Stanford University Computer Science Department
1998 Comprehensive Exam in Databases

SOLUTION

¢ The exam is open book and notes.

® There are 6 problems on the exam, with a varying number of points for each problem
and subproblem for a tota] of 60 points. You should look through the entire exam

before getting started, in order to plan your strategy. You have 60 minutes to complete
the exam.

¢ Please write your solutions in the spaces provided on the exam. Make sure your
solutions are neat and clearly marked.

o Simplicity and clarity of solutions will count. You may get as few as 0 points for
a problem if your solution is far more complicated than necessary, or if we cannot
understand your solution.

Provide your magic number here:

Problem | Points Maximum
1 10

2 6

3 16

4 8

5 10

6 10

Total 60

O 1. (Database Design — 10 points)

Supposc we have a rclation R(A, B,C, D) with functional dependencies AD — C,
B— A and C = D.

(a) List all minimal keys of R.
Answer: BC, BD

(b) Which of the given functional dependencies violate Boyce-Codd Normal Form?
Answer: all three

O (c) Which of the given functional dependencies violate Third Normal Form?
Answer: B> A

47

2. (Multivalued and Functional Dependencies - 6 points)
Suppose we have a relation R(A, B,C) and the following instance of R.

A|B| C

40 | 500
50 | 400
20 | 200
30 { 300
40 | 400
50 | 500

S R G)

(a) Given this instance, specify two nontrivial multivalued dependencies that cannot
hold for R.

Answer: A = B, 4 — C.

(b) Can you deduce from this instance any nontrivial functional or multivalued

dependencies that are always guaranteed to hold for R?
Answer: No

48

O

3. (Basic Relational Algebra, SQL, Constraints — 16 points)

Suppose we have the following schema:

Depts(dept#, deptName) // dept# is key
Courses(course#, dept#, units) // <coursei#,dept#> is key

Relation Depts associates a department number (e.g., 230) with a department name
(e.g., “CS™). Relation Courses contains course information, e.g., the tuple (145, 230, 3)
states that course 145 of department 230 is taken for 3 units.

(a)

(b)

(c)

Specify a relational algebra expression that finds all courses (identified by course#
and dept#) in a department named “CS” with fewer than 3 units.
Answer: Hcourse#,dept#(adeptﬂm=“CS" A units<3 (Depts > Courses))

Write the previous query in standard SQL2.
Answer:

SELECT course#, d.dept#
FROM Depts d, Courses ¢
WHERE d.dept# = c.dept# AND deptName = ‘CS’ AND units < 3

Suppose there is a referential integrity ‘constraint from Courses.dept# to
Depts.dept#. Specify a SQL2 assertion that ensures that this referential in-
tegrity constraint is not violated. Your answer should be of the form:

CREATE ASSERTION (name) CHECK ((condition)).

Answer:

CREATE ASSERTION RefInt CHECK (
NOT EXISTS (
SELECT =*
FROM Courses
WHERE dept# NOT IN (SELECT dept# FROM Depts)))

(d) Suppose we happen to know that the following relational algebra assertion always
holds:

H‘:le!’t # (Dept S) g Hdept # (Udeptllane=“CS" (Depts))

Also assume that the referential integrity constraint from Courses.dept# to
Depts.dept# specified in part (c) holds. Can you simplify your relational algebra
query from part (a) based on these two constraints?

Answer: Hcm.,,#,d,,,#(amt,<3(Courses))

L3

50

O

4. (Advanced SQL, Relational Algebra — 8 points)

Consider again the schema from Problem 3:

Depts(dept#, deptName) // dept# is key
Courses(course#, dept#, units) // <course#,dept#> is key
(a) Write a query in SQL2 that finds the number of courses offered by each depart-

(b)

ment. The schema of the query result should be (dept#, num-of-courses).
Do not assume that any of the constraints from Problem 3 hold.
Answer:

(SELECT dept#, COUNT(*)
FROM Courses
GROUP BY dept#)
UNION
(SELECT dept#, O
FROM Depts
WHERE dept# NOT IN (SELECT dept# FROM Courses))

Can you write the same query in relational algebra? If so, specify the relational
algebra expression.
Answer: No

5!

5. (Transactions - 10 points)

Continue with the schema from Problems 3 and 4:

Depts(dept#, deptName) // dept# is key
Courses(course#, dept#, units) // <course#,dept#> is key

The following code segment is intended to ensure that any insertion transaction to
Courses docs not violate the referential integrity constraint from Courses.dept#
to Depts.dept# upon completion. Complete the code segment by filling out the

underlined portions. Do not write code to implement the comments.

1) EXEC SQL BEGIN DECLARE SECTION;

2) int courseN, deptN, nUnits; /* variables for Courses attributes */
3) int checkCount; /* variable for checking constraint */

3) EXEC SQL END DECLARE SECTION;

4) void insertToCourses() {

5) /* C code to prompt the user to enter valuesg for new Courses tuple.
6) The values entered for the tuple attributes are stored in
7) courseN, deptN, and nUnits. */ '

8) EXEC SQL SELECT ______________________ INTO :checkCount

9) FROM Depts

10) WHERE Depts.dept# = :deptN;

11) S S G) {

12) EXEC SQL INSERT INTO Courses.

13) VALUES (:courseN, :deptN, :nUnits);

4)

15) 1}

16) else

O

18) }

Answer:

Line 8) COUNT(dept#)

Line 11) checkCount > 0
Line 14) EXEC SQL COMMIT;
Line 17) EXEC SQL ROLLBACK;

O

O

6. (Entity-Relationship Design — 10 points)

The following Entity-Relationship diagram has entity sets Professor, Student, and
Course. Relationship Teaches relates professors to the course(s) they teach, and re-
lationship Takes relates students to the course(s) they take, including the number of
units enrolled. (Note that this design is not related to the Depts-Courses relational
schema used in Problems 3-5.)

Teaches —

Professor ———

Student Takes

(a)

Based on the above diagram, can a professor teach more than one course?
Answer: No

Can a student take more than one course?
Answer: Yes

Specify a relational schema corresponding to the above diagram. Your schema
should be based on a straightforward mapping in which there is one relation for
each entity set and one for each relationship. Underline a minimal key for each
relation.

Answer:

Professor(pName, office)

Student(sName, addr)

Course(course#, room)

Teaches(pName, course#)

Takes(sName, course#, units),

Suppose we combine Teaches and Takes into a single ternary relationship. Iden-
tify a real-world situation that can be modeled by the two binary relationships
Teaches and Takes, but that cannot be modeled by the ternary relationship.
Answer: A student may take a course that no professor is teaching. Alterna-
tively, a professor may teach a course that no student is taking.

85

