
Section Faculty Page
Table of Contents 1
Artificial Intelligence [Unknown] 2
Artificial Intelligence solutions 6
Automata and Formal Languages [Unknown] 9
Automata and Formal Languages solutions 12
Compilers [Unknown] 15
Compilers solutions 20
Computer Architecture [Unknown] 22
Logic solutions 28
Numerical Analysis [Unknown] 29
Numerical Analysis solutions 31
Software Systems [Unknown] 34
Software Systems solutions 36

1

Computer Science Department
Stanford University

Comprehensive Examination in Automata and Formal Languages
Autumn 1998

October 26, 1998

READ THE FIRST!

1. You should write your answers for this part of the Comprehensive Examination in
BLUE BOOKS. There are F ~ Q G problems in the exam. Be sure to write your MAGIC

NUMBER on the cover of every blue book that you use.

2. The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. The exam takes 1 hour.

3. This exam is OPEN BOOK. You may use notes, articles, or books-but no help from
other sentient agents such as other humans or robots.

4. Show your work, since PARTIAL CREDIT will be given for incomplete answers.

Comprehensive Exam: fl Autumn 1998-99

Automata and Formal Languages (60 points)

Problem 1. [lo points]
Consider the following DFAs (deterministic finite-state automata) called ,VII and over
the alphabet { O , l) . Let L1 be the language of ibil and L2 be the language of ibi2.

a). [4 points]
Give succinct descriptions of the languages L1 and L2.
b). [6 points]
Consider the machine h.l given below that is the cross-product of the two machines ikfl

and M2. (Running the machine 1M on an input string corresponds to running iWl and
together in parallel on that input string. Each state in the machine 1l4 corresponds to a pair
of states, one each from hi1 and M2. Each transition in ikf is the combination of the state
transitions from ikfl and 1bl2.)

For each of the following languages, specify the choice of final states in A. that would
cause M to accept that language.
(i). Ll U L2
(ii). L1 - La (the set of strings in L1 that do not belong to L2)
(iii).

0 Problem 2. [lo points]
In the following, R denotes a regular language, and C, C' denote context-free languages.
Classify each of the following statements as being T R U E or FALSE. You will receive 2 points
for each correct answer and -1 point for each incorrect answer.
a). There must exist a deterministic push-down automata that accepts R.
b). There must exist a dete.rministic Turing machine that accepts C 17 C'.
c). R n C must be regular.
d). C U C' cannot be regular.
e). must be recursive.

Problem 3. [20 points]
Classify each of the following languages as being in one of the following classes of languages:
empty, finite, regular, contezt-free, recursi~ve, recursively enumerable. You must give the
smallest class that contains every possible language fitting the following definitions. For
example, the language of a DFA 1kI could be e.mpty or finite, and must always be co.ntezt-
free, but the smallest class that is appropriate regular.
a). L = {aiPckd' (i = j or k = 1).
b). L = {aiPckd' I i = j and k = I).
c). L = {ai&ckd' I i = j and j = k).
c). L = {aiPckd' I i = 1 and j = k).
e). L = {ai&ckd' (i x j x k x l is divisible by 5).
f) . The language of a push-down automaton with only one state.
g). The set of strings encoding all push-down automata that accept non-recursive languages.
h). The language of a PDA with two stacks.
i) . The complement of a language in NP.
j). The intersection of a recursive language and a recursively enumerable language.

Problem 4. [lo points]
Suppose we have languages A and B such that A has a polynomial-time reduction to B.
Classify each of the following statements as being T R U E or FALSE. You will receive 2 points
for each correct answer and -1 point for each incorrect answer.

If B is recursively enumerable, then A must be recursively enumerable.
). If A is recursive, then B must be recursivef: 0 If B is NP-hard, then A must be NP-hard.

d). If A is NP-complete, then B must be NP-complete.
e). It is possible that A is solvable in polynomial time but B is not even in NP.

Problem 5. [lo points]
For any language L define its reversal as follows:

L~ = {wR I w E L).

Recall that for a string w = wl wz . . . wk, we define its reversal as wR = w, . . . w2wl.

C, Suppose that L is an NP-complete language. Then, is LR also an NP-complete language?
For full credit, you must sketch a proof for your answer.

