
Section Faculty Page
Table of Contents 1
Artificial Intelligence [Unknown] 2
Artificial Intelligence solutions 6
Automata and Formal Languages [Unknown] 8
Automata and Formal Languages solutions 10
Compilers [Unknown] 12
Compilers solutions 14
Computer Architecture [Unknown] 17
Databases solutions 25
Numerical Analysis [Unknown] 26
Software Systems [Unknown] 27
Software Systems solutions 29

1

Computer Science Department
Stanford University

Comprehensive Examination in Automat a and Formal Languages
Autumn 1996

October 14, 1996

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in
BLUE BOOKS. There are three problems in the exam. Be sure to write your MAGIC

NUMBER on the cover of every blue book that you use.

2. The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. The exam takes 30 minutes.

3. This exam is OPEN BOOK. You may use notes, articles, or books-but no help from
other sentient agents such as other humans or robots.

4. Show your work, since PARTIAL CREDIT be given for incomplete answers.

'Automata and Formal Languages (30 points)-Autumn 1996

1. 1101 Give context-free grammars generating the following languages
over the alphabet {a, 6). (a) {ai w ai+j+kbk 1 i, j, k > 0); (b) All strings with
an equal number of a's and b's.

2. 1101 Consider the following decision problem. Given a regular ex-
pression over the alphabet {a, b), decide whether the language it denotes
contains a string of palindromes. (A string of palindromes is a member of
P* where P is the set of all palindromes.) State whether this problem is
decidable, and briefly sketch the reason.

3. 1101 For each of the following sets, state whether it is in NP, coNP, or
neither. (If it is both you need not say so, in which case either NP or coNP
is a correct answer.) Give a one-sentence reason for each.

(a) The set of threecolorable undirected planar graphs. (A three-
coloring of a graph is an assignment of at most three distinct colors to
the vertices of the graph such that every edge has different colors at
each end.)

(b) The set of finite sets of signed binary integers having no subset
adding to zero.

(c) (The knapsack problem). The set of pairs (w, c) where w is
a finite list of positive binary numbers (items available to go in the
knapsack) and c is an integer (the size of the knapsack) such that some
subset of the elements of w sum to c (a perfect packing of the knapsack).

(d) The set of pairs (i,$) of nonnegative integers written in binary
such that p(i, j) holds but cp(if, j$ does not hold for 0 < if < i, where
the predicate cp is computable in time polynomial in the length of its
inputs written in binary.

(e) The set of vdid computations of a universal Turing machine.

Comprehensive Exam Solutions
Automata and Formal Languages (30 points)

Autumn 1996

1. [lo] Give context-free grammars generating the following languages
over the alphabet {a, 6). (a) {aibJa'+jckbk I i, j , k > 0);

(b) All strings with an equal number of a's and 6's.

2. [lo] Consider the following decision problem. Given a regular ex-
pression over the alphabet {a, b), decide whether the language it denotes
contains a string of palindromes. (A string of palindromes is a member of
P* where P is the set of a,ll palindromes.) State whether this problem is
decidable, and briefly sketch the reason.

Decidable. The problem is equivalent to whether the given. regular ex-
pression has a nonempty intersection with the set of str*gs of palindromes,

a context-free language. Given a regular language and a context-free lan-
guage, their intersection is context-free and one may obtain a context-free
grammar generating it and then test emptiness of the language so generated.

3. [lo] For each of the following sets, state whether it is in NP, coNP, or
neither. (If it is both you need not say so, in which case either NP or coNP
is a correct answer.) Give a.one-sentence reason for each.

(a) The set of three-colorable undirected planar graphs. (A three-coloring
of a graph is an assignment of at most three distinct colors to the vertices
of the graph such that every edge has different colors at each end.)

In NP, with membership witnessed'by a planar embedding and a 3-
coloring, checkable in linear time.

(b) The set of finite sets of signed binary integers having no subset adding
to zero.

In coNP, with nonmembership witnessed by a subset adding to zero,
checkable in linear time.

(c) (The knapsack problem). The set of pairs (w, c) where w is a finite
list of positive binary numbers (items available to go in the knapsack) and c
is an integer (the size of the knapsack) such that some subset of the elements
of w sum to c (a perfect packing of the knapsack).

In NP, with membership witnessed by a subset of w summing to c,
checkable in linear time.

