
Section Faculty Page
Table of Contents 1
Artificial Intelligence [Unknown] 2
Artificial Intelligence solutions 5
Automata and Formal Languages solutions 8
Compilers [Unknown] 11
Compilers solutions 13
Computer Architecture solutions 16
Numerical Analysis [Unknown] 22
Numerical Analysis solutions 24
Software Systems [Unknown] 26
Software Systems solutions 28

1

1 % Comprehensive Exam: Autumn 1995

0 SOLUTIONS: AUTOMATA AND FORMAL LANGUAGES

Instructions: You are expected to sketch the main ideas in your solutions. but be very brief and
avoid unnecessary detail. You are permitted to invoke any result proved in the Hopcroft-Ullman
book provided you include the appropriate citation.

1. (9 points) Consider the following context-free grammat G over the alphabet C = {a, b) .

(a) [3 points] Give a succinct description of L(G).
(b) (4 poinq Show that G is an ambiguok grammar.
(c) [2 points] What productions should you delete from G to render it unambiguous
without changing its language?

Solution:

(a) L(G) = {anb" (n 2 1).

(b) The following are two distinct leftmost derivations for the string &, implying
that the grammar must be ambiguous.

(c) Deleting the variable A or the variable B, as well as all related productiona, gives
an unambiguous grammar with the same language.

2. (12 points) Let c M > denote any natural encoding of a T h i n g machine M. Consider
the following decision problem:

Lo = {< M >I 3 odd numbers p, q such that L(M) hss string of length both p and q)

Prove that Lo is undecidable by using a reduction from the halting problem (which is
known to be undecidable). Recall that the halting problem corresponds to the language
Ln = {c M, w >I Thing Mchine M halts on input w).

Solution= We use the fo11owhg reduction from Ls to Lo to obtain the proof of
undecidability. Given a Thing machine M and input w, &natruct a Thing machine
ii? which behaves as follows on being given input 8.

(a) &? ssimulaks the behavior of M on input w, and

(b) IZ -pts its hput a if M hhalt~ on W.

I I To show that the above reduction works, we need to prove that:
l i l

(a) There is an algorithm that computes a given M, w.
(b) <M,w>E Lg if and only if <a>€ Lo.

I I The proof proceeds as follows. I
(a) Given w and a description of M, it is easy to construct a Turing machine that

simulates the computation of M on input w, using the same ideas used in the
construction of the universal Turing machine (see Theorem 8.4 in the textbook).

(b) Let 3 be any input string. Then,
G accepts G
e the simulation of M on w hats
e <M,w>E LEI.

Consequently, if < M, w >E Lg then accepts dl strings and so must belong to
Lo. Conversely, if < M, w >e Lg then M^ does not accept any string at dl and
so cannot belong to Lo.

3. (9 points) Prove that the following decision version of the foLlowing 3-PATH problem
is NP-complete.
INSTANCE: An undirected graph G(V, E). A -,,

QUESTION: Is there a collection of 3 vertex-disjoint paths in C that cover all the
vertices?

Informally, the answer is YES if there exist 3 paths in the graph such that each vertex
is contained in ezcrctly one of these paths.
(Hint: You may assume that the Hadtoniau Path problem is NP-complete. This
is the probiem of deciding whether a given graph hss a path containing each vertex
exactly once.)

Solution= We first verify that the $PATH problem is in NP. A polynomial time
algorithm can d y "guess" three disjoint sequenm of vertex labeis, and then check
that the following 6 conditions are satided: each vartax appeam in exactly one of
these three sequences; and, each sequence corresponds to a path in the graph G.
To establish the NP-hardness of %PATH, we provide a polynomial time reduction from
the HAMILTONIAN PATH problem, which is known to be NP-complete. An instance
of the HAMILTONIAN PATH problem is some graph H and the goal is to check
whether it has a path containing all the vertices. We transform this to the $PATH
problem by producing a graph G which consists of 3 disjoint and disconnected copies
of the graph H. We now need to show that G has a &path cover if and only if H is
hamiltonian. n

If H is ha~@tomirn, then the three hamiltonian paths in the three copies of H in G
wil l con@itute a tpa th cover for G. Conversely, suppose that G has a %path cover.
Since G consists of 3 disconnected copies of H, the 3 paths must lie in distinct copies.
Clearly, each path must be a 1-path cover, or a hamiltonian path, for the copy of H
in which it lies. Thus, H must be hamiltonian.

