
Comprehensive Exam - Programming languages

Fall 2000

Problem 1 - Activation records (8 points)
You want to modify your compiler to support dynamically-sized, stack-allocated variables.
Assuming a traditional machine architecture, explain what complications this creates com-
pared to the usual constant-size stack allocation, and how you would handle it.

Problem 2 - Execution (12 points)
One of CS's core themes is execution. We package it in various ways: procedure calls,
threads, processes, co-routines, upcalls, interrupt handlers, etc.

1. (6 points) Ignoring hardware and language details, what do you fundamentally need
to "execute" an instruction stream and why? Please pick two of the above abstractions
and, at a high level, classify their constituent parts in your categories.

2. (6 points) Whenever we have multiple streams of execution, we have to decide what
to which stream to run ("scheduling"). What are some differences between thread
scheduling and scheduling which procedure to run? What property of procedure
scheduling allows us to use a single stack for procedures but (in general) forces multiple
stacks for threads?

Problem 3 - GC fun (18 paints)
Assume you want t o add garbage collection to C. Unfortunately, unlike most GC implemen-
tations, you do not have any compiler support. So, instead you do a hack where you treat
all memory/register whose values are valid memory addresses as pointers.

1. (12 points) At a high level, explain how to write a (mostly) conservative garbage
collector using this trick.

2. (6 points) When will your collector lose storage? Can you give (possibly) contrived
examples of where i t would reclaim storage that is not dead? Can your collector com-
pact the heap?

Problem 4 - Naming fun (20 points)
Assume you add overloading to C, where there can be multiple functions with the same
name but different type signatures and the compiler determines uses argument types to
decide which function t o call. For example, given the following two functions:

i n t abs (i n t x) ;
f l o a t abs (f l o a t x) ;

the following calls will be resolved to the first and second respectively:

i n t xl;
f l o a t x2 ;

x l = abs (XI) ;
x2 = abs(x2) ;

Assume we want to use separate compilation, and linkers only know how to bind a
reference to name N to a single definition of name N. (I-e., emitting both implementations
of "abs" with the same name will cause a "multiple definition" error.)

1. (12 points) Explain how to implement overloading using only local analysis given
this constraint. You can simplify your scheme by requiring callers and modules that
contain definitions t o obey reasonable restrictions. Make sure to mention how to (1)
stop the user from accidently colliding with your strategy; (2) working in the presence
of debugging; and (3) support structures as arguments.

2. (8 points) What rules should you follow for resolving ambiguities in the presence of
argument promotion? (I.e., when an argument of type T can be legally changed to a
T'.) Be sure t o handle conflicts that can arise with multi-argument functions.

