
Stanford University Computer Science Department
1999 Comprehensive Exam in Databases

WITH SOLUTIONS

The exam is open book and notes.

Answer all 5 questions on the exam paper itself, in the space provided for each ques-
tion.

The total number of points is 60; questions may have differing point values.

You have 60 minutes to complete the exam (i.e., one minute per point). It is suggested
you review the entire exam first, in order to plan your strategy.

Simplicity and clarity of solutions will count. You may get as few as 0 points for
a problem if your solution is far more complicated than necessary, or if we cannot
underst and your solution.

Provide your magic number here:

Problem 1: (10 points) Suppose we have a relation R(a, b, c, d) and the functional
dependencies a -t b and b + c.

a) What other nontrivial FD's with singleton right sides, but not necessarily singleton
left sides follow logically from these?

Answer: ac + b, ad + b, acd + b, a 4 c, ab + c, ad + c, bd + c, abd + c.
b) In the space below, show a possible instance of R that satisfies the given FD's, all

FD's that follow logically from them, but no other nontrivial dependencies.

Answer:

c) Give an example of a nontrivial multivalued dependency that follows logically from
the given dependencies and involves the attribute d.

Answer: a -t) d.

Problem 2: (10 points) Consider the following ODL description:

interface Person (extent People) (
attribute string name;
relationship Set<Person> Friends inverse Friends;

3

a) Write an OQL query on this database to find the people who are friends with someone
who is a friend of the person named "Joe."

Answer:
SELECT p.name
FROM People p, p.Friends q, q.Friends r
WHERE r .name = "Joe" ;

b) In the space below, give an entity/relationship diagram for the same database.

Answer:

Problem 3: (15 points) Distributors buy books from Publishers and sell them to Book-
stores. A publisher may sell books to several different distributors, and bookstores may
buy from several distributors. However, one bookstore will only buy the books of one pub-
lisher from a single distributor. For each publisher, distributor, and bookstore, we wish to
record their name and address. We also record the manager of a bookstore, the web-site of
a publisher, and the phone of a distributor. Names of publishers may be assumed unique,
likewise names of distributors and names of bookstores, although names may be shared by
entities of two different types (e.g., a publisher and bookstore could have the same name).

\.. /
.A*-

a) In the space below, draw an entity-relationship diagram that represents the informa-
tion above.

Answer:

Publishers Distributors

I Bookstores I

b) Give an ODL design for the same information. Indicate keys as appropriate, but you
do not have to indicate extents. You may use convenient abbreviations re1 = relation;
attr = attribute; int = interface; inv = inverse. You may use simple types, e.g.,
strings, for all your attributes. Please be sparing of space; there is not enough room
to use lines for things like single braces.

Answer:
i n t e r f a c e Publ isher (key name) (

a t t r i b u t e s t r i n g name;
a t t r i b u t e s t r i n g add r ;
a t t r i b u t e s t r i n g webs i t e ;
r e l a t i o n s h i p Se t<Sa le> s e l l s inverse Sa1e::thePub;

3

i n t e r f a c e Bookstore (key name) (
a t t r i b u t e s t r i n g name;
a t t r i b u t e s t r i n g add r ;
a t t r i b u t e s t r i n g manager;
r e l a t i o n s h i p Se t<Sa le> buys inverse Sa1e:: theStore;

3

i n t e r f a c e D i s t r i bu to r (key name) (
a t t r i b u t e s t r i n g name;
a t t r i b u t e s t r i n g add r ;
a t t r i b u t e s t r i n g phone;
r e l a t i o n s h i p Se t<Sa le> moves inverse Sa1e: : theDis t ;

i n t e r f a c e Sa le (
r e l a t i o n s h i p Pub l i she r thepub inverse Pub1isher : : se l l s ;
r e l a t i o n s h i p Bookstore t h e s t o r e i nve r se Bookstore::buys;
r e l a t i o n s h i p D i s t r i b u t o r theDis t i nve r se Dis t r ibutor : :moves;

3

Problem 4: (5 points) The following code is in the style of recursive SQL3. If A(x, y)
is an arc relation, and we think of P(x) as the set of nodes of a graph that are "on" in a
given round, then the recursion defines a sort of "game of life," where a node is on at a
given round if and only if it has both on and off successors at the previous round.