Comprehensive Exam: Autumn 1998-99 fl .>

Automata and Formal Languages (60 points)
Sample Solutions

Problem 1. [lo points]
Consider the following DFAs (deterministic fini te-state automata) called 1\11 and 1V2 over
the alphabet {O,l). Let L1 be the language of M I and L2 be the language of iW2.

a). [4 points]
Give succinct descriptions of the languages L1 and L2.
b) . [6 points]
Consider the machine M given below that is the cross-product of the two machines iWl
and Mz. (Running the machine M on an input string corresponds to running MI and 1\f2

together in parallel on that input string. Each state in the machine M corresponds to a pair
of states, one each from 1111 and 1%. Each transition in 1\/1 is the combination of the state
transitions from l\fl and 1W2.)

For each of the following languages, specify the choice of final states in M that would
cause i1/1 to accept that language.
(i). Ll u L2 . .

(ii). Ll - L2 (the set of strings in L1 that do not belong to L2)
(iii).

Solution:
'-1

The language L1 contains all strings of even length from {O,l}'. The language L2 contains
all strings of length divisible by 3.
(9 . For L1 U L2, make (q ~ , p o) , (q0,p2), (q1,po) and (q0,pl) the final states.
(ii). For L1 - L2, make (qo,p2) and (qo ,p l) the final states.
(iii). For z, make (q l , p l) , (q l , po), and (q l , p2) the final states.

Problem 2. [lo points]
In the following, R denotes a regular language, and C, C' denote context-free languages.
Classify each of the following statements as being TRUE or FALSE. You will receive 2 points
for each correct ans.wer and - 1 point for each incorrect answer.
a). There must exist a dete,ministic push-down automata that accepts R.
b). There must exist a deterministic Turing machine that accepts C n C'.
c). R fl C must be regular.
d). C U C' cannot be regular.
e). must be recursive.

Solution:
a). TRUE
b). TRUE
c) . FALSE
d). FALSE
e). TRUE

Problem 3. 120 points]
Classify each of the following languages as being in one of the following classes of languages:
empty, finite, regular, context-free, recursive, recursively enumerable. You must give the
smallest class that contains every possible language fitting the following definitions. For
example, the language of a DFA M could be empty or finite, and must always be context-
free, but the smallest class that is appropriate regular.
a). L = {a iPckdl I i = j or k = 1).
b). L = {a iPckdl I i = j and k = 1).
c). L = {aiPckd' I i = j and j = k) .
c). L = {aiPckd' I i = 1 and j = k) .
e). L = {aigckdl I i x j x k x 1 is divisible by 5).
f). The language of a push-down automaton with only one state.
g). The set of strings encoding all push-down automata that accept non-recursive languages.
h). The language of a PDA with two stacks.

- -

i). The complement of a language in NP.
j). The intersection of a recursive language and a recursively enumerable language.

Solution:
a). context-free

0 b). context-free
c) . recursive

d) . context-free
e) . regular
f) . context-free
g) empty
h) . recursively enumerable
i) . recursive
j) . recursively enumerable

Problem 4. [lo points]
Suppose we have languages A and B such that A has a polynomial-time reduction to B.
classify each of the following statements as being TRUE or FALSE. You will receive 2 points
for each correct answer and -1 point for each incorrect answer.
a) . If B is recursively enumerable, then A must be recursively enumerable.
b). If A is recursive, then B must be recursive. .
c). If B is NP-hard, then A must be NP-hard.
d). If A is NP-complete, then B must be NP-complete.
e). It is possible that A is solvable in polynomial time but B is not even in NP.

Solution:
a). TRUE
b). FALSE
c). FALSE
d). FALSE
e). TRUE

Problem 5. [lo points]
For any language L define its reversal as follows:

L~ = {wR I W E L).

Recall that for a string w = wl w2 . . . wk, we define its reversal as wR = .w,, . . . w2wl.
Suppose that L is an NP-complete language. Then, is L~ also an NP-complete language?

For full credit, you must sketch a proof for your answer.

Solution: Indeed, LR is NP-complete. To prove this, we need to show two things: that
LR is in NP and that it is NP-hard. First observe that a Turing machine given an input w
can reverse its input and obtain wR in polynomial time. Thus, given any Turing machine
for a language L we can construct another one for the language LR with only a polynomial
overhead in the running time. Since L must be in NP, there exists a nondeterministic Turing
machine LLI for L that runs in polynomial time. If 1M is modified to first reverse its input
(from w to WR), then it accepts exactly the language L~ in polynomial time, implying that
LR is also in NP. To show NP-hardness, we give a reduction from the NP-hard language L to
L ~ . The reduction merely takes a string w and outputs wR; clearly, this is a polynomial-time
reduction. The correctness of the reduEtion follows from the definition: w E L if and only if
wR E LR.

Computer Science Department
Stanford University

Comprehensive Examination in Compilers
1998

October 29, 1998

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. Be sure you have all the pages of this exam. There are 4 pages.