(d) The set of pairs (i, j) of nonnegative integers written in binary such
that cp(i, j) holds but cp(if, j) does not hold for 0 5 if < i, where the predicate
cp is computable in time polynomial in the length of its inputs written in
binary.

In coNP, with nonmembership witnessed by i,i', j such that if < i and
at least one of p(i, j) or cp(if, j) is false.

(e) The set of valid computations of a universal Turing machine.

In P, hence in both NP and coNP.

Computer Science Department
St anford University

Comprehensive Examination in Compilers
Autumn 1996

October 17, 1996

READ TIIIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. Be sure you have all the pages of this exam. There is 1 page.

The exam takes 30 minutes.

3. This exam is OPEN BOOK. You may use notes, articles, or books-but no help from
other sentient agents such as other humans or robots.

4. Show your work, since PARTIAL CREDIT w f l be given for incomplete .answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches
are incorrect. On a truelfalse question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

CS Comprehensive Exam: Compilers (30 points)

Question 1 (9 points)

Consider the following block of 3-address code:

Assume that the value of each of a through f is needed following the block. Give six transformations
that may be performed on this block to improve the running time on a typical machine. Indicate
the change made at each of your six steps (it is sufficient to give the rewritten line only, rather than
the whole block) and give the name of the tmnsfomation or brief justification. You may apply
more than one transformation t o a single statement, but use separate steps t o do so.

Question 2 (11 points)

For the grammar

1) S + US
2) S b

a) [8 points] Construct the LR(0) sets of items (sometimes called SLR items; they involve no
lookahead) and show their transition diagram.

0
b) [3 points] Give the LR(0) parsing table and indicate any conflicts that arise.

Question 3 (10 points)

Suppose we wish t o build a lexical analyzer that recognizes the following three tokens:

1) 01
2) 010
3) 0'10'

Assuming the LEX priority rules (longest token recognized, and in case of ties, pick the token listed
first), draw a deterministic finite automaton that recognizes the above three tokens. Indicate, for
each state, which, if any, token is recognized. Also, since a token may not be recognized until
further symbols are read by the automaton, indicate how far back the recognized token ends. For
example, attaching (2,3) to an accepting s ta te means that the second token, 010, was recognized,
and the last 3 symbols read by the automaton are not part of the token.

Solutions to 1996 CS Comprehensive Exam: Compilers

Question 1 (9 points)

Consider the following block of 3-address code:

Assume that the value of each of a through f is needed following the block. Give six transformations
that may be performed on this block to improve the running time on a typical machine. Indicate
the change made a t each of your six steps (it is sufficient to give the rewritten line only, rather than
the whole block) and give the name of the tmnsformation or brief justification. You may apply
more than one transformation to a single statement, but use separate steps to do so.

Solution

1. Replace line (3) by e : = c+b [copy propagation, using line (2)].

2. Replace line (3) by e : = b+c [use of commutative law].

3. Replace line (3) by e := a [common subexpression elimination, using line (I)].

4. Replace line (4) by f : = a-a [copy propagation, using line (3)].

5. Replace line (4) by f := 0 [algebraic simplification].

6. Eliminate line (2) [dead code elimination].

Question 2 (11 points)

For the grammar

a) [8 points] Construct the LR(0) sets of items (sometimes called SLR items; they involve no
lookahead) and show their transition diagram.

b) [3 points] Give the LR(0) parsing table and indicate any conflicts that arise.

Solution (a)

Solution (b)

State

0
1
2
3
4

Action
a b $

shift 2 shift 3
accept

shift 2 shift 3
reduce S + b

reduce S + US

Goto
S
1

4

0 Question 3 (10 points)

Suppose we wish to build a lexical analyzer that recognizes the following three tokens:

Assuming the LEX priority rules (longest token recognized, and in case of ties, pick the token listed
first), draw a deterministic finite automaton that recognizes the above three tokens. Indicate, for
each state, which, if any, token is recognized. Also, since a token may not be recognized until
further symbols are read by the automaton, indicate how far back the recognized token ends. For
example, attaching (2,3) to an accepting state means that the second token, 010, was recognized,
and the last 3 symbols read by the automaton are not part of the token.

