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INSTRUCTIONS

Please read these instructions and the Netation section carefully. Do not
read beyond this page until instructed to do so.

You should mark your ansers only in the answer sheet that is provided
with this part of the Comprehensive Examination. Be sure to write your
magic number on the answer sheet,

This exam is open book and is composed of 42 questions on 12 pages,
plus one answer sheet. For each question, write either YES or NO in the
corresponding box of the answer sheet, or leave it blank. You will receive +2
points for each correct answer, —3 points for each incorrect answer, and 0
points for a blank [or crossed out) answer, You have 60 minutes to complete
the exam.

NOTATION

The notation is the one wsed by Enderton in A Mathematical fntroduction to
Logic, with the difference that the equality symbal is denoted by = instead
of /= and arguments to predicate and function symbols are enclosed in paren-
theses and separated by commas. Thus, for example, instead of Enderton’s
Fzyz, flz,y, £) is used.

In some problems, the following symbols are used, whose definition is
repeated here for completeness:

® CnjA) is the set of consequences of an axiom set A;

o Th{9M)} is the first-order theorv of the structure M, i.e. the set of
first-order sentences, of a given language. that are true in J0.

Do not turn this page until instructed to do so.
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PREDICATE LOGIC
Which of the following is a valid sentence of first-order logicT

6. (Vx Plz))— (v Ply))

Answer. YES, This depends on the assumption that the domain of a
first-order interpretation cannot be the empty set. Alternatively, the
formula can be proved in vour favorite caloulus.

7. (3z P(x)) = (Vy P(y))

Answer. NO. As a counterexample, take an interpretation with a
T TR T ' K 1L
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8. 3z (Piz) =¥y Ply))

Answer. YES. This is known as Beth's formule. Given any interpretation,
there are two cases: either ¥y F(y) is true, and then the implication
i5 always true and any value for = will do, or it is false, and then there
is an element of the domain for which P does not hold, and one can
assign that element to x, making the antecedent of the implication
always false, hence the whole implication true.

9. ¥z ((z=0)—= 3y z=5(y))

Answer. N This is valid in models of arithmetic, but is not a validity of
first-order logic. For a counterexample, take a two-element domain
{e, b}, map D to a, let S be interpreted as the identity function
returning a.
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UNIFICATION

Which of the following are true about unification in first-order logic?

10. {r + 2,y « f(z)} is an m.g.u. {most general unifier) of f(g(z),y)

and f(g(y). f(z)).

Answer. NO. The two terms are not unifiable. To see this, apply the
unification algorithm and vou will end with an occur-check vielation
{an equation of the form = = ¢, with x occurring in £).

11. {y+— f(z)} is an mgou. of f(f(z),y) and fly. f(x)).

Answer. YES. It is one of the possible solutions returned by the
unification algorithm.

12. {z — y,y — fly)} is an m.g.u. of f(f(x),y) and f(y. f(z)).

Answer. YES. All m.g.us of a term differ by a permutation of variables,
and this can be obtained by the one in the previous problem by
composition with the permutation {x « y,y + z}. Note that this
m.g.u. cannot be returned by any execution of the unification
algorithm, because it is not idempotent.

13. Let # be a unifier of ¢, and £;. Then (¢, #3, 3} are unifiable if and
only if ;8 and {38 are unifiable.

Answer. NO. f needs to be most general for this to hold, Consider

= fz), ta = f(¥). ts = fg(2)), # = {z = f(z),v ~ f(z}}. Bis
not most general and (¢4, t38) is not unifiable, but {, t2. f3) clearly
is.
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SKOLEMIZATION

In the following, “to skolemize” means to skolemize preserving validity, as in
The Deductive Foundations of Computer Programming. x, 1), &y, y. z are
variables.

14. Is the existential closure of = P(x,,y) — = FP{zq, f(x3)) a correct
skolemization of (=¥r3y Pz, y)) — (Fr¥y =F(z,v))7

Answer. NO. The oceurrence of x; should be replaced by a constant.

15. Is the existential closure of -I{FI[E: y} — sz: f[z:lj} a correct
skolemization of 3y =¥z (P{z,y) — Iy Pz, y))?

Answer. NO. A correct skolemization would be
~(Fz.y) = Pz fly, 2))).

DEDUCTIVE TABLEAUX

Consider the following deductive tablean:

] A T € |
1| Pz flz)) A Qy) — P(f(y). f(F(w))) '

2 __ P{fia). f(f(a))) V Q{a)
4 P(z, f(z))

Which of the following rows can be added to the tableau by one correct
application of a resolution rule?

16. [4] =@ (a) | |
Answer. N0
17. [4] | =G (a) ]

Answer. YES. Hesolve 2 and 3 according to the polaritv strategy.
18. (4| Plz, fla) AQ(a) | |
Answer. NO,
19. | 4 | | Pz, fla)) AQe) |

Answer. NO.
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The complete set of rows that can be inferred from the given ones by
one application of a resolution rule is: goals L, P(x, f(z}) A Q(y).
= (a} and assertions T, (Q(y) — P(f{x), F(f(@)))) V Q(a),
(P(z. f(x)) — P(f(a), f(f(a}))}V P(f(a). F(f(a)}),

=Pz, flz)) A Q(a)) ¥V Qa).

Given a deductive tableau T, for a first-order logic, in which there is no
occurrence of the equality symbol, quantifiers, T or L, which of the following
are true?

20. If an assertion and a goal in T are unifiable, then T is valid.

Answer. YES. A resolution step can be applied and yield the true goal in
one step.

21. If no resolution rule can be applied, then T is not valid.

Answer. YES., With no quantifiers there is no need for skolemization, and
with no equality the resolution rule alone is complete for validity.