The exam takes 1 hour.

3. This exam is CLOSED BOOK.

4. Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches
are incorrect. On a truelfalse question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

Compilers

This exam is closed book.

1. (20 points) For each of the statements below, circle "true" or "false", as appropriate. Unless
there is an explicit statement to the contrary, assume that all context-free grammars have no
useless symbols. Some of these questions are intentionally tricky!

t ! f s Every LR(2) grammar is also LR(1).

due) false If a CFG with no useless symbols has a single nonterminal with both left-
\--.- recursive and right-recursive productions, the CFG is ambiguous.

:;uk false If a CFG is ambiguous, its grammar cannot be LR(1).
,-=

true false If a CFG has productions A + a and A + P and both a and P are nullable
J(i.e., derive the empty string), the CFG is ambiguous.

false Some unambiguous context-frd grammars can have more than one derivation
for the same input string.

€3 false The language of a CFG is empty if and only if the sentence symbol is useless.

t e false For every CFG with useless symbols, there is an equivalent CFG with no
useless symbols, if the language of the original CFG is non-empty.

true false An LR(1) and SLR(1) parser for the same CFG will detect errors at exactly
the same point in the parse for every input string.

true false An SLR(1) parser never does more reduce actions than shift actions during f?
a parse.

true false Every context-free language has at least one CFG with no left recursion.

2. (7 points) Suppose that Lex or Flex were given regular expressions for different lexemes
in the following order: a, ab*a, a+c, ca, and ba. Draw vertical lines to show the sequence
of lexemes that would be recognized in the following input string using the longest lexeme
rule as used in Lex or Flex (this rule says that, if several prefixes of the input string match
patterns, the longest such prefix should be returned by the lexer).

3. (15 points) The following CFG is ambiguous:

(a) The SLR(1) parse table below shows the multiple entries that would result. Write down
the entries (row, column, and entry) that should be deleted to obtain a parser which
gives @ the highest precedence, gives # the next highest precedence and makes it left-
assocaatave and gives % the lowest precedence and makes it right-associative.

ACTION GOT0
state $ id % # @ E

0 s6 1
, 1 acc s2 s4 s7
' 2 s6 3

3 r l s2, r l s4, r l s7, r l
4 s6 5
5 r2 s2, 1-2 s4, 1-2 s7, r2
6 r4 1-4 1-4 1-4
7 r3 r3 r3 r3

(b) Show the sequence of stacks and inputs that occurs when parsing the string "id#id%id@"
using the resulting parse table. Your answer should be in the format shown below: each
line should have the stack of states written horizontally with the top to the right, and
the remaining input to be parsed.

Stack (top at right) Input

0 id # id % id

4. (8 points) This question and the next are based on the stack machine instruction set
summarized on the last page of the exam.

The following is a fragment of a context-free grammar for expressions in a programming
language. Add actions in C for each production in the grammar to generate code that
computes the value of the expression (just print the instructions to the standard output using
printf) . When this code is executed, it should have the effect of pushing the expression value
on top of the stack without disturbing any of the old stack entries.

Code is generated by other parts of the grammar that aren't shown. In particular, the
nonterminals varname and l i t e r a l have productions, that, when reduced, generate code
that leaves the value of the variable on the top of the stack. You may assume that all
variables and values are one word long.

expr : expr '+' estpr pr;n+g ("add ")',

expr ' - ' expr 1 P r;*i$(''5ab 'O i 1
expr '*' expr ,.+n+$ ("fiu\ '7 j
varname

' (' expr ' 1 '

literal

5. (10 points) The following is a fragment of a grammar for "while" loops. A while loop
first tests whether its expression is true; if so, the loop executes its statement and repeats;
otherwise, the loop exits. Rearrange the grammar and add reduce actions to generate code
for the loop, using the stack machine instruction set described below.

You should assume that the grammar is being parsed using a LALR parser such as YACC.
However, YACC has a useful feature where you can insert actions between symbols in the
right-hand side of a production. Do not do this feature. We want you to add actions only at
the ends of the productions, to be executed when the production is reduced by the parser.
This requires rewriting the production into an equivalent form, so you can perform each action
at the right time during the parse.

