
Stanford University Computer Science Department
1998 Comprehensive Exam in Databases

The exam is opcn hook and notes.

There are 6 problems on the exam, with a varying number of points for each problem
and subproblem for a total of 60 points. You should look through the entire exam
before getting started, in order to plan your strategy. You have 60 minutes to complete
the exam.

Please write your solutions in the spaces provided on the exam. Make sure your
solutions are ncat and clearly marked.

Simplicity and clarzty of sok~tions will count. You may get as few as 0 points for
a problem if your soltition is far more complicated than necessary, or if we cannot
untlcrstnntl your solntion.

I Problem 1 Points I M~ximum 1

I I I

I Total
I

I I 60

0 1. (Database Design - 10 points)

Supposc wc havc a rclation R(A, B, C, D) with functional dcpcndcncics AD C,
U + A, and C + L).

(a) List all minimal keys of R.
Answer: BC, BD

(b) Which of the given functional dependencies violate Boyce-Codd Normal Form?
Answer: all three

(c) Which of the given functional dependencies violate Third Normal Form?
Answer: B + A

2. (Multivalued and Functional Dependencies - 6 points)

Suppose we have a relation R(A, 8, C) and the following instance of R.

(a) Given this instance, specify two nontrivial rnultivalued dependencies that cannot
hold for R.
Answer: A u B, A u C.

(b) Can you deduce from this instance any nontrivial functional or rnultivalued (7 --
dependencies that are always guaranteed to hold for R?
Answer: No

n ~2
3. (Basic Relational Algebra, SQL, Constraints - 16 points)

Suppose we have the following schema:

Depts (dept#, deptName) // dept# is key
Courses (course#, dept# , units) // <course#, dept#> is key

Relation Depts associates a department number (e.g., 230) with a department name
(e.g., "CS"). Relation Courses contains course information, e.g., the tuple (145, 230, 3)
states that course 145 of department 230 is taken for 3 units.

(a) Specify a relational algebra expression that finds all courses (identified by course#
and dept#) in a department named "CS" with fewer than 3 units.
Answer: n c m r s e # , d e p t # (~ d e P t ~ - = u ~ ~ ~ ~ n m i t e a (Depts w Courses))

(b) Write the previous query in standard SQL2.
Answer:

SELECT course#, d.dept#
FROM Depts d, Courses c
WHERE d.dept# = c.dept# AND deptName = 'CS' AND units < 3

(c) Suppose there is a referential integrity 'constraint from Courses .dept# to
Depts . dept#. Specify a SQL2 assertion that ensures that this referential in-
tegrity constraint is not violated. Your answer should be of the form:
CREATE ASSERTION (name) CHECK ((condition)).
Answer:

CREATE ASSERTION RefInt CHECK (
NOT EXISTS (

SELECT *
FROM Courses
WHERE dept# NOT IN (SELECT dept# FROM Depts)))

(d) Suppose we happen to know that the following relational algebra assertion always
holds:

&

ndept # (Depts) 5 ndept # (a d e p t ~ a m e = ~ ~ ~ ~ ~ (Depts))
Also assume that the referential integrity constraint from Courses .dept# to
Depts . dept t specified in part (c) holds. Can you simplify your relational algebra
query from part (a) based on these two constraints?
Answer: n e n u r # , ~ e p t # (owit. <3 (Couses))

4. (Advanced SQL, Relational Algebra - 8 points)

Consider again the schema from Problem 3:

Depts (dept#, deptName) // dept# is key
Courses(course#, dept#, units) // <course#,dept#> is key

. (a) Write a query in SQL2 that finds the number of courses offered by each depart-
rncnt. 'l'hc schcrna of the query result should be (deptt , num-of -courses).
Do not assume that any of the constraints from Problem 3 hold.
Answer:

(SELECT dept#, COUNT(*)
FROM Courses
GROUP BY deptt)

UNION
(SELECT dept#, 0
FROM Depts
WHERE dept# NOT IN (SELECT dept# FROM Courses))

(b) Can you write the same query in relational algebra? If so, specify the relational
algcbra csprcssion.
Answer: No

5. (Transactions - 10 points)

Continue with the schema from Problems 3 and 4:

Depts (deptt, deptName) // dept# is key
Courses(course#, dept#, units) // <course#,dept#> is key

The following code segment 'is intended to ensure that any insertion transaction to
Courses docs [lot violate the referential ir~tegrity constraint from Courses . dept #
to Depts.dept# upon completion. Complete the code segment by filling out the
underlined portions. Do not write code to implement the comments.

1) EXEC SQL BEGIN DECLARE SECTION;
2) int courseN, deptN, nunits; /* variables for Courses attributes */
3) int checkcount; I* variable for checking constraint */
3) EXEC SQL END DECLARE SECTION;

4) void insertToCourses 0 C
5 1 /* C code to prompt the user to enter values for new Courses tuple.
6) The values entered for the tuple attributes are stored in
7) courseN, deptN, and nunits. */

8) EXEC SQL SELECT ,--,,-,,----,,-,,-, --- INTO : checkcount
9) FROM Depts
10) WHERE Depts.dept# = :deptN;

11) if (---------------------- 1 C
12) EXEC SQL INSERT INTO Courses.
13) VALUES (:courseN, :deptN, :nunits);

16) else
17)
18) I

Answer:

Line 8) COUNT(dept#)
Line 11) checkcount > 0
Line 14) EXEC SQL COMMIT;
Line 17) EXEC SQL ROLLBACK;

6. (Entity-Relationship Design - 10 points)

The following Entity-Relationship diagram has entity sets Professor, Student, and
Course. Relationship Teaches relates professors to the course(s) they teach, and re-
lationship Takes relates students to the course(~) they take, including the number of
units enrolled. (Note that this design is not related to the Depts-Courses relational
schema used in Problems 3-5.)

(a) Based on the above diagram, can a professor teach more than one course?
Answer: No

Can a student take more than one course?
Answer: Yes

(b) Specify a relational schema corresponding to the above diagram. Your schema
should be based on a straightforward mapping in which there is one relation for
each entity set and one for each relationship. Underline a minimal key for each
relation.
Answer:
Professor(pName, ofice)
Student(sName, addr)
C O U ~ S ~ (~ O U ~ S ~ # , rook)
Teaches(pName, course#)
Takes(~Name, course#, units),

(c) Suppose we combine Teaches and Takes into a single ternary relationship. Iden-
tify a real-world situation that can be modeled by the two binary relationships
Teaches and Takes, but that cannot be modeled by the ternary relationship.
Answer: A student may take a course that no professor is teaching. Alterna-
tively, a professor may teach a course that no student is taking.

