
0 Computer Science Department 

Stanford University 

a Comprehensive Examination in Software Systems 
Autumn 1996 

READ THIS FIRST! ! ! 

1. You should write your answers for this part of the Comprehensive Examination in a BLUE 
BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book that you 
use. 

2. The number of POINTS for each problem indicates how elaborate an answer is expected. For 
example, an essay-type question worth 6 points or less doesn't deserve an extremely detailed 
answer, even if you feel you could expound at length upon it. 

3. The total number of points is 60, and the exam takes 60 minutes. This "coincidence" can help 
you plan your time. 

n 4. This exam is CLOSED BOOK. You may NOT use notes, books, computers, other people, etc. 
>\> 

5. Show your work, since PARTIAL CREDIT will be given for incomplete answers. For 
example, you can get credit for making a reasonable start on a problem even if the idea 
doesn't work out. You can also get credit for realizing that certain approaches are incorrect. 

6. If you are convinced you need to make an assumption to answer a question, state your 
assumptions(s) as well as your answer. 

7. Be sure to provide justification for your answers. 



1996 Comprehensive Exam: Software Systems (60 points total) 

1. (1 5 points) Solaris 2 uses "adaptive mutexes" to protect access to every critical data item. An 
adaptive mutex starts as a standard semaphore implemented as a spinlock. If the data are 
locked (already in use), the adaptive mutex does one of two things. If the lock is held by a 
thread that is currently running, the thread waits for the lock to become available. If the thread 
holding the lock is not currently in the run state, the thread blocks, going to sleep until it is 
awakened by the lock being released. 

a. Why are both options (spinning and sleeping) provided when the data are already locked, 
and why does the decision depend on whether the thread holding the lock is running? 

b. For what sort of application workload is this feature beneficial? 

c. On a uniprocessor system, how do adaptive mutexes behave? 

2. (10 points) Page replacement in a virtual memory system can be either global or local. In 
global page replacement a page fault is satisfied by selecting a page from the set of all 
physical pages. In local page replacement, the page fault can only be satisfied from the 
faulting process' own set of physical pages. The number of physical pages allocated to a 
process in the local scheme does not change over its lifetime. 

a. What are the potential disadvantages of each scheme? 

b. Why is global replacement more commonly found in existing systems'? 

3. (10 points) Monitors are a popular mechanism for ensuring synchronization of processes that 
access system data structures and resources. However, monitors do not guard against 
starvation. 

a. Briefly describe why monitors do not guard against starvation. 

b. Given this problem, why is it practical to use monitors in real-world systems? (How is the 
starvation problem handled in practice?) 

4. (20 points) File cache update policies can be categorized by the amount of delay they allow 
before file updates must be written to disk. Compare the following policies based on 
reliability, process latencies, and disk throughput. For each policy, also describe a workload 
that would benefit from the specific policy. 

*Write-through immediately (no delayed writes) 

*Write-through on close (write modified dati to disk when the file is closed. The close 
operation doesn't return until the write finishes. If a process with open files exits, the sys- 
tem calls the close operation on these files before the exit completes.) 

*Delay for 30 seconds (write out modified data from the cache when it's 30 seconds old) 

*Delay for 5 minutes (write out modified data from the cache when it's 5 minutes old) 

5. (5 points) In UNIX, there are separate system calls to start a new process in the image of its 
running parent (fork) and to load into a process's address space fresh code and data from an 
executable that it should use for execution (exec). Why doesn't UMX use just one system 
call that both creates a new process and loads the desired image (code and data)? 