22. There exists a tableau containing onlv assertions {no goals) to which
T is equivalent.

Answer. YES. Just move all goals in T to assertion by prepending a =.
According to the Duality Proposition, the two tableaux are equivalent.
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Let A be a finite set of axioms for a theory T = Cn(A), over a language with
equality, ¢ a formula in the same language. Which of the following are then
necessarily true?

23. If, starting from a tableau containing only formulas in A as assertions
and only  as goal, after a finite number of applications of resclution,
guantifier elimination, and equality rules one gets a tablean with T as
a goal or 1 as an assertion, then T'F .

Answer. YES. This is indeed a sufficient condition for validity. It is not
necesszary, though, since in general one must add the assertion ¥ = =
to have completeness in presence of equality.

24. Let SPO be the theary of strict partial orderings (over the language
with the binary predicate symbol < and no equality) given by the
two axioms tr (for “fransittvity”) and ir (for “frreflemvity”), ie.
SPO = Cn{{tr,ir}). Is it true, then, that a necessary and sufficient
condition for 5P0 E ¢ is the existence of a tableau proof starting
from the initial tablean

LLJ J_ =tV i W |?

Answer. YES. The formula given as a goal is equivalent to o
tr A ir — . The existence of a tablean prool starting from here is
equivalent to the validity of pst, which in turn is equivalent to the
validity of ¢ in SP0.
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POLARITY

Let A be a set of frst-order sentences and A’ be obtained from A by replacing
every occurrence of a P-atom of positive polarity by T. (A P-atom is an
atomic formula of the form P{...), where P is a predicate symbaol of arbitrary
arity.) Let T = Cn(A4) and T¥ = Cn{A’}. Which of the following hold?

25. If T F i, then T F 4.

Answer. NO. For a simple counterexample, take  to be W P(r) and A
to be {w}. The converse implication is true, as can be inferred from
the next problem.

26. If M iz a madel for T, then M is a model for T

Answer. YES, For every axiom i € A let @' be the corresponding axiom
in A°. Then, by the Polarity Proposition, phi — ', For M to be a
model of T means. by definition, that 2% F ¢ for all ¢ind and hence
by the previous cbservation it follows that 9 E &', Again by
definition of being a model this means that 9N is a model of TV,

FirsT-ORDER THEORIES

Which of the following are decidable?
27. The set of preofs in the language (0,8, 4, -).

Answer. YES. It can be checked algorithmically whether a given syntactic
ohject is & correct proof. In general, any reasonable definition of proot
must have this property.

28. The set of sentences true in the structure (M, 0, 5, +).
Answer. YES. This is a substructure of Presburger Arithmetic,

29, The =et of sentences valid in the first-order logic of the language
(0,8, +.-).

Answer. N0, This is known a5 Church’s Theorem.
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Which of the following are true? (M is the structure (M, 0, 5, <, +, -, F), i.e
the standard model of natural numbers; E is the exponentiation function)

30. All countable models of Th{M) are elementarily equivalent.

Answer. YES. This holds in general for any structure 20, sinee then
Th(9) is complete.

31. All countable models of Th(M) are isomorphic.

Answer. NO. Add a new constant ¢ to the language, and add to Th{)
the axioms 0 < ¢, 8(0) < . 5(S(0)) < ¢, etc. The resulting theory
is finitelv satisfiable, hence satisfiable by the Compactness Theorem.
The restriction of a model of it to the language without ¢ iz a model
of Th{TM) that is not lsomorphic to M.

32. Th{M) is complete.
Answer. YES. This holds for any structure Th{91).
33. T‘hl[’]'i]l is recursively enumerable.

Answer. N({). This theory is undecidable.

Consider a first-order language with one binary predicate symbol B and

equality. Which of the following hold in this language?
34. There 15 a satisfiable formula all whose models are Anite.
Answer. YES. Take Wr r =z
35. There is a satisfiable formula all whose models are infinite.
Answer. YES. The standard example is
Vi Rz, z) A
VeViyVsz (R(z,y) A Ry, z) — Rz, z)) A
Vr3y R(z.y) -
36. There is a satisfiable formula all whose models are countably infinite.
Answer. N(). This would violate the Lowenheim-Skolem Theorem.
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Consider a first-order language with equality, one binary predicate symbol
K. and no other parameters., Furthermore, consider the theorv T = Cn{A)
of all logical consequences of axiom set A:
VeVyV: (z=yVy=:zVr=:)
¥x Rz, z)

37. Is T complete?

Answer. NO. Az a counterexample, neither the sentence
VrVy (R{z. v) — R(y.z)) nor its negation are valid in the theory.
To reason about this problem. you should realize that the models can
be thought as being the graphs with at most three nodes and having
reflexive loops.

38. Is T decidable?

Answer. YES. One simply has to check a finite set of graphs and see
whether a given sentence holds in all of them.

39. [z T recursively enumerable?

Answer. YES. Any theory with a recursively enumerable set of axioms is
recursively enumerable.

40. Is T axiomatizable?

Answer. YES. A {finite, hence recursive) set of axioms is given by the
problem.
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WELL-FOUNDED INDUCTION
Which of the following relations are well-founded?

41. On tuples (as defined in The Deductive Foundations of Computer
FProgramming , the relation R defined by

R(z,y) + z = tail(y) .

Answer., YES. If R(z, v), then x iz a strictly shorter tuple than pand
hence there cannot be an infinite descending chain.

42, On non-negative intecers, the relation A defined by

Rz, g)++ Az (y=5(85(0))-z A =24 S{0)==z)
V3 ((3{S(0)-z})+8(0)=y A x=z4+8(0)) .
Answer. N(). In fact, this relation has a reflexive loop at 1. The

whole point here was to see if vou are acquainted with the
language of first-crder logic and can decrvpt it fast enough.
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