Assume that expressions are compiled as in the previous question. Assume you have a function
newlabel which returns a unique integer. For example, to generate a new label and define
it, you might say: printf ("L%d: ", newlabel0 1 .
Hints: The answer requires a small amount of code. You will need to create labels. Note that
labels can appear as a target of a jump before the label is defined (the assembler for the stack
machine deals with keeping track of the values of labels). Be careful about nested loops!

whileloop : WHILE expr DO s t m t ;

Stack Machine Summary

Here is a summary of the relevant part of a stack machine instruction set, for use in the previous
problems. All stack entries and addresses are one word long. This is assembly language, which is
translated into binary machine code by an assembler.

Labels

Labels are of the form "L123" (the letter L followed by a number). A label is defined when it
appears followed by a colon before another label or instruction, in which case it is bound to the
address of the next instruction. A label may be used in any context where a number can appear,
and it is interpreted as the address to which it is bound. A label can be used in the text before it
is defined (this is useful for forward jumps).

Instructions

add pop two entries, push their sum

sub subtract the top element from the second-from-top element.

mu1 pop two entries, push their product

jump <label> unconditional jump to constant address

branch-true <op> Pop top of stack; if it is non-zero, jump to the location described by the operand.

O branchAalse cop> Same, but jump if stack value is 0.

Compilers Solutions

1. (20 points)

false. Every LR(2) LANGUAGE is also LR(l), but it may be necessary to modify an
LR(2) CFG to get an equivalent LR(1) CFG.

true. This is easily proved by sketching parse trees.

true.

true. If a leftmost derivation has A + a E, that can be replaced by A + /3 E to
yield another left most derivation for the same terminal string.

true. An unambiguous grammar cannot have more than one leftnzost derivation for the
same string, but there may be several derivations for the string, at most one of which is
leftmost.

true.

true. Just delete the useless symbols and all productions that include them.

false. The SLR(1) parser may perform more reductions before it "notices" that the next
input doesn't work.

false. Suppose you have a CFG with a lot of e productions.

true. There is an algorithm for eliminating all left recursion in the text.

2. (7 points) a b a lac lab a la a Ib a la

3. (15 points)

(a) row 3, col %, delete entry r l
row 3, col #, delete entry s4
row 3, col @, delete entry s7
row 5, col %, delete entry 92
row 5, col #, delete entry r2
row 5, col @, delete entry s7

I-
% id $

0 1 2 6

0 1 2 5

accept

Stack

0

0 6

0 1

0 1 4

0 1 4 6

0 1 4 5

Input

id # id % id $

id % id $

id % id $

id % id $

% id $

% id $

0 4. (8 points)

expr : expr '+' expr C printf("addN); 3

I expr '- ' expr C printf ("sub") ; 3

I expr I*' expr C printf ("mul") ; 3

I varname (/* do nothing */ 3

I ' (' expr ') ' (/* do nothing */ 3

I literal C /* do nothing */

5. (10 points)

Here is what YACC would do if you included actions before and after the expression:

whileloop : WHILE M1 expr M4 DO stmt
I.
printf("L%d: ", $4); /* end label */
printf ("jump L%d\nU , $2) ;

3

M1 : /* empty */ (printf ("LXd: I t , $$=newlabel 0 ; 1

M2 : /* empty */ C printf ("br-f alse L%d\nn , $$=newlabel()) ; 3

The grammar can also be broken up in different ways.

It is important to keep the labels on a stack, so that labels for inner loops do not over-write
labels for enclosing loops. In the solution above, we are using the value stack that YACC
maintains (where it keeps $2, etc.).

Computer Science Department
Stanford University

Comprehensive Examination in Computer Architecture
Autumn 1998

October 28 1998

READ THIS FIRST!

1. All work to be done on the test itself! Fill in the blanks, NO BLUE BOOKS. There
are 5 pages.

2. This exam is CLOSED BOOK. You may not use notes, articles, or books.

3. Show your work, since PARTIAL CREDIT d be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches
are incorrect. On a truelfalse question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

Computer Science Comprehensive Examination
Computer Architecture

[60 points]

Please do all of your work on these sheets. Do not do your work in a blue book.

Problem 1: Short Answer [2 points each, 12 points total] (Keep your
answer to one line or less)
A. Suppose machine A has a 8K-byte direct mapped cache, machine B has a 16K-byte two-way set

associative cache, and machine C has an 8K-byte two-way set associative cache. All caches have 16-
byte lines. If the three machines process identical sequences of memory references, which of the
following statements are true? Circle all that apply. C

's cache will always contain every line in A's cache
cache will always contain every line in A's cache
cache will always contain every line in C's cache
cache will always contain every line in Cys cache

B. Which instruction set makes it easier to express instruction-level parallelism: a stack instruction set or
eral-regme&struct~on set

I

C. A machine with register renaming is able to reorder instructions without regard to what type of
dependencies? Circle all that apply.

dependencies gbw
dependencies VJ

WJ h-k
(d) Control dependencies b r

D. Adding an int e to a system changes which of the following memory parameters?
Circle all t h e the direction of change with an up armw or a down arrow.

latency
emory bandwidth

Memory address space
l(d) Memory reliability

E. A RISC machine with a 5-stage pipeline uses the adder in the execution stage to perform branch
address calculations. If we add a special branch address adder to the register read stage, what
instructions will benefit? By how much?