Solution

Computer Science Department
Stanford University

Comprehensive Examination in Computer Architecture
Autumn 1996

October 16, 1996

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. This exam is CLOSED BOOK. You may not use notes, articles, or books.

3. Show your work, since PARTIAL CREDIT &dl be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches
are incorrect. On a truelfalse question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

.Computer Science Comprehensive Examination
Computer Architecture

(60 points)

Question 1' (15 points)

Early next year, Intel will add an extension to the x86 ISA aimed at improving performance of multimedia
oriented programs on its Pentiumm processor chips. These instructions, collectively called the MMX
extensions, can optimize execution of ALU instructions that operate on 8 / 16 / 32 bit signed or unsigned
integers by "packing" several of these smaller integers into special 64-bit registers and then performing the
same ALU operations on these integers in parallel with a single instruction.

We are interested in determining the effectiveness of this extension. A suite of benchmark programs has
been selected with the following instruction counts and CPIs on a non-pipelined machine:

I # of I CPI

Integer ALU
(&bit)
(16-bit)
(32-bit)
(64-bit)

Lwd
Store
B m h e s

After examination of the &bit and 16-bit integer ALU operations, we discover the following:

average number of
usefur packed integers
/ MMX instruction

'

% can be optimized

The CPI's of the MMX instructions are the same as the original ALU instructions. There is also an
overhead of loading the integers into the special CPU registers. For this benchmark, an extra 5000 move
instructions (CPI = 3) are required to perform the necessary register-register moves.

a (5) What is the performance improvement on the benchmark with the ISA extension if the clock cycle
does not change on the machine with extensions?

ALU
80%

ALU
7Wo

ALU
20%

b. (5) If the benchmark is currently running on a 5OMHz machine with MMX extensions, what would the
new clock frequency on the original machine have to be in order to have the same performance as the
machine with the ISA extension?

c. (5) What changes to the machine and issues must be considered to accommodate these new
instructions? Based on these issues and changes associated with adding these instructions, do you think
this is a good idea? Why?

Question 2 (25 points)

On the next page is a basic single-cycle MIPS processor datapath with some missing information:

32-bit byte-aligned PC
3 instruction formats:

I Os f I 5b 5b 16b I Rd I Rs I Irnm

Os f I Rd
Sb

I "6:: I 26b I Address

Rs I Rt I f unc t
Sb 5b 6b

The ALU can perform unsigned or signed addition or subtraction operations

Show the necessary inputs into the multiplexers and the bit widths of the missing wires necessary to
support the following list of instructions in the diagram. Also show the correct setting of the multiplexers
and control wires for each instruction in the table given on the following page:

ADD1 - Add signed Rs and Imm and place result in Rd
SUBU - Subtract unsigned Rt from Rs and place result in Rd
BEQAL - Branch to PC + Imm (Imm is a signed offset in number of instructions) and place the

address of the next instruction after the current PC in R3 1 if Rs and Rt are equal, othemise
go to the next sequential PC.

J - Jump to the word address in the instruction concatenated with the upper bits of the next
instruction after the current PC.

LW - Load the contents of the address at Rs + Imm (Imm is a signed offset in bytes) into Rd
SW - Store Rd to the address at Rs + Imm (Imm is a signed offset in bytes)

Question 3 (20 points)

Shown below are the contents the TLB, page table and cache of the MicroMachines MiniCPV, a
miniaturized version'of the modem CPU. The MiniCPW has the following characteristics:

16-bit virhal address. 15-bit physical address, both byte aligned
?ZB

4 entries, direct mapped
5% miss rate
No translation penalty for a hit
Each miss requires an average of 30- (cycles) to process

Page table
16 entries total to map all possible pages in a process' virtual memory space
Page table accesses are accounted for in the TLB miss time

Cache
Write back, write allocate
There is a infinitely large write buffer to main memory which can hide all write latencies to

main memory
50% of the lines are dirty
16 entry, 2-way set associative
Each cache line is 32 bytes long

I 10% miss rate
No penalty on a hit
A lookup in the cache returns a word (4 bytes)

Mainmemory
It first takes 80ns to lookup a random address in main memory. Once this location is found,

the bus can transfer data at SOMbytes/s.
Sequential memory access latencies are hidden by the bus transfer time.
An entire cache line must be transferred before a miss in the cache can be satisfied.

