
Computer Science Department

Stanford University

Comprehensive Examination in Software Systems
Fall 2000

Read This First!

.. 1. Write all answers in a blue book. No credit is given for answers written on these exam
pages. Don 'r panic! This seems long, but most of the answers are very short.

2. Be sure to write your MAGIC NUMBER on the cover of EACH blue book you use.

This is an OPEN BOOK exam. You can't look up stuff on the Internet or ask other people. but
you may use any books. notes. etc. you like. as well as a non-Internet-connected computer.

3. Use the point values of each question or subquestion to help plan your time. R e d the whole
e.rtunBrst; bz case it's too long, do the ones you brow right a w q .

4. Justify your answers! Partial credit is given for good reasoning but a wrong answer, whereas
i t won't be ziven for a correct answer with incorrect or no reasoning. Stare clearly any
additional assumptions you make.

1 Miscellaneous topics, concise answers [13]

a) [3] You compile the following code in C using a typical Unix or Windows C compiler.
Suppose you run it and call the function.firzc with .r set to -1 (negative one). What happens
and why?

void func (int x)
{

int a[101 ,b[101 ,c[101;
... code to initialize all elements of a[] to I,b[] to 2,c[] to 3...
printf("%d\nU, b[x]);

1)
b) [3] Alice emails her stockbroker the following string in an email message: "Sell 100 shares of

Oracle!" She encrypts and digitally signs the message so he knows it's authentic. Unknown
to her. the evil Mitch is sniffing the email server. How can Mitch attack Alice? What could
she have done to prevent it?

c) [3] In a remote procedure call (RPC) system. one possible problem is that it is impossible to
distinguish between a really slow callee and a failed callee. Why might it be a bad idea to just
retry the call after a certain amount of time has expired? (Ignore the possibility of overloading
the network or RPC server.)

d) [4] A simple multitlueaded program features N threads that share access to a common integer
value x. To assure that only one thread at a time writes x (and that changes aren't lost), each
thread's critical section looks like this:

/ * begin critical section * /
Lock (x) ; / * will spin if necessary until lock is available * /
x = newIntegerValue;
Unlock(x) ;
/ * end critical section * /

Assume you have an instruction CompareAndSwap2. which is similar to the familiar atomic

int CAS2(int *x, int *y, int oldXval, int newXval, int newYval)
I

if (*x == oldXval) {
*X = newXval;
*y = newYval;
return SUCCESS;

1 else I
/ * don't change x or y * /
return FAILURE ;

1
Use CAS2 to rewrite the pseudocode for each thread's critical section without using locks.
(Hint: use versioning.)

2 Memory Fragmentation [ll]

Your superwizzy C libraries and runtime system provide standard system calls to allocate and
free chunks of memory. There are no a priori restrictions on the size or alignment of memory
that can be requested. The C function prototypes are roughly as follows:

typedef void *MemPtr;
MemPtr PtrAlloc(unsigned long sizeInBytes);

/ * PtrAlloc returns the NULL pointer if request can't be satistied * /
void PtrFree (MemPtr aPtr) ;

a) r.31 Briefly describe the t~wtiloi? Jicrgmentatiorz problem and how it might cause a MemAlloc()
request to fail even if there is enough unused memory to satisfy the request.

To alleviate this problem, you modify your runtime system and C libraries to support Itnndles. A
handle is a double-indirection to a block of memory:

r typedef MemPtr *MemHandle;
/ * you can also think of it as: typedef void * *MemHandle * /

MemHandle HndAlloc(unsigned long sizeInBytes);
void ~andle~ree(Mem~and1e aHandle);

h) [4j Explain how handles alleviate the fragmentation problem.

C) [4] Describe two performance impacts that arise when programmers routinely use handles.
(Hint: one occurs frequently. the other relatively infrequently.)

3 Filesystems and Leases 1121

You're designing an NFS-like network file system for Unix that allows many clients to access
and edit files on a network-connected remote fileserver. We'll refer to the server as S and three
clients as X, Y.Z. When a client opens a file. the server sends a copy of the whole file to the client.
In addition:

I . Any number of clients may simultaneously open a file for rend onlv access.

3. If X opens the file for writing. a lock is set on the server so that future clients can onlv open
that file for reading. When X closes the file, the lock is released so that future clients may
open the file for writing. The entire act of writing X's changes and releasing the lock is
atomic with respect to the server. The new contents of the file are not automatically sent to
clients that have the file open for reading.

a) [3] Suppose X obtains a write lock on a file, and then crashes. When X reboots itself, it
"forgets" which file(s) it had write locks on. What is the effect of this failure on the other
clients and on the sewer?

To remedy the problem of (a) , you suggest that the server use leases. A lease gives X the right to
access the file for a limited m o u n t of time. (As before, at most one client can hold a write lock
on the file.) When that time expires. if X still wants to use the file, it must ask the server to renew
the lease, otherwise the server will unilaterally terminate the lease (and release the write lock. if
the leaseholder had one).

b) [4] Explain how leases fix the problem in the scenario of part (a). and explain any new effects
seen by X in that scenario after it reboots.

C) [3] Suppose X is more careful: when it obtains a lease, it also records the fact that it is editing
a particular file. and locally saves changes to that file as edits are in progress. X now crashes.
reboots. and allows the user to recover the local copy of the file she was editing. Describe a
scenario and the circumstances under which X might perceive a filesystem inconsistency.

d) [2] Assume that you can guarantee that any client's recovery time after a crash is at most R.
Describe one possible way to avoid the inconsistency of part (c) . and describe its effect on the
system.

4 Debugging Breakpoints [IS]

You have been assigned the job of adding darn breakpoilzts to an existing C debugger. The
desired behavior is that the programmer can "mark" particular variables as being breakpoints:
whenever a marked variable is read or modified. the debugger should take a breakpoint and allow
the programmer to inspect the program's state. etc.. then resume execution.

Assume that you are not allowed to make the programmer modify or recompile her source code.
but you do have full access to the operating system and the runtime system, and in particular you
can modify the virtual memory functions of the operating system (page fault handlers. page
tables. etc.).

Also assume (as is the case in most implementations) that the compiler and linker arrange to store
global variables in a designated memory pages that is known at link time. that all global variables
will fit on one page. and that that page is not used for storing anything other than global variables.

./ a) [4] Suppose first that we only care about being able to mark global variables. Explain in detail
how you would use the OS's virtual memory system to implement data breakpoints. In your
explanation, keep in mind that only some global variables are likely to be marked.

b) [4] Qualitatively describe the impact on the overall speed of execution when the programmer
marks a variable. What factor(s) dominate this impact? To what extent does the number of
marked variables influence performance (assuming all marked variables are referenced
equally often)?

C) [3] Suppose we instead want to support only nwdifi breakpoints: a marked variable should
cause a breakpoint only when its value is modified, not when it is read. What modifications
could you make to your implementation to support modify-breakpoints more efficiently than
read-breakpoints?

d) [3] Describe what additional complication(s) you would encounter if you also had to
implement this feature for functions' local variables. Identify at least one important factor
that would affect performance if this feature is added, above and beyond the performance
effects already discussed.