*aWdi+b~d LrevJres, J~~~~

d a + p R - - - t 04 F F D % P Q
OW q0t.e I-i-?

F. Which will have better throughput, a machine that uses scoreboarding (with no bypassing) tb avoid
read-after-write hazards, or a machine that uses bypassing to avoid these hazards?

Autumn 1998 Page 1

;3b
Architecture Comp

Problem 2: Cache Architecture [3 points each, 15 points total]
A. Suppose you have an 8Kbyte 4-way associative cache with a block size of 64 bytes. What size tag

array (directory) is needed for this cache? Assume that addresses are 32-bits in length.

5
213 2y L (O C ~ & 3 1;-s 27 . a t blt-s

F
-

.a r -- 1 6 ; 1 -- -16--5
B. Show an address word divided into the fields used to access the cache of part A. Label and dimension

each field. b\ of&

C. Show a directory entry for the cache of part A. Label and dimension each field.

D. Sketch a block diagram of the cache of part A. Show the tag array, data array, all multiplexers or tri-
state drivers, and all comparators. Show, label, and dimension (with bit widths) all address and data

E. Suppose you have two caches with a capacity of 4 4-byte blocks. One is direct mapped and the other
is two-way set associative. Give an address sequence (byte addresses) for which the set associative
cache outperforms the direct-mapped cache. Give a second sequence for which the direct-mapped
cache outperforms the set associative cache.

Autumn 1998 Page 2 p o o
w Architecture Comp

\ 1_3

Problem 3: Pipeline Microarchitecture 110 points]
Suppose you have a CPU with a 6 stage pipeline containing the following stages:

F: instruction fetch
D: instruction decode
R: register read (and branch address calculation)
A: execute ALU operations (including determination of branch condition)
M: memory load and store
W: write back to register file

The register file cannot read a value that is being written in the same cycle. The machine has bypass paths
from the output of the A, M, and W stages to both inputs of the ALU.

A. [2 points] What is the latency of an unconditional branch on this machine? Assume no prediction or
speculation is employed. (Note: Latency is defined as the number of cycles from when this instruction
is executed until the next instruction is executed. E.g., the latency of a simple instruction with no
dependencies is one.)

L . RAMW
, .F

'----.-
B. [2 points] What is the latency of a conditional branch? Again assume no speculation about branch

direction or distance.

C. [3 points] The instruction register at each pipeline stage is 'denoted by IF&,,,; for example IRA is the
instruction register at the ALU stage. The source and destination fields of the IR are denoted IR.A
(source I), 1R.B (source 2), and 1R.C (the destination). For example, the destination field of the IR at
the M stage is 1Rhl.C. Each IR alsa has a valid field 1R.V that indicates when it contains a valid
instruction. Using this notation, write a logical expression that indicates when the bypass path fiom
the output of the M stage to the second (B) input of the A stage should be activated.

. -
D. [3 points] Consider the following instruction s q u e m

1 3

Brz
Load
Add

r5, FUBAR
r2 <- [rl + 4 1
r4 <- r2 + r3

Assuming that the branch is not taken and that n@structions are fetched speculativ*, how many -- . -
cycles does this take to execute from the time the IP points to the branch kstruction until the result of
the add is written to the register file? Explain your answer. You may want to draw a timeline.

Autumn 1998 Page 3 Architecture Comp

Problem 4: Virtual Memory [I2 points]
Consider a hypothetical machine with one-byte virtual addresses consisting of a &bit page field and a

4-bit offset field. The page field of a virtual address references a page table stored in page 0 of physical
memory. Each entry of the page table is either the index of the page frame in physical memory that
contains the page in question or the constant FF if the page is not in physical memory. At a given point in
time the page 0 of physical memory has the following entries (all numbers are in hexadecimal):

