
Computer Science Department 
Stanford University 

Comprehensive Examination in Compilers 
1998 

October 29, 1998 

READ THIS FIRST! 

1. You should write your answers for this part of the Comprehensive Examination in a 
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book 
that you use. 

2. Be sure you have all the pages of this exam. There are 4 pages. 

The exam takes 1 hour. 

3. This exam is CLOSED BOOK. 

4. Show your work, since PARTIAL CREDIT will be given for incomplete answers. For 
example, you can get credit for making a reasonable start on a problem even if the 
idea doesn't work out; you can also get credit for realizing that certain approaches 
are incorrect. On a truelfalse question, you might get partial credit for explaining 
why you think something is true when it is actually false. But no partial credit can 
be given if you write nothing. 



Compilers 

This exam is closed book. 

1. (20 points) For each of the statements below, circle "true" or "false", as appropriate. Unless 
there is an explicit statement to the contrary, assume that all context-free grammars have no 
useless symbols. Some of these questions are intentionally tricky! 

t !  f s  Every LR(2) grammar is also LR(1). 

due) false If a CFG with no useless symbols has a single nonterminal with both left- 
\--.- recursive and right-recursive productions, the CFG is ambiguous. 

:;uk false If a CFG is ambiguous, its grammar cannot be LR(1). 
,-= 

true false If a CFG has productions A + a and A + P and both a and P are nullable 
J(i.e., derive the empty string), the CFG is ambiguous. 

false Some unambiguous context-frd grammars can have more than one derivation 
for the same input string. 

€3 false The language of a CFG is empty if and only if the sentence symbol is useless. 

t e  false For every CFG with useless symbols, there is an equivalent CFG with no 
useless symbols, if the language of the original CFG is non-empty. 

true false An LR(1) and SLR(1) parser for the same CFG will detect errors at  exactly 
the same point in the parse for every input string. 

true false An SLR(1) parser never does more reduce actions than shift actions during f? 
a parse. 

true false Every context-free language has at least one CFG with no left recursion. 

2. (7 points) Suppose that Lex or Flex were given regular expressions for different lexemes 
in the following order: a, ab*a, a+c, ca, and ba. Draw vertical lines to show the sequence 
of lexemes that would be recognized in the following input string using the longest lexeme 
rule as used in Lex or Flex (this rule says that, if several prefixes of the input string match 
patterns, the longest such prefix should be returned by the lexer). 



3. (15 points) The following CFG is ambiguous: 

(a) The SLR(1) parse table below shows the multiple entries that would result. Write down 
the entries (row, column, and entry) that should be deleted to obtain a parser which 
gives @ the highest precedence, gives # the next highest precedence and makes it left- 
assocaatave and gives % the lowest precedence and makes it right-associative. 

ACTION GOT0 
state $ id % # @ E 

0 s6 1 
, 1 acc s2 s4 s7 
' 2 s6 3 

3 r l  s2, r l  s4, r l  s7, r l  
4 s6 5 
5 r2 s2, 1-2 s4, 1-2 s7, r2 
6 r4 1-4 1-4 1-4 
7 r3 r3 r3 r3 

(b) Show the sequence of stacks and inputs that occurs when parsing the string "id#id%id@" 
using the resulting parse table. Your answer should be in the format shown below: each 
line should have the stack of states written horizontally with the top to the right, and 
the remaining input to be parsed. 

Stack (top at right) Input 

0 id # id % id 



4. (8 points) This question and the next are based on the stack machine instruction set 
summarized on the last page of the exam. 

The following is a fragment of a context-free grammar for expressions in a programming 
language. Add actions in C for each production in the grammar to generate code that 
computes the value of the expression (just print the instructions to the standard output using 
printf) .  When this code is executed, it should have the effect of pushing the expression value 
on top of the stack without disturbing any of the old stack entries. 

Code is  generated by other parts of the grammar that aren't shown. In particular, the 
nonterminals varname and l i t e r a l  have productions, that, when reduced, generate code 
that leaves the value of the variable on the top of the stack. You may assume that all 
variables and values are one word long. 

expr : expr '+' estpr pr;n+g ("add ")', 

expr ' - ' expr 1 P r;*i$(''5ab 'O i 1 
expr '*' expr ,.+n+$ ("fiu\ '7 j 
varname 

' ( '  expr ' 1 '  

literal 

5. (10 points) The following is a fragment of a grammar for "while" loops. A while loop 
first tests whether its expression is true; if so, the loop executes its statement and repeats; 
otherwise, the loop exits. Rearrange the grammar and add reduce actions to generate code 
for the loop, using the stack machine instruction set described below. 

You should assume that the grammar is being parsed using a LALR parser such as YACC. 
However, YACC has a useful feature where you can insert actions between symbols in the 
right-hand side of a production. Do not do this feature. We want you to add actions only at 
the ends of the productions, to be executed when the production is reduced by the parser. 
This requires rewriting the production into an equivalent form, so you can perform each action 
at the right time during the parse. 

Assume that expressions are compiled as in the previous question. Assume you have a function 
newlabel which returns a unique integer. For example, to generate a new label and define 
it, you might say: printf  ("L%d: ", newlabel0 1 .  
Hints: The answer requires a small amount of code. You will need to create labels. Note that 
labels can appear as a target of a jump before the label is defined (the assembler for the stack 
machine deals with keeping track of the values of labels). Be careful about nested loops! 

whileloop : WHILE expr DO s t m t  ; 



Stack Machine Summary 

Here is a summary of the relevant part of a stack machine instruction set, for use in the previous 
problems. All stack entries and addresses are one word long. This is assembly language, which is 
translated into binary machine code by an assembler. 

Labels 

Labels are of the form "L123" (the letter L followed by a number). A label is defined when it 
appears followed by a colon before another label or instruction, in which case it is bound to the 
address of the next instruction. A label may be used in any context where a number can appear, 
and it is interpreted as the address to which it is bound. A label can be used in the text before it 
is defined (this is useful for forward jumps). 

Instructions 

add pop two entries, push their sum 

sub subtract the top element from the second-from-top element. 

mu1 pop two entries, push their product 

jump <label> unconditional jump to constant address 

branch-true <op> Pop top of stack; if it is non-zero, jump to the location described by the operand. 

O branchAalse cop> Same, but jump if stack value is 0. 