a (5) Show the tag, index and offset bits necessary to access the TLB with a virtual address and to access
a word in the cache with a physical address:

VIRTUAL
I 1

PHYSICAL

1 I

b. (5) Suppose we wanted to do the cache and TLB lookup in parallel. What restrictions does this place
on the TLB/cache sizes, if any?

c. (5) What is the AMAT (average memory access time) of this memory system if the CPU is running at
25MHz? How much would the AMAT improve if the' cache lookup is done in parallel with the TLB
lookup (assuming it is possible with the current configuration)?

d. (5) Discuss the tradeoffs between a direct mapped and a highly associative cache (e.g. 4way set
associative with LRU replacement). What sort of reference streams would benefit from an associative
cache? If you only had a direct mapped cache available, what could you do to your code and data
structures at compile time to improve performance on these reference streams?

...

...

...
Database Comprehensive Exam, October 18 1996

Answer I. -------
Relational Algebra
(a) PROJECT[El.studentIDI (

SELECT[El.studentID = E2.studentID and
El.course# = Cl.course# and
E2.course# = C2.course# and
Cl.degt c> C2.deptI (

(enroll{El) X enroll(E2) X course(C1) X course{C21)))

1 where rel-name{R) renames relation rel-name as R.

...
Answer 2. SQL 1:

SELECT DISTINCT studentID
FROM Enroll
WHERE NOT EXIST

(SELECT *
FROM Course
WHERE Enroll.course#=Course.course# and dept="physicsn)

I ...
Answer 3. SQL 2:

2.a Best: SELECT B FROM R; (since duplicates may be returned)
2.b Next best: select avg(A) from R; (since avg can't be expressed)

...
Answers 4.

Answer 4.a: 1. ID or name can be key
Answer 4.b: 2. Need name (or Id) and dept
Answer 4.c: 3. Also need partial crossproduct ...
Answers 5 :

Answer 5.a: AB, BC, and ED.

Answer 5.b: no. All attributes are in some key, so there cannot be a 3NF
violation.

Answer 5.c: C->D or D->A are examples of BCNF violations.
In each case the left side does not include a key.

NUMERICAL ANALYSIS@
. . Comprehensive Examination

closed book

1. (15 points) Show that Newton's method for a solution x of f(x) = 0 for
a nonlinear scalar real valued function converges quadratically under
certain stated assumptions on f.

2. (15 points) Derive an expression for the error in polynomial
interpolation of a sufficiently smooth real valued function f(x) by a
polynomial of degree n. State conditions on f needed to obtain the result.
Assume that the error e(x) has the form e(x) = c(x)(x-x,) * * . (x-x,) where
the xj are the interpolation points and compute c(x).

0 Computer Science Department

Stanford University

a Comprehensive Examination in Software Systems
Autumn 1996

READ THIS FIRST! ! !

1. You should write your answers for this part of the Comprehensive Examination in a BLUE
BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book that you
use.

2. The number of POINTS for each problem indicates how elaborate an answer is expected. For
example, an essay-type question worth 6 points or less doesn't deserve an extremely detailed
answer, even if you feel you could expound at length upon it.

3. The total number of points is 60, and the exam takes 60 minutes. This "coincidence" can help
you plan your time.

n 4. This exam is CLOSED BOOK. You may NOT use notes, books, computers, other people, etc.
>\>

5. Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the idea
doesn't work out. You can also get credit for realizing that certain approaches are incorrect.

6. If you are convinced you need to make an assumption to answer a question, state your
assumptions(s) as well as your answer.

7. Be sure to provide justification for your answers.

1996 Comprehensive Exam: Software Systems (60 points total)

1. (1 5 points) Solaris 2 uses "adaptive mutexes" to protect access to every critical data item. An
adaptive mutex starts as a standard semaphore implemented as a spinlock. If the data are
locked (already in use), the adaptive mutex does one of two things. If the lock is held by a
thread that is currently running, the thread waits for the lock to become available. If the thread
holding the lock is not currently in the run state, the thread blocks, going to sleep until it is
awakened by the lock being released.

a. Why are both options (spinning and sleeping) provided when the data are already locked,
and why does the decision depend on whether the thread holding the lock is running?

b. For what sort of application workload is this feature beneficial?

c. On a uniprocessor system, how do adaptive mutexes behave?