A. [3 points] What physical address, if any, corresponds to virtual address 84 (hex)?

67
B. [3 points] What virtual address, if any, corresponds to physical address 47 (hex)?

C. [3 points] Is virtual address 47 (hex) in main memory?

D. [3 points] Is the mapping from virtual addresses to physical addresses one-to-one? Explain your
answer?

Autumn 1998

33
Page 4 Architecture Comp

Problem 5: Performance [I1 points]
Consider an unpipelined microprocessor that executes all instructions in a single 40ns clock cycle. The

cycle is broken down into the following steps

~ l O n s Instruction fetch (read instruction referenced by IP)
5ns Register read (fetch .source operands of instruction)
5ns ALU operations (execute ALU instructions, resolve

-7 branches 1

- 1511s Memory (read or write data memory)
5ns Register write (write result to register file)

Suppose this machine executes an instruction mix that is 50% ALU operations, 20% loads, 10% stores,
and 20% branches. Further assume that all instructions depend on the immediately preceding instruction
and that the register file cannot be read and written simultaneously. - - - -- - - - - .-

- 7
A. [3 points] What is the performance of this baseline machine in MIPS?

f ----
I-@---/ -F-/-57) 4 s e y -.- ---- - -- !.?EL- ID ~ O X D - .,,Ie+a5 - fi~ps;' -- -X

B. [4 points] Suppose you are able to insert a single pipeline stage into this microprocessor without
adding bypass paths or branch prediction. Where would you insert the pipeline stage (between which
two of the above steps) to get the maximum performance benefit? What is the performance of the
machine with this two-stage pipeline? Assume that adding a pipeline register adds no delay to the
numbers above. 30 3 0

- rJ7fliF,~-~~ . . - >ew ~ r s i e

.- -
~ t o . ~ C h + 6 6

C. [4 points] Suppose you are able to insert an arbitrary number of pipeline stages into this
microprocessor. How many stages would you insert? and where would you insert these stages
(between which steps above) to get the maximum performance? What is the performance of this
configuration?

Autumn 1998

34
Page 5 Architecture Comp

SOLUTIONS
Comprehensive Examination in LOGIC

October 1998

Computer Science Department
Stanford University

Comprehensive Examination in Numerical Analysis
Autumn 1998

October 30, 1998

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. This exam is CLOSED BOOK. You may not' use notes, articles, or books.

3. Show your work, since PARTIAL CREDIT be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches
are incorrect. On a truelfalse question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

Comprehensive Exam: Numerical Analysis (30 points). Fall 1998

(Solution I)
(16 points). Rootfinding for Nonlinear Equations
(a) Define the order of convergence of a sequence {xnJn 2 0) to a point a. When is the convergence
said to be linear? If the convergence is linear, define the rate of linear convergence.

(b) Given a continuous function f : IR + IR and two points a, b : f (a) f (6) < 0 define the bisection
method, in algorithmic form, to find a root a in [a, b] satisfying f (a) = 0.

Let cl = [a + 6112 and let {cnln 2 1) be the sequence of approximations to a generated by the
method. Show that, for some root a,

What can be said about the rate of linear convergence in this case?

(c) Given a twice continuously differentiable function f : IR + R define Newton iteration to
generate a sequence {xnln 2 0) to locate a root a satisfying f (a) = 0.

By Taylor expansion show that

for some& E IR. Assume that IfN(x)l 5 2 and (ff(x)l 2 1 for allrealx. Prove that, if 1x0-a1 < 1,
then xn converges to a with order 2.

(Problem 11)
(14 points). Iterative Solution of Linear Equations

This question concerns the solution of systems of linear equations in the form

where A is an m x m matrix and x and b are vectors of length m.

(a) Describe the simplest form of iterative inaprovement (also known as residual correction or iter-
ative refinement) to solve the linear system. Describe, and briefly explain, the effect of machine
precision on this algorithm.

(b) Given a matrix C which approximates the inverse of A, consider the following general residual
correction method for the solution of the linear system:

State the precise condition under which this iteration converges; prove your assertion.

(c) Write the matrix A in the form A = L + D + U where L and U are (strictly) lower and upper
triangular respectively and D is diagonal, define the Jacobi and Gauss-Siedel iterations for the
solution of the linear system.

I

Solutions t o Comprehensive: Numerical Analysis (30 points). Fall 1998

(Solution I)
(16 points). Rootfinding for Nonlinear Equations

(a) Define the order of convergence of a sequence {xnln > 0) to a point a. When is the convergence
said to be linear? If the convergence is linear, define the rate of linear convergence.

SOLUTION: A sequence of iterates {xnln > 0) is said to converge with order p > 1 to a point a if

for some C > 0. The convergence is linear if p = 1. The rate of convergence is then given by C.