Computer Science Department
St anford University

Comprehensive Examination in Compilers
Autumn 1995

October 19, 1995

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. Be sure you have aU the pages of this exam. There is 1 page.

The exam takes 30 minutes.

3. This exam is OPEN BOOK. You may use notes, articles, or books-but no help from
other sentient agents such as other humans or robots.

4. Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the

CI idea doesn't work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/fabe question, you might get partial credit for e x p h h h g
why you think something is true when it is actuaJlv hbe. But no partial credit can
be given if you write nothing.

Compilers
There are a number of essay questions on this exam. You should, of course, keep your answers 0 clear and concise.

1. (5 minutes) Answer true or false. In all questions, assume that the context-free grammar has
no useless symbols.

(a) There exists a context-& grammar with that is LL(1) but not LR(1).
(b) There exists an context-free language that is LR(1) but not LL(1).

'q (c) YACC can correctly parse all ambiguous context-free grammars by using precedence and
associativity hints.

(d) There exists an unambiguous grammar that is not LR(1).
(e) LALR(1) parser generation (not parsing) is linear in the size of the input grammar.

2. (10 minutes) Consider the following grammar:

(a) Compute the FIRST and FOLLOW sets for the nonterminals of the grammar.
(b) Based on the FIRST and FOLLOW sets, is it LL(l)? Explain your answer.
(c) What is the language of this grammar? h m inspecting the language, is it obvious

whether there exists an LL(1) answer (if you say it's obvious, explain [obviously]).

3. (10 minutes) These questions are about the handling of variables by a compiler for a simple
language l i e C. In your answers, address only the compiler behavior that is necessary for
code generation. Do not address type checking or other aspects of semantic analysis are not
strictly necessary to emit code for correct programs.

(a) Describe the compiler's processing of a global variable g of type int , both at the point
of declanztion and at the point of use.

(b) How is the handling of a local variable declaration of type i n t different?
(c) What information does the compiler have to maintain in the symbol table to generate

code for A[i J .f CjJ? ,

4. (5 minutes) Imagine a language in which the types of expressions can be determined in a
single bottom-up traversal of the syntax tree of a program. The language also has implicit
type conversions (also called coercions), such as i n t to f lost.

How could a compiler

recognize when coercions need to occur, and
generate code to perfom them

in a single bottom-up traversal of an expression?

CI
1

Compilers Solutions

0 There are a k b e r of essay questions on this exam. You should, of course, keep your answers
clear and concise.

1. (5 minutes) Answer true or false. In all questions, assume that the context-free grammar has
no useless symbols.

(a) There exists a context-free grammar with that is LL(1) but not LR(1).
false

(b) There exists an context-free language that is LR(1) but not LL(1).
true, e.g. {aibi I i > j }

(c) YACC can correctly parse all ambiguous context-free grammars by using precedence and
associativity hints.
false, e.g. {a'bick I i = j or j = k }

(d) There exists an unambiguous grammar that is not LR(1).
true, e.g. S 4 AaalBab; A -+ E; B 4 E

(e) LALR(1) parser generation (not parsing) is linear in the size of the input grammar.
false - it's ezponential in the worst case. Parsing is linear in the input size, though.

2. (10 minutes) Consider the following grammar:

(a) Compute the FIRST and FOLLOW sets for the nontenninals of the grammar.

First and Follow sets

(b) Based on the FIRST and FOLLOW sets, is it LL(l)? Explain your answer.

The gmmmar is not LL(1)) becawe the right-hand-sides of productions B -t b
and B 4 SC both have b in their FIRST sets. Also, the a is in FIRST of
A 4 aA and FOLLOW of A (=levant becawe of A 4 E production).

(c) What is the language of this grammar? From inspecting the language, is it obvious
whether there exists an LL(1) answer (if you say it's obvious, explain [obviously]).

The language of the gmmmar is regular (a'bc*), so the= is an LL(1) gmmmar.

