# Comprehensive Exam:

Autumn 1998-99

## Automata and Formal Languages (60 points) Sample Solutions

## Problem 1. [10 points]

Consider the following DFAs (deterministic finite-state automata) called  $M_1$  and  $M_2$  over the alphabet  $\{0,1\}$ . Let  $L_1$  be the language of  $M_1$  and  $L_2$  be the language of  $M_2$ .



a). [4 points]

Give succinct descriptions of the languages  $L_1$  and  $L_2$ .

**b**). [6 points]

Consider the machine M given below that is the cross-product of the two machines  $M_1$ and  $M_2$ . (Running the machine M on an input string corresponds to running  $M_1$  and  $M_2$ together in parallel on that input string. Each state in the machine M corresponds to a pair of states, one each from  $M_1$  and  $M_2$ . Each transition in M is the combination of the state transitions from  $M_1$  and  $M_2$ .)



For each of the following languages, specify the choice of final states in M that would cause M to accept that language. (i).  $L_1 \cup L_2$ (ii).  $L_1 - L_2$  (the set of strings in  $L_1$  that do not belong to  $L_2$ )

#### Solution:

The language  $L_1$  contains all strings of even length from  $\{0,1\}^*$ . The language  $L_2$  contains all strings of length divisible by 3.

(i). For  $L_1 \cup L_2$ , make  $(q_0, p_0)$ ,  $(q_0, p_2)$ ,  $(q_1, p_0)$  and  $(q_0, p_1)$  the final states.

(ii). For  $L_1 - L_2$ , make  $(q_0, p_2)$  and  $(q_0, p_1)$  the final states.

(iii). For  $\overline{L_1}$ , make  $(q_1, p_1)$ ,  $(q_1, p_0)$ , and  $(q_1, p_2)$  the final states.

### Problem 2. [10 points]

In the following, R denotes a regular language, and C, C' denote context-free languages. Classify each of the following statements as being TRUE or FALSE. You will receive 2 points for each correct answer and -1 point for each incorrect answer.

a). There must exist a *deterministic* push-down automata that accepts R.

b). There must exist a deterministic Turing machine that accepts  $C \cap C'$ .

c).  $R \cap C$  must be regular.

d).  $C \cup C'$  cannot be regular.

e).  $\overline{C}$  must be recursive.

Solution:

- a). TRUE
- b). TRUE
- c). FALSE
- d). FALSE
- e). TRUE

#### **Problem 3.** [20 points]

Classify each of the following languages as being in one of the following classes of languages: empty, finite, regular, context-free, recursive, recursively enumerable. You must give the smallest class that contains every possible language fitting the following definitions. For example, the language of a DFA M could be empty or finite, and must always be contextfree, but the smallest class that is appropriate regular.

a).  $L = \{a^i b^j c^k d^l \mid i = j \text{ or } k = l\}.$ 

b). 
$$L = \{a^i b^j c^k d^l \mid i = j \text{ and } k = l\}$$
.

c). 
$$L = \{a^i b^j c^k d^l \mid i = j \text{ and } j = k\}.$$

c). 
$$L = \{a^i b^j c^k d^l \mid i = l \text{ and } j = k\}.$$

e).  $L = \{a^i b^j c^k d^l \mid i \times j \times k \times l \text{ is divisible by 5}\}.$ 

f). The language of a push-down automaton with only one state.

g). The set of strings encoding all push-down automata that accept non-recursive languages.

- h). The language of a PDA with two stacks.
- i). The complement of a language in NP.

j). The intersection of a recursive language and a recursively enumerable language.

#### Solution:

- a). context-free
- b). context-free

c). recursive

19

### d). context-free

- e). regular
- f). context-free
- g). empty
- h). recursively enumerable
- i). recursive
- j). recursively enumerable

## Problem 4. [10 points]

Suppose we have languages A and B such that A has a polynomial-time reduction to B. Classify each of the following statements as being TRUE or FALSE. You will receive 2 points for each correct answer and -1 point for each incorrect answer.

a). If B is recursively enumerable, then A must be recursively enumerable.

- b). If A is recursive, then B must be recursive.
- c). If B is NP-hard, then A must be NP-hard.
- d). If A is NP-complete, then B must be NP-complete.
- e). It is possible that A is solvable in polynomial time but B is not even in NP. Solution:
- a). TRUE
- b). FALSE
- c). FALSE
- d). FALSE
- e). TRUE

### Problem 5. [10 points]

For any language L define its reversal as follows:

$$L^R = \{ w^R \mid w \in L \}.$$

Recall that for a string  $w = w_1 w_2 \dots w_k$ , we define its reversal as  $w^R = w_n \dots w_2 w_1$ .

Suppose that L is an NP-complete language. Then, is  $L^R$  also an NP-complete language? For full credit, you must sketch a proof for your answer.

Solution: Indeed,  $L^R$  is NP-complete. To prove this, we need to show two things: that  $L^{R}$  is in NP and that it is NP-hard. First observe that a Turing machine given an input wcan reverse its input and obtain  $w^R$  in polynomial time. Thus, given any Turing machine for a language L we can construct another one for the language  $L^R$  with only a polynomial overhead in the running time. Since L must be in NP, there exists a nondeterministic Turing machine M for L that runs in polynomial time. If M is modified to first reverse its input (from w to  $W^R$ ), then it accepts exactly the language  $L^R$  in polynomial time, implying that  $L^{R}$  is also in NP. To show NP-hardness, we give a reduction from the NP-hard language L to  $L^R$ . The reduction merely takes a string w and outputs  $w^R$ ; clearly, this is a polynomial-time reduction. The correctness of the reduction follows from the definition:  $w \in L$  if and only if