(b) Given a continuous function f : IR -+ IR and two points a, b : f (a) f (b) < 0 define the bisection
method, in algorithmic form, to find a root a in [a, b] satisfying f (a) = 0.

Let cl = [a + 6112 and let {%In > 1) be the sequence of approximations to a generated by the
method. Show that, for some root a,

What can be said about the rate of linear convergence in this case?

SOLUTION: The bisection algorithm can be written as Bisection(a, b, f (a), e) :
(1) Define c := (a + b)/2;

l (2) If (b - c) I e then accept the root c;
(3) If f (b) f (c) I 0 then a := c; otherwise let b := c;

l (4) Return to (1).
Let Ln be the length of the interval in which a root a is guaranteed to lie at the nth step of the

algorithm. Clearly L1 = I b - a1 since cl is the mid-point of [a, b] and we know that the root a lies
in [a, b]. By construction it is clear that

Thus

Since c, is the midpoint of In and since a is guaranteed to lie in In we deduce that

The order of convergence ia hence linear in this case and the rate is at least 3.
(c) Given a twice continuously differentiable function f : R -+ IR define Newton iteration to
generate a sequence {xnln > 0) to locate a root a satisfying f (a) = 0.

By Taylor expansion show that

\< 1 for some tn E R. Assume that I f "(x)l 5 2 and I ft(z)l 3 1 for all real z. prove that, if Iso - a1 < 1,
then xn converges to a with order 2.

SOLUTION: The Newton algorithm is:

Now
(a - xnI2

t t (B) , o = f (a) = f (~ n + a - ~ n) = f (~ n) + (a - z n) f 1 (x n) +

for some real tn. Solving for a gives

Hence, substracting from the Newton iteration scheme we get

Now, we have that

for all real x. Thus
Ixn+l- <- Ixn - aI2.

Thus
Ixn - 5 Ixo - a12".

Quadratic convergence of xn to a follows if Ixo - a1 < 1.

(Problem 11)
(14 points). Iterative Solution of Linear Equations

This question concerns the solution of systems of linear equations in the form

where A is an m x m matrix and x and b are vectors of length m.

(a) Describe the simplest form of itemtive improvement (also known as residual correction or iter-
ative refinement) to solve the linear system. Describe, and briefly explain, the effect of machine
precision on this algorithm.

SOLUTION:
Given an approximation xm to the solution x of the linear system, the residual rm is defined by

Iterative improvement generates the sequence of approximations

where d is the computed solution of
Aem = rm.

e
For such an iteration it is important to obtain accurate values for rm relative to the precision

used in the remainder of the calculation. The reason is simply that otherwise the errors in im may
be comporable with the errors in the original calculation.

(b) Given a matrix C which approximates the inverse of A, consider the following general residual
correction method for the solution of the linear system:

State the precise condition under which this iteration converges; prove your assertion.

SOLUTION: The iteration converges provided that the spectral radius of the matrix I - CA is less
than one. To prove this note that the iteration gives

Hence the error am = xm - x satisfies

It is well-known that a necessary and sdc ien t condition for the existence of a matrix norm in
which B is less then 1 is for the spectral radius of B to be less than one. Using this norm gives

for some E (0,l). Iterating thia gives

and hence proves convergence.

(c) Write the matrix A in the form A = L + D + U where L and U are (strictly) lower and upper
triangular respectively and D is diagonal, define the Jacobi and Gauss-Siedel iterations for the
solution of the linear system.

SOLUTION: We have
(L + D + U)x = b.

The Jacobi iteration is to generate xm according to

The Gauss-Siedel iteration is to generate xm according to

(L + D) X ~ + ' = b - Usm.

Computer Science Department

Stanford University

Comprehensive Examination in Software Systems
Fall 1998

READ THIS FTRST! ! !

1. You should write your answers for this part of the Comprehensive Examination in a BLUE
BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book that you
use.

2. The number of POINTS for each problem indicates how elaborate an answer is expected. For
example, a question worth 6 points or less doesn't deserve an extremely detailed answer, even
if you feel you could expound at length upon it. Short, bulleted answers are encouraged.

3. The total number of points is 30, although you have one hour in which to take the exam.

4. This exam is CLOSED BOOK. You may NOT use notes, books, computers, other people, etc.

5. Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the idea
doesn't work out. You can also get credit for realizing that certain approaches are incorrect.

6. If you are convinced you need to make an assumption to answer a question, state your
assumptions(s) as well as your answer.