3. (10 minutes) These questions are about the handling of variables by a compiler for a simple
language like C. In your answers, address only the compiler behavior that is necessary for
code genemtion. Do not address type checking or other aspects of semantic analysis are not
strictly necessary to emit code for correct programs.

(a) Describe the compiler's processing of a global variable g of type int, both at the point
of declamtion and at the point of use.

There is a large amount of latitude in the answers, depending on what assump-
tions one makes about the language and compiler. Here is an example:
At the point of declamtion, the compiler needs to enter info about g into the
symbol table, including its type, etc. but especially, its location. The offset is
established when the variable is allocated within the global data section. The
offset is a compile-time constant. The actual address of the global data section
of memory is often not established until link time, but it is a constant when the
program is actually executed.
At the point of we, the compiler needs to compute the address of the variable. If
no a m y indexing is required (as when it is of type i n t , the address is a known
constant, so no code needs to be genemted. However, code is needed to fetch the
value of the variable from the memory location.

(b) How is the handling of a local variable declaration of type int different?

Obviously, the variable is tagged as a local, not glohl variable when it goes in the
symbol table. The offset is relative to a stack fkme pointer of some kind, which
is usually stoned in a machine register. Usually, all the locals for the procedure
are allocated in a single stack fmme for the pmedure. The stack frcrme pointer
is set up when a function is called, and restored when the function returns.
When the variable is accessed, code is needed to add the contents of the frame
pointer to the ofset for the local variable. This is almost exactly the same code
that would be required for an ezpression with + in it. Once the location of the
variable has been computed, code must be genemted to fetch the value.

(c) What information does the compiler have to maintain in the symbol table to generate
code for ACi] .f Cj]?

It needs to keep tmck of whether the variable A is lacal or global, and what its
ofset is (as above). It also needs remember the sizes of the army elements (to
do army intiezing) and the offsets of fields within structures. The genemted code
computes (frame pointer) + (ofset of A) + i * (size of A elements) + (ofset
o f f) + j * (size of A[i].f elements)

4. (5 minutes) Imagine a language in which the types of expressions can be determined in a
single bottom-up traversal of the syntax tree of a program. The language also has implicit
type conversions (also called coemions), such as int to f loa t .

How could a compiler

recognize when coercions need to occur, and

generate code to perform them

in a single bottom-up traversal of an expression?

A coercion is necessary when there is a type mismatch between opemnds and oper-
ator, which can be detected during a bottom-up pass when the types of the opemnds
have &en determined and the opemtor is examined. For example, in the expression
i + x, if i is an integer and x is a float, there is a type mismatch, because + requires
two integers or two floats.
Machines that support floating point have conversion instructions. The compiler
acts as though it had inserted a conversion operation into the syntax tree at the
point of the type mismatch, which it then compiles just like any other opemtor. For
example, i + x would become flt(i) + x (which provides two float opemnds to +),
and the appropriate machine instructions would be generated to compute the result
of flt(i), which is then added to x.

- - Computer Architecture
Comprehensive Examination

Fall 19951%

This exam is closed book. There are 55 points .in total, and 60 minutes for the exam. Write your
answers in the spaces provided. When possible show all intermsdiaoe steps in computing your
answers; that will allow us to give partial d t for incorrect answen.

dqq=l
T O T ! 5s

Question 1 - Memory System Design (15 points)

Imagine you have a cachccohexmt multiprocessor system in which a cache-miss causes the
hardwan to place not only the memory block that you missed into the cache, but also the
following memory block. Mermore, whenever a cache line is accessed by the m s o r for
the first time* the following cache line is also brought in.

(a) (8 points) What are the advantages and disadvantages of the above approach as compared to
simply doubling the cache line size in the base system?

Answer :
Advantages: (1) Reduced false sharing in MPs e . , reduced
bouncing of lines between one processor and another even though
they are writing to distinct portions of the line); (2) Can
totally eliminate cache misses in case of unit-stride data
accesses; (iii) Lower miss penalty as cache-line-size is smaller.

Disadvantages : (1) More complex hardware; (2) More tag overhead
with smaller lines; (3 1 Makes less efficient w e of the bus, as
several smaller transfers rather than a single large transfer is

. being done (can reduce number of processors that can be supported
on a given bus) ; (4) may fetch more unnecessary data than the
scheme with double cache line size.