2. (10 points) Page replacement in a virtual memory system can be either global or local. In
global page replacement a page fault is satisfied by selecting a page from the set of all
physical pages. In local page replacement, the page fault can only be satisfied from the
faulting process' own set of physical pages. The number of physical pages allocated to a
process in the local scheme does not change over its lifetime.

a. What are the potential disadvantages of each scheme?

b. Why is global replacement more commonly found in existing systems'?

3. (10 points) Monitors are a popular mechanism for ensuring synchronization of processes that
access system data structures and resources. However, monitors do not guard against
starvation.

a. Briefly describe why monitors do not guard against starvation.

b. Given this problem, why is it practical to use monitors in real-world systems? (How is the
starvation problem handled in practice?)

4. (20 points) File cache update policies can be categorized by the amount of delay they allow
before file updates must be written to disk. Compare the following policies based on
reliability, process latencies, and disk throughput. For each policy, also describe a workload
that would benefit from the specific policy.

*Write-through immediately (no delayed writes)

*Write-through on close (write modified dati to disk when the file is closed. The close
operation doesn't return until the write finishes. If a process with open files exits, the sys-
tem calls the close operation on these files before the exit completes.)

*Delay for 30 seconds (write out modified data from the cache when it's 30 seconds old)

*Delay for 5 minutes (write out modified data from the cache when it's 5 minutes old)

5. (5 points) In UNIX, there are separate system calls to start a new process in the image of its
running parent (fork) and to load into a process's address space fresh code and data from an
executable that it should use for execution (exec). Why doesn't UMX use just one system
call that both creates a new process and loads the desired image (code and data)?

1996 Comprehensive Exam: Software Systems (60 points total)

1. (15 points) Solaris 2 uses "adaptive mutexes" to protect access to every critical data item. An adaptive mutex
starts as a standard semaphore implemented as a spinlock. If the data are locked (already in use), the adaptive
mutex does one of two things. If the lock is held by a thread that is currently running, the thread waits for the
lock to become available. If the thread holding the lock is not currently in the run state. the thread blocks. going
to sleep until it is awakened by the lock being released.

a. Why are both options (spinning and sleeping) provided when the data are already locked, and why does the
decision depend on whether the thread holding the lock is running?

Spinning makes sense if the lock will soon be released, since you avoid the overhead of a
context switch. Sleeping makes sense if the lock will be held for a while, since you don't want
to consume CPU resources needlessly for a long time. The state of the thread holding the
lock is a hint about how long the lock may be held. If the thread is not running, it might be a
while before it releases the lock. The fact that it's not running could indicate that it's waiting
for YO to complete, or some other such long operation.

b. For what son of application workload is this feature beneficial?

One example is that a real-time multi-processor workload might benefit from this approach
if locks are only held for a short time. Threads are likely to get the locks they need very
quickly if the threads holding them are still running. Workloads that demand efficient use of
a multiprocessor also benefit, since if a lock is held for a long time, threads waiting for it will
get out of the way and make the processor available for another thread to run.

c. On a uniprocessor system, how do adaptive mutexes behave?

On a uniprocessor, only one thread can run at .a time. Thus, the thread already holding the
lock can never be running. This means the thread requesting the lock will always sleep,
giving up the processor. This makes it easier for the thread holding the lock to be
rescheduled and (one hopes) give up the lock soon.

2. (10 points) Page replacement in a virtual memory system can be either global or local. In global page
replacement a page fault is satisfied'by selecting a page h m the set of all physical pages. In local page
replacement, the page fault can only be satisfied from the faulting process' own set of physical pages. The
number of physical pages allocated to a process in the local scheme does not change over its lifetime.

a. What are the potential disadvantages of each scheme?

Disadvantages of global scheme: A process cannot control its own paging behavior, since its
pages can be taken away by other processes. One heavily-faulting process could hurt the
performance of other small, well-behaved processes.

Disadvantages of local scheme: A process that needs more pages cannot get the benefit of
free memory that is under-utilized by some other process. The allocation of pages per
process is restrictive. A process that changes behavior over its lifetime can't increase the
number of pages allotted to it or give up pages if it no longer needs so much memory.

b. Why is global replacement more commonly found in existing.systems?

A process that needs more memory can take advantage of free pages in the global pool, so
memory is more efficiently used overall. Thus system throughput is generally higher in the

n global scheme.
i.

