
Compilers Solutions

1. (20 points)

false. Every LR(2) LANGUAGE is also LR(l), but it may be necessary to modify an
LR(2) CFG to get an equivalent LR(1) CFG.

true. This is easily proved by sketching parse trees.

true.

true. If a leftmost derivation has A + a E, that can be replaced by A + /3 E to
yield another left most derivation for the same terminal string.

true. An unambiguous grammar cannot have more than one leftnzost derivation for the
same string, but there may be several derivations for the string, at most one of which is
leftmost.

true.

true. Just delete the useless symbols and all productions that include them.

false. The SLR(1) parser may perform more reductions before it "notices" that the next
input doesn't work.

false. Suppose you have a CFG with a lot of e productions.

true. There is an algorithm for eliminating all left recursion in the text.

2. (7 points) a b a lac lab a la a Ib a la

3. (15 points)

(a) row 3, col %, delete entry r l
row 3, col #, delete entry s4
row 3, col @, delete entry s7
row 5, col %, delete entry 92
row 5, col #, delete entry r2
row 5, col @, delete entry s7

I-
% id $

0 1 2 6

0 1 2 5

accept

Stack

0

0 6

0 1

0 1 4

0 1 4 6

0 1 4 5

Input

id # id % id $

id % id $

id % id $

id % id $

% id $

% id $

0 4. (8 points)

expr : expr '+' expr C printf("addN); 3

I expr '- ' expr C printf ("sub") ; 3

I expr I*' expr C printf ("mul") ; 3

I varname (/* do nothing */ 3

I ' (' expr ') ' (/* do nothing */ 3

I literal C /* do nothing */

5. (10 points)

Here is what YACC would do if you included actions before and after the expression:

whileloop : WHILE M1 expr M4 DO stmt
I.
printf("L%d: ", $4); /* end label */
printf ("jump L%d\nU , $2) ;

3

M1 : /* empty */ (printf ("LXd: I t , $$=newlabel 0 ; 1

M2 : /* empty */ C printf ("br-f alse L%d\nn , $$=newlabel()) ; 3

The grammar can also be broken up in different ways.

It is important to keep the labels on a stack, so that labels for inner loops do not over-write
labels for enclosing loops. In the solution above, we are using the value stack that YACC
maintains (where it keeps $2, etc.).