WITH
RECURSIVE P (x) AS

SELECT A1.x
FROM A A1, A A2, P
WHERE A1.x = A2.x AND A1.y = P.x AND NOT EXISTS

(SELECT * FROM P WHERE x = A2.y)
SELECT * FROM P;

However, there are several ways in which this code violates the specifications for SQL3
recursion. Give the two most important such problems:

Answer: The negation is unstratified, and the recursion is nonlinear.

Problem 5: (20 points) Consider the following relational database table:

~ance~oster(name, gender, age)

You may assume that n a m e is a key for the table. Some sample data for this table is:

n a m e gender age

Tina female 2 1
Brian male 24
M a y female 26
Susan female 28
Edward ma1 e 3 2
Fred male 3 2

a) Write a query that for each dancer finds "goodn dance partners. For a dancer D, a
partner P is consider "good" if:

(i) P has a different gender from D, and
(ii) There is no other dancer P who has a different gender and is closer to D in

age. Note that a dancer may have multiple good partners if there are ties in age
differences.

For the sample data above, the query should return:

dancer

Tina
Brian

Mary
Susan
Susan
Susan
Edward
Fred

Brian

Brian
Brian
Edward

Susan
Susan

You should write this query in standard SQL2, but you may assume the existence of a

Q function ABS that returns the absolute value of its argument. However, for this part,
you may not use any aggregation functions.

Answer:
SELECT R1.name AS dancer, R2.name AS partner
FROM DanceRoster R1, DanceRoster R2
WHERE R2.gender 0 R1.gender

AND ABS (Rl .age - R2. age) <= ALL
(SELECT ABS(Rl.age - R3.age)
FROM DanceRoster R3
WHERE R3.gender <> Rl.gender)

b) Repeat part (a), but this time, write the query using the aggregation function MIN in
a nontrivial way.

Answer:
SELECT Rl.name AS dancer, R2.name AS partner
FROM DanceRoster R1, DanceRoster R2
WHERE R2.gender <> R1.gender

AND ABS (Rl . age - R2. age) =
(SELECT MIN (ABS (R1 . age - R3. age))
FROM DanceRoster R3
WHERE R3.gender <> R1.gender)

c) Write a relational-algebra expression that returns the names of the oldest female and
the oldest male dancers. You may assume a relation-renaming operation in the algebra
if you need it. Note that more than two dancers' names could be returned if there are
ties in ages. For our sample data the query should return:

name

Susan
Edward
Fred

Answer:
DR2(name2,gender2,age2) := DanceRoster;
R1 := DR2 W

gender2=gender A N D age2>age DanceRoster ;
R2 : = nname (Rl) ;
ANS : = nname (~anceRoster) - R2 ;

d) Using SQL2, SQL3, or something similar, write a constraint asserting that Dance-
Roster contains the same number of males as females.

Answer:
CREATE ASSERTION Balanced CHECK(

n (SELECT COUNT(*) FROM DanceRoster WHERE gender = 'male') =

\...A

(SELECT COUNT(*) FROM DanceRoster WHERE gender = 'female'))

e) Suppose that the database supports two modes of constraint-checking: FOR EACH
ROW (constraint is checked after each tuple-level database modification that could (?
potentially violate the constraint), and FOR EACH STATEMENT (constraint is checked
at the end of every SQL database modification statement that could potentially violate
the constraint). State which option should be selected for your constraint in part (d)
and very briefly explain why.

Answer: We must use "for each statement," because otherwise, any insertion of data
would cause a violation as soon as the first tuple was inserted, even if the statement
maintained the malelfemale balance after all the insertions were performed. Likewise, a
deletion of several tuples would cause a violation upon deletion of the first tuple, even if
balance was restored at the end.