7. Be sure to provide justification for your answers.

Fall 1998 Comprehensive Exam: Software Systems (30 points total)

1. (10 points) In UNIX the file directory structure (including hard and soft links) may be an
acyclic graph. In MS-DOS it may only be a tree structure.

a. Compared to a tree structure. what are the advantages and disadvantages of the acyclic
graph directory structure?

b. Why is a general graph directory structure not usually used for a file system?

2. (10 points) This question concerns page replacement.

a. When is a process considered to be thrashing?

b. What is the difference between global and local page replacement algorithms?

c. What are the advantages and disadvantages of the two types of page replacement
algorithms?

3. (10 points) Let's assume that a new type of main memory is invented that is cheap and usually
very fast -- almost as fast as hardware registers. The only problem is that 0.1% of the time you
access this memory, it is actually very slow (as slow as a disk access). The problem is that you
have no way of predicting ahead of time when these slow accesses will occur.

a. Would you incorporate this new type of memory into your system? Why or why not?

b. Assuming you must incorporate it, would you make any changes to the virtual memory
system or the file system or the network software or the process scheduler or the structure
of the kernel?

Fall 1998 Comprehensive Exam: Software Systems (30 points total)

SOLUTlONS

1. (10 points) In UNIX the file directory structure (including hard and soft links) may be an
acyclic graph. In MS-DOS it may only be a tree structure.

a. Compared to a tree structure, what are the advantages and disadvantages of the acyclic
graph directory structure?

Advantages: Files may be shared by more than one name in the directory structure
(using links, they may have more than one name). This has many uses. For
instance, one can maintain compatibility between old and new software that
expects certain files to be in different locations.

Disadvantages: Traversing up the directory structure is more of a problem, since a file
may have more than one parent if you include links.

A file may have more than one pathname, so when traversing the directory
structure, you cannot rely on a new pathname indicating that it points to a file you
have not already traversed.

Hard links require reference counting, which adds complexity.

Software links may be broken (left pointing at nothing).

You must have some way to ensure that cycles are not created in the directory
structure. (UNIX does not allow users to create hard links to directories.)

b. Why is a general graph directory structure not usually used for a file system?

The problem is cycles in the graph structure. If you remove certain elements, you may
leave some files and directories "stranded" since their reference count will be zero,
but there is no pathname by which to refer to them. In this case you must traverse
the whole structure and do garbage collection.

2. (10 points) This question concerns page replacement.

a. When is a process considered to be thrashing?

A process is considered to be thrashing when it is spending more time paging than
executing.

b. What is the difference between global and local page replacement algorithms?

In global replacement, the replaced page may come from the address space of a
process other than the one that took the page fault. In local replacement, the page
fault may only grab a page frame belonging to another page in the same process's
address space.

c. What are the advantages and disadvantages of the two types of page replacement
algorithms?

With global replacement, overall system performance may be better, since a process
that needs more pages can take page frames from a dormant process that isn't

really using them. Thus the physical memory is more efficiently utilized. The
disadvantage is that the paging behavior of one process can affect the
performance of another process.

With local replacement, a badly faulting process cannot kick out the pages of another
process, so its paging behavior will not hurt other processes. The disadvantage is
that physical memory may not be as efficiently utilized.

3. (10 points) Let's assume that a new type of main memory is invented that is cheap and usually
very fast -- almost as fast as hardware registers. The only problem is that 0.1% of the time you
access this memory, it is actually very slow (as slow as a disk access). The problem is that you
have no way of predicting ahead of time when these slow accesses will occur.

a. Would you incorporate this new type of memory into your system? Why or why not?

1'11 accept both answers here, if they include a convincing explanation. This new type of
memory is tricky, though, since it causes more variability in system performance
and behavior.

b. Assuming you must incorporate it, would you make any changes to the virtual memory
system or the file system or the network software or the process scheduler or the structure
of the kernel?

Assuming the hardware will allow it, you will want to be able to put processes asleep if
they access memory and A turns out to be one of the very slow accesses. (You
could have a timeout whose expiration indicates it's a slow access.) This would
affect the VM system and process scheduler. The network software may also be
affected, since touching network buffers may trigger a slow access in the middle
of, say, sending an ack. This means that timeouts in protocols may need to be
extended. The kernel may need to be multi-threaded to allow some threads to
sleep when they have triggered a slow access. File system cache hits no longer
necessarily indicate that the file block sought'will be speedily accessible. Thus you
may need to allow processes accessing the file cache to sleep even on a cache
hit. You may even want to make blocWpage sizes smaller so that there are fewer
word accesses that could trigger a slow access if only a portion of the blocWpage
is actually needed. (Overall, though, for the same amount of data actually copied
or accessed, you'll suffer the same number of slow references.)