(b) (4 points) What information would you need to quantitatively evaluate whether to implement
the suggested approach on a particular machine?

Answer :
- effective miss rate of the two schemes (impacts stall time1 - average miss penalty under the two schemes (inrpacts stall tima)
- bus bandwidth required per grocgssor under the two schemes

(determines when contention will kick in and limit number of
processors that can be supported)

(c) (3 points) W d y a ~ expect the above appaoach to be rw#e cfkctive for htmd011 cache or
datacache? . - -

Answer: The prefetching approach should be quite ef fectiw 'for
both instruction and data caches. The utility for data caches is
a function of the spatial locality in the application (e.g., it
may not work too well for program that mak. heayl use of
pointers, or where the arrays are being accessed in a non-unit-
stride manner). The instruction refereace stream of programm
usually has mare spatial locality, and therefore the -fits
should spread across a larger segwtnt of programm.

8

Question 2 - Proce_ssor Pipelines (5 Psints) -
The s&dard DLX pipcliDc is quite shon; only 5 stages deep. In contra% th recently a ~ ~ ~ a n c e d
intel P6 processor has a 13-deep pipeline. Discuss. in general, the advantages and disadvantages
of long ~trsas short pipehes.

Answer :
Long Pipeline Advantages: It allows for higher clock rate (as
work done in each stage is smaller) , potentially offering higher
perf onnance .
Long Pipeline Disadvantages : (1) Requires extra concurrency,
which may or may not be available in the program; said another
way, there will be more load-delay slots and branch-delay slots
that will need to be filled, which may not always be possible; (21
if branch-prediction is used, there will be higher penalty for
mis-predicted branches; (3 1 tougher to balance the work between
the various pipe stages; (4) more, extensive and complex bypassing
logic is needed, implying more complex hardware.

Question 3 - Precise vs. Improm'ae Exceptions (5 points) -
The DLX architecture presents a precise exception mOdcL

(a) (2 points) Explain briefly what the term "precise excep!ion modeln means.

Answer: If the pipeline can be stopped so that the instructions
just before the faulting instruction are completed, and those
after it can be restarted from scratch, the pipeline is said to
have precise exceptions.

(b) (3 points) Give a example of how the precise exaption model could be violated in the DLX
pipeline if the exceptions wen signalled in the order in which they occrrmd rather than by
waiting until the excepting instruction reaches a particular point in the pipeline. State any
assumptions that you mnlrc.

Answer:
- .-

LW R4, 256(R2) ==w this instr has a protection fault

ADD R7, R4, RS ==w this instr lies on a different page
than the previous one, and the IFRU? gets
a page fault.

Question 4 - Virtu@ Memory Systems (5 points)
As- imachine has a virtual address size of 32 bits, a page s b of 4KB. and a 4way

0 associative TLB with 64 total entries. Indicate how a 32-bit viraia address is broken down into
page ofht , TLB index, and TLB tag fields. Show the width (in bits) and position of each of
these fields.

Answer :

I labit TLB tag 14-bit I 12-bit offset I
TLB index

Queition 5 - Cache Organization (5 points)
Consider 2 caches of the same total size but diffmnt orgauidons.

Cachd)rgantzatt
. . on-1:

Total Size. 8 bytes
Block Size: 1 byte
Associativity: direct mapped
Replacement policy: LRU

cat-011-2:
Total Size: 8 bytes
Block Size: 1 byte
Assodtivity: 2-way set 8ssoc&ive
Replacement policy: LRU

Assume both caches are iniWy empty (i.e., contain no valid data).

Provide a ref-a stnam of no mon than 4 references that exhib'i a "high&' miss rate on
cache2 thau it docs on ache-1. Each element of the ref- stmm shcmld be a byte address.
Indicate next to each reference whether it misses or hots in eacb cache.

Answer :

rJ, Q - miss miss
LD 4 miss miss
ID 12 miss miss
LD 0 hit miss

Question 6 - System'PeriOrmance (20 points)
considci mc following 2 ryrccmr.

