
1 % Comprehensive Exam: Autumn 1995

0 SOLUTIONS: AUTOMATA AND FORMAL LANGUAGES

Instructions: You are expected to sketch the main ideas in your solutions. but be very brief and
avoid unnecessary detail. You are permitted to invoke any result proved in the Hopcroft-Ullman
book provided you include the appropriate citation.

1. (9 points) Consider the following context-free grammat G over the alphabet C = {a, b) .

(a) [3 points] Give a succinct description of L(G).
(b) (4 poinq Show that G is an ambiguok grammar.
(c) [2 points] What productions should you delete from G to render it unambiguous
without changing its language?

Solution:

(a) L(G) = {anb" (n 2 1).

(b) The following are two distinct leftmost derivations for the string &, implying
that the grammar must be ambiguous.

(c) Deleting the variable A or the variable B, as well as all related productiona, gives
an unambiguous grammar with the same language.

2. (12 points) Let c M > denote any natural encoding of a T h i n g machine M. Consider
the following decision problem:

Lo = {< M >I 3 odd numbers p, q such that L(M) hss string of length both p and q)

Prove that Lo is undecidable by using a reduction from the halting problem (which is
known to be undecidable). Recall that the halting problem corresponds to the language
Ln = {c M, w >I Thing Mchine M halts on input w).

Solution= We use the fo11owhg reduction from Ls to Lo to obtain the proof of
undecidability. Given a Thing machine M and input w, &natruct a Thing machine
ii? which behaves as follows on being given input 8.

(a) &? ssimulaks the behavior of M on input w, and

(b) IZ -pts its hput a if M hhalt~ on W.

I I To show that the above reduction works, we need to prove that:
l i l

(a) There is an algorithm that computes a given M, w.
(b) <M,w>E Lg if and only if <a>€ Lo.

I I The proof proceeds as follows. I
(a) Given w and a description of M, it is easy to construct a Turing machine that

simulates the computation of M on input w, using the same ideas used in the
construction of the universal Turing machine (see Theorem 8.4 in the textbook).

(b) Let 3 be any input string. Then,
G accepts G
e the simulation of M on w hats
e <M,w>E LEI.

Consequently, if < M, w >E Lg then accepts dl strings and so must belong to
Lo. Conversely, if < M, w >e Lg then M^ does not accept any string at dl and
so cannot belong to Lo.

3. (9 points) Prove that the following decision version of the foLlowing 3-PATH problem
is NP-complete.
INSTANCE: An undirected graph G(V, E). A -,,

QUESTION: Is there a collection of 3 vertex-disjoint paths in C that cover all the
vertices?

Informally, the answer is YES if there exist 3 paths in the graph such that each vertex
is contained in ezcrctly one of these paths.
(Hint: You may assume that the Hadtoniau Path problem is NP-complete. This
is the probiem of deciding whether a given graph hss a path containing each vertex
exactly once.)

Solution= We first verify that the $PATH problem is in NP. A polynomial time
algorithm can d y "guess" three disjoint sequenm of vertex labeis, and then check
that the following 6 conditions are satided: each vartax appeam in exactly one of
these three sequences; and, each sequence corresponds to a path in the graph G.
To establish the NP-hardness of %PATH, we provide a polynomial time reduction from
the HAMILTONIAN PATH problem, which is known to be NP-complete. An instance
of the HAMILTONIAN PATH problem is some graph H and the goal is to check
whether it has a path containing all the vertices. We transform this to the $PATH
problem by producing a graph G which consists of 3 disjoint and disconnected copies
of the graph H. We now need to show that G has a &path cover if and only if H is
hamiltonian. n

If H is ha~@tomirn, then the three hamiltonian paths in the three copies of H in G
wil l con@itute a tpa th cover for G. Conversely, suppose that G has a %path cover.
Since G consists of 3 disconnected copies of H, the 3 paths must lie in distinct copies.
Clearly, each path must be a 1-path cover, or a hamiltonian path, for the copy of H
in which it lies. Thus, H must be hamiltonian.