3. (10 points) Monitors are a popular mechanism for ensuring synchronization of processes that access system data
structures and resources. However. monitors do not guard against starvation.

a. Briefly describe why monitors do not guard against starvation.

A process waiting on the monitor lock may not be the first one to run when the lock is
released. If a new process happens to execute the monitor before the other process is woken
up, the new process will get the monitor lock first. If new or lucky processes keep testing the
monitor lock at just the right time, then the poor waiting process may wait forever. Note
that there are also some definitions of monitor semantics where a process waiting on a
condition variable may be "signalled" or "notified," only to find by the time it's scheduled to
execute that the condition for which it is waiting is no longer true because another process
has run just before it and has changed something. The unlucky process will then have to
wait on that condition again. This could go on forevet

b. Given this problem, why is it practical to use monitois in real-world systems? (How is the starvation
problem handled in practice?)

In practice we rely on at least several things to make this scenario unlikely. First, a nicely
behaving scheduler can help. Second, we try not to run systems with resources so scarce that
there are likely to be so many processes wanting them simultaneously. Third, careful design
of the system is important to make sure that monitor locks are not held for a long time, and

0
that particular monitors do not become bottlenecks for resources under a lot of demand.
For example, we can balance locking around whole sub-systems with finer-grained locking
for individual items. One lock around the whole file system could be a bad idea. A lock per
file-data-structure may make more sense.

4. (20 points) File cache update policies can be categorized by the amount of delay they allow before file updates
must be written to disk. Compare the following policies based on reliability. process latencies, and disk
throughput. For each policy. also describe a workload that would benefit from the specific policy.

Write-through immediately (no delayed writes)

The highest reliability, since the process doesn't continue until each write is safe on disk.
The highest latencies: a process waits each time it writes for the data to be sent to disk. If
there's much YO, processing speed will be tied to the speed of the disk, rather than the speed
of the CPU. The worst throughput: all data modified are written to disk, even if later they
are overwritten. There's also no time to order the various writes for more efficient disk
access. Applications that demand high reliability may want to be sure their data are written
to disk. Transactional workloads would be an example.

*Write-through on close (write modified data to disk when the file is closed. The close operation doesn't
return until the write finishes. If a process with open files exits, the system calls the close operation on these
files before the exit completes.)

Reliability depends on how long the files are open and how many writes are done to them
before they are closed. If files are open for only a short time, reliability may be pretty good.
Latencies also depend on how long files are open. If files are open only a short time, then this

(7 is almost as bad as "write-through immediately." Disk throughput also depends on how long
files are open and often previously-written data is overwritten. If, for example, some section
of data is rewritten 10 times before the file is closed, only the last write needs to be

performed. This leaves the disk available for other operations. Workloads with lots of
rewriting and files that are open for a long time might benefit. (Unfortunately, even though
this policy is used in some well-known systems, UNIX-like workloads often tend to leave files
open for only a short time, so this policy doesn't help performance much in that
environment.) . .

*Delay for 30 seconds (write out modified data from the cache when it's 30 seconds old)

This provides only limited reliability, since data that an application believes are already
written could be lost for up to 30 seconds. This improves process latencies, since the process
never needs to wait synchronously for the data to reach dkk. Throughput is improved since
the disk writes can be ordered for efficient disk access. In a typical UNM workload with lots
of temporary files, some files and data will have been deleted before the 30 seconds is over.
Any modifications to them no longer need to be written through to disk, which improves
disk throughput.

*Delay for 5 minutes (write out modified data from the cache when it's 5 minutes old)

The same as just above, only worse for reliability and better for performance.

5. (5 points) In UNIX, there are separate system calls to start a new process in the image of its running parent
(fork) and to load into a process's address space fresh code and data from an executable that it should use for
execution (exec). Why doesn't UNIX use just one system call that both creates a new process and loads the
desired image (code and data)?

The UNIX scheme is simpler and more flexible. Many system daemons fork a copy of
themselves, and the child process shares various resources with its parent and can
communicate and cooperate with the parent through these shared resources (e.g. file

, -0
descriptors). If the call always overwrote the process image and created new resources, then
this wouldn't be possible. Instead, exec can be called when desired by the child process
after it has been forked.