Sys tem-1 :
200MHzproassor
l b o load &lay slots (first filled 75% and second filled 20% of the time) '
256 KB data cache (miss rate 596, miss penalty 25 cycles)

System-2:
150 MHz processor
One load delay slot (filled 75% of the time)
8KB first-level data cache (miss rate 10%; miss penalty 7 cycles if data in level-2 cache and

32 cycles if data must be fetched from main memory)
1 MB second-level data cache (global miss ate 2%)

Now consider the following workload running on both systems:
Loads: 25%
Stom: 10%
Othec 65%

(a) (14 points) Ignoring Wmction-cache e&cts, determine which system is faster for the giwa
workload. Assume that neither system has any write Mtn. State any other assuqtions
that you make.

Answer :

System-1 CPI = 0.65 + 0.25 (1 + .05*25 + -25 + .SO) + 0.1 (1 +
.05 l 25)

= 1.7
This implies performance = 200/1.7' = 118 MIPS

System-2 CPI = 0.65 + 0.25 (1 + 0.1 (.98*7 + .02*32) + 0.25) +
0.1 (1 + O.1(.9Se7 + .02*32))

= 1.325
This implies performaace = 150/1.325 = 113 MIPS

Thu, aystm-1 is faster in this case.
: -

(b) (3 p o i n g) ~ s y ~ 2 ' s c l o c k ~ i s i h e r e e s e d t o #) O M H z , ~ a l l o t h e r ~ t ~ r ~
remain the same, Now which system is faster?

Anawer: System-2's performance is now 200/1.325 = 151 MIPS. Thw
system-2 will be faster if the same clock rat. am -ten-1 can ba
achieved.

(c) (3 psin-ts) Assume an infinitely-deep write buffer is added to system-2 inbetween the
p&ssor and the first-level cache, but all other parameters remain the same (system-2*s
clock rate is 150 MHz). Now which system is faster?

Answer: The implication is that all write-stalls will now be
hidden by the write buffer. Thus:

System-2 CPI = 0.65 + 0.25 (1 + 0.1 (. 9 8 * 7 + .02*32) + 0.25)
= 1.15
This implies performance = 150/1.15 = 130 MIPS,

which is faster than system-1 at 200 MHz.

Gornputer Science Department
Stanford University

Comprehensive Examination in Numerical Analysis
Autumn 1995

October 20, 1905

READ T&TS FLRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. This exam is CLOSED BOOK. You may not use notes, articles, or books.

3. Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it .is actually false. But no partid credit can
be given if you write nothing.

Comprehensive: Numerical Analysis (30 points). Fall 1995

(Problem I)
($5 points). Linear Algebra

(a) Let A be a real n x n symmetric matrix with n distinct real eigenvalues. Show that the
eigenvectors of A are orthogonal to one another. If A is also positive definite show that the
eigenvalues are positive.

(b) Define the Euclidean norm of a vector in Rn.
(c) Let A be a real, positive-definite, n x n symmetric matrix with eigendues 0 < A1 < . . . < A,.
Let

11~11: = zTAx.

Prove that 11 as defined is indeed a norm on Rn.
(Problem 11)
(15 points). Different iel Equations and Quadrature

(a) Define the composite trapezoidal rule for the approximate integration of

over n intervals of equal length h = (b - a) /n . State the order of accuracy of the method in terms
of h, under an assumption on the smoothness off which you should state.

(b) Use the quadrature rule derived in (a) to derive a numerical approximation to the Merential

0 equation

at time t = r + 1, by partitioning the interval [r, r + 11 into n equal subintervals.

(c) How big (in terms of h) would you expect the error to be if you applied the method in (b) to
the equation

du - = t3I2, U(T) = ug,
dt

with r 2 0. What are the practical implications of using the method on this problem if r is very
small?

Solutiom to Comprehensive: Numerical Anaiysb (30 points). Fall 1885

(Problem I)
(15 points). Liiear Algebra
(a) Let A be a red n x n symmetric matrix with n distinct real eigenYauUes. Show that the
eigenvectors of A are orthogonal to one another. If A is also positive d a t e show that the
eigenvalues are positive.
SOLUTION: Let

Az = Xz, Ay = wy.

