
Computer Science Department
Stanford University

Comprehensive Examination in Computer Architecture
Autumn 1996

October 16, 1996

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. This exam is CLOSED BOOK. You may not use notes, articles, or books.

3. Show your work, since PARTIAL CREDIT &dl be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches
are incorrect. On a truelfalse question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

.Computer Science Comprehensive Examination
Computer Architecture

(60 points)

Question 1' (15 points)

Early next year, Intel will add an extension to the x86 ISA aimed at improving performance of multimedia
oriented programs on its Pentiumm processor chips. These instructions, collectively called the MMX
extensions, can optimize execution of ALU instructions that operate on 8 / 16 / 32 bit signed or unsigned
integers by "packing" several of these smaller integers into special 64-bit registers and then performing the
same ALU operations on these integers in parallel with a single instruction.

We are interested in determining the effectiveness of this extension. A suite of benchmark programs has
been selected with the following instruction counts and CPIs on a non-pipelined machine:

I # of I CPI

Integer ALU
(&bit)
(16-bit)
(32-bit)
(64-bit)

Lwd
Store
B m h e s

After examination of the &bit and 16-bit integer ALU operations, we discover the following:

average number of
usefur packed integers
/ MMX instruction

'

% can be optimized

The CPI's of the MMX instructions are the same as the original ALU instructions. There is also an
overhead of loading the integers into the special CPU registers. For this benchmark, an extra 5000 move
instructions (CPI = 3) are required to perform the necessary register-register moves.

a (5) What is the performance improvement on the benchmark with the ISA extension if the clock cycle
does not change on the machine with extensions?

ALU
80%

ALU
7Wo

ALU
20%

b. (5) If the benchmark is currently running on a 5OMHz machine with MMX extensions, what would the
new clock frequency on the original machine have to be in order to have the same performance as the
machine with the ISA extension?

c. (5) What changes to the machine and issues must be considered to accommodate these new
instructions? Based on these issues and changes associated with adding these instructions, do you think
this is a good idea? Why?

Question 2 (25 points)

On the next page is a basic single-cycle MIPS processor datapath with some missing information:

32-bit byte-aligned PC
3 instruction formats:

I Os f I 5b 5b 16b I Rd I Rs I Irnm

Os f I Rd
Sb

I "6:: I 26b I Address

Rs I Rt I f unc t
Sb 5b 6b

The ALU can perform unsigned or signed addition or subtraction operations

Show the necessary inputs into the multiplexers and the bit widths of the missing wires necessary to
support the following list of instructions in the diagram. Also show the correct setting of the multiplexers
and control wires for each instruction in the table given on the following page:

ADD1 - Add signed Rs and Imm and place result in Rd
SUBU - Subtract unsigned Rt from Rs and place result in Rd
BEQAL - Branch to PC + Imm (Imm is a signed offset in number of instructions) and place the

address of the next instruction after the current PC in R3 1 if Rs and Rt are equal, othemise
go to the next sequential PC.

J - Jump to the word address in the instruction concatenated with the upper bits of the next
instruction after the current PC.

LW - Load the contents of the address at Rs + Imm (Imm is a signed offset in bytes) into Rd
SW - Store Rd to the address at Rs + Imm (Imm is a signed offset in bytes)

Question 3 (20 points)

Shown below are the contents the TLB, page table and cache of the MicroMachines MiniCPV, a
miniaturized version'of the modem CPU. The MiniCPW has the following characteristics:

16-bit virhal address. 15-bit physical address, both byte aligned
?ZB

4 entries, direct mapped
5% miss rate
No translation penalty for a hit
Each miss requires an average of 30- (cycles) to process

Page table
16 entries total to map all possible pages in a process' virtual memory space
Page table accesses are accounted for in the TLB miss time

Cache
Write back, write allocate
There is a infinitely large write buffer to main memory which can hide all write latencies to

main memory
50% of the lines are dirty
16 entry, 2-way set associative
Each cache line is 32 bytes long

I 10% miss rate
No penalty on a hit
A lookup in the cache returns a word (4 bytes)

Mainmemory
It first takes 80ns to lookup a random address in main memory. Once this location is found,

the bus can transfer data at SOMbytes/s.
Sequential memory access latencies are hidden by the bus transfer time.
An entire cache line must be transferred before a miss in the cache can be satisfied.

a (5) Show the tag, index and offset bits necessary to access the TLB with a virtual address and to access
a word in the cache with a physical address:

VIRTUAL
I 1

PHYSICAL

1 I

b. (5) Suppose we wanted to do the cache and TLB lookup in parallel. What restrictions does this place
on the TLB/cache sizes, if any?

c. (5) What is the AMAT (average memory access time) of this memory system if the CPU is running at
25MHz? How much would the AMAT improve if the' cache lookup is done in parallel with the TLB
lookup (assuming it is possible with the current configuration)?

d. (5) Discuss the tradeoffs between a direct mapped and a highly associative cache (e.g. 4way set
associative with LRU replacement). What sort of reference streams would benefit from an associative
cache? If you only had a direct mapped cache available, what could you do to your code and data
structures at compile time to improve performance on these reference streams?

