distance from the left end of the log. Assume further 
that the cost of making a particular cut is the length of the section in which you 
ma.ke the cut. For exa.mple, in the diagram, if we cut first at 4, then a.t 5, then a.t 6, 
the cost is 10 + 6 + 5. 
Give an efficient, dynamic-programming algorithm for deciding the chea.pest cut 
order. More precisely, assume you are given a list L = (11, 12, ..., lk) of cuts, where 
the ith cut li is given as the distance between the left end of the log and the place 
at  which that cut is to be made. (The above log would have the list L = (4,5,6).) 
Your algorithm should take such a list and output an ordered list L' that gives the 
cuts in the chea.pest order. 
Also, give a big-Oh time bound for your algorithm. 
Answer: First, let us define lo = 0 and lk+1 = 1. We will have a k + 1 x k + 1 
array C where the i j th  entry, cij gives the cheapest cost of ma.king the cuts between 
li and l j  (not including the ith and jth cuts), when i I j. Initialize si = 0, for all 
O < i < k + l ,  Cj,i+l = O , f o r a l l O < i <  k, ~ j , i+2=1 i+2 - 1 i , f o~a I IO< i <  k -1 .  (If 
you care, set to zero all entries sj where i > j.) 
Next, we will have another array D of the same dimensions, where the i j th entry dij 
gives the first cut we should make between 1, a.nd lj, given that those two have been 
made already. Initialize this array to have all -Is, if you like. 
Now, for each g in 3 . .  . k + 1, letting i ra.nge from 0 to k + 1 - g, find d;:,+,. How do 
we do this? Well, s,;+,., = l;+, - 1; + min;<h<i+, cih + Ch,j+,, so, using the array as 
a lookup table, .find the best value of h for this particular and set ci,i+, and 
&,;+, accordingly. At the end, &,k+l will have the first cut, say I;, that you should 
make, and you can figure out the next two cuts as do,,; and dl;,k, and so on. 

This algorithm runs in time O(k2). 