Then

Thus

Since X # w we have xTy = 0 as required. Since A is positive dehite:

and X > 0 follows.
(b) Define the Endidean norm of a vector in R".
SOLUTION: If v = (vr,. . . , v,,) then ..

Thns 11vl12 = vTv.

(c) Let A be a real, positive-definite, n x n symmetric matrix with eigendues 0 < XI < . . . < A,.
Let

IIzIIi = zTAz.

Prove that 11 llA as defined is indeed a norm on R".
SOLUTION: We need to show the foUowing three thing:

llzllA 2 0 and llzllA = 0 if and only if z = 0. This follow from the foct thot A is @tiwe definite;
llazllA = lalllzllA for any scalar a. But

and the w u l t f o l k .
11% + YIIA 2 1 1 ~ 1 1 ~ + I l ~ l l ~ ;

Now let C = f i so that C3 = A. Then

and by the CauchpSchurcrx inquality

But IlCzl12 = zTC2z = zTAz = 1 1 ~ 1 1 ~ . Hence

112 + YII: -< zTAz + Y ~ A Y + 2)1~11~(I~ l l~

and taking squam-mots yileds the nequid muit.

(Problem 11)
(15 points). Daerentid Equations and Quadrature
(a) Define the composite trapezoidal rule for the approximate integration of-

over n intervals of equal length h = (b - a)/n. State the order of accuracy of the methods in terms
of h, under an assumption on the smoothness off which you should state.
SOLUTION: The rule is

Here f i = f (zj) and z j = a + jh. The error is O(h2) provided f E C2([a, b], R).
(b) Use the quadrature rule derived in (a) to derive a numerical approximation to the differential
equation

at time t = r + 1, by partitioning the i n t e d [r, r + 11 into n equal subintervalt3.
SOLUTION: The differential equation can be integrated to give n

Thus
rr+l

We introduce the mesh points tn = r + nh where Nh = 1 and let fn = f(tn). Applying the
quadrature rule to the in teed shows that

(c) How big (in terms of h) would you expect the error to be if you applied the method in (b) to
the equation

with r 2 0. What are the practical implications of using the method on this problem if r is very
small?
SOLUTION If r > 0 then f(t) = @I2 E C2([r,r + I], R) and the error will be O(h2). If r = 0 then
f(t) is not a C2 function on the i n t e d in question and the error win be smaller (in fact O(h).)
In practice, if r is small, the method will q u i r e very small h before seeond order convergence is
observed.

Computer Science Department
Stanford University

Comprehensive Examination in Software S.ystems
Autumn 1995

READ THIS FIRST!

I. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue
book that you use.

2) The number of POINTS for each probleni indicates how elaborate an answer is
expected. For example, an essay-type question worth 6 points or less doesn't deserve an
exlremely detailed answer, even though a person can expound at length on just about
any topic in computer science.

3) The total number of points is 60, and the exam takes 60 minutes. This "coincidence"
can help you plan your time.

4) This exam is CLOSED BOOK. You may NOT use notes, articles, books, computer, etc.

5) Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the idea
doesn't work ou'; your can also get credit for realizing that certain approaches are
incorrect"

6) If you are convinced you need to make an assumption to answer a question, state your
assumption(s) as well as the answer.

7) Be sure to provide justification for your answers.

Comprehensive Exam: Software Systems (60 points)

1) (10 points) Describe the purpose of device drivers in modem operating systems. (Hint:
I'm looking for something more than "they drive devices.")

2) (18 points) The algorithms and data structures used in operating systems are frequently
a function of the hardware technology. As hardware technology has changed so have
operating systems. For the following hardware technology changes, describe the oper-
ating system algorithms and data structures that might need to be changed.
(a) A very large (multiple order-of-magnitude) increase in physical memory size.
(b) A large increase in the number of bits in a virtual address.
(c) An increase in the number of CPUs in the system from one to many tens of CPUs.

3) (12 points) The UMX operating system has a file buffer cache that uses a writeback
policy with a 30 second timeout. This means that changes to file blocks can sit in the
buffer cache for up to 30 seconds before being written back to the disk. What are moti-
vations for and drawbacks of this scheme?

4) (8 points) Describe what an atomic operation is. Give examples and describe why they
are useful.

5) (12 points) Describe the necessary and sufficient conditions for deadlock. For each con-
dition describe a practical deadlock prevention technique that works by preventing the
condition from arising.

Comprehensive Exam: Software Systems Solutions (60 points)
1) (10 poinu) M k the p o p e of device driven in modem operating systrms. (Hint I'm looking for somalung morr than %ey

drive &via.")

The key purpose of device drivers is to keep device-specific algorithms and data structures
contained to a relatively small portion of the kernel. The operating system defines a stan-
dard interface to devices and it is the job of the device drive to convert this standard inter-
face to the needed device-specific operations.
2) (18 paints) The algorithms md daa stmcmrcs used in opcming sysrems me frcqumtly a h a o n oftbe bard- tdmology. As

h a d m 6 d o g y bPr dmnged so have opcnting systems. For tbe fobwing hadware technology changes. describe the opem-
ing system algo&hs and data stmanm &at might need to be h g e d .
(a) A vey k g e (multiple orderof-magnimde) incluce in pbysial memoy rin
(b)AkrgeiorJcwinthenrrmkrof biuinavirmalddress.
(c) An incroct in the number of CPUt in the ynem fnnn one to mrny tens of CPUr.

(a) A large increase in physical memory will sfress the physical memory management data
structures including the memory free list and the page replacement algorithm. Since mem-
ory is a less precious resource, we might want to modify the OS to spend less resources
tracking it. For example, switching to a simple page replacement algorithm rather than
LRU. Other algorithms that would probably need to be changed including the manage-
ment of swap space (physical memory might be larger than the swap disks). Additional
caching of files, etc. could be done with the extra memory.
(b) A large increase in virtual address space will stress the virtual to physical mapping
data structures (i.e. page tables) maintained by the kernel. The OS will have to go to a
multi-level or invented page tables. It can also cause problem for swap space manage- r? ment.
(c) Large changes will be needed in the synchronization used as well as the scheduling and
many other parts of the system.
3) (12 poinu) The UNIX openring systea~ h u a file M u ache that uses a wri- p d i y aritb a 30 -d rim- This muns

tbatchrngesto6k ~ ~ n t i n t h e ~ a ~ f o r n p t o 3 o ~ & b c f o ~ b c m g ~ b r d r ~ , t b e d i r k . Wbcarcmotiva-
tims for and drawbacks of thir heme?

The motivations include decoupling of file write speed from that of the disk, the ability to
coalesce multiple writes to the same block into a single write to disk, and the ability to
generate multiple block writes so the disk scheduler can optimize disk access patterns.
The chief drawback is data can be lost if the system crashes.
4) (8 poiau) Desuibc whu UI atanic +at is. Give aumples md -bc why hey ue rrrefpL

An atomic operation is an operattion th* from some point of view, appears indivisible.
Partial results of an atomic operation are never visible. From another entity viewing the
operation, the changes made will happen instantly so the viewer will see either all or none
of the changes. Examples of atomic operations are operations on a data structure such that
all operations are performed while holding a lock Atomic operations make it easier to rea-
son and build systems because within atomic operations the presents of other processes
can be ignored.

A

5) (I2 points) Ducrik the -wry and sd6cienc collditimr for deadlock. For tach coadi~on ductik a pnaicd duQodt pnveo-
tiar technique rht worlcr by preventing the condition fmm rrising.

f l
There are four necessary and sufficient conditions for deadlock:
(a) Limited access: resources cannot be shared.
(b) No preemption. Once given, a resource cannot be taken away.
(c) Multiple independent requests: processes don't ask for resources all at once.
(d) There is a circularity in the graph of who has what and who wants what.

Preventing the condition:

I4o1ating (a) is pretty tough to do in a general-purpose system. Having enough resources
so that they don't need to be shared is done is some special-purpose operating systems.

Violating (b) is again pretty difficult in a general-purpose system. Although it is possible
to construct a system such that all resources are preemptable, resources attached to the
outside world (e.g. terminals, printers) are difficult to preempt.

(c) can be violated by requiring processes to request all resources at once and having the
system wait until all the resources are available before continuing.

(d) can be violated by forcing an order to resource requests such that cycles in the graph
are avoided.

