
1 %  Comprehensive Exam: Autumn 1995 

0 SOLUTIONS: AUTOMATA AND FORMAL LANGUAGES 

Instructions: You are expected to sketch the main ideas in your solutions. but be very brief and 
avoid unnecessary detail. You are permitted to invoke any result proved in the Hopcroft-Ullman 
book provided you include the appropriate citation. 

1. (9 points) Consider the following context-free grammat G over the alphabet C = {a, b) .  

(a) [3 points] Give a succinct description of L(G). 
(b) (4 poinq Show that G is an ambiguok grammar. 
(c )  [2 points] What productions should you delete from G to render it unambiguous 
without changing its language? 

Solution: 

(a) L(G) = {anb" ( n 2 1). 

(b) The following are two distinct leftmost derivations for the string &, implying 
that the grammar must be ambiguous. 

(c)  Deleting the variable A or the variable B, as well as all related productiona, gives 
an unambiguous grammar with the same language. 

2. (12 points) Let c M > denote any natural encoding of a T h i n g  machine M. Consider 
the following decision problem: 

Lo = {< M >I  3 odd numbers p, q such that L(M) hss string of length both p and q )  

Prove that Lo is undecidable by using a reduction from the halting problem (which is 
known to be undecidable). Recall that the halting problem corresponds to the language 
Ln = {c M, w >I Thing Mchine M halts on input w). 

Solution= We use the fo11owhg reduction from Ls to Lo to obtain the proof of 
undecidability. Given a Thing machine M and input w, &natruct a Thing machine 
ii? which behaves as follows on being given input 8. 



(a) &? ssimulaks the behavior of M on input w, and 

(b) IZ -pts its hput a if M hhalt~ on W. 

I I To show that the above reduction works, we need to prove that: 
l i  l 

(a) There is an algorithm that computes a given M, w. 
(b) <M,w>E Lg if and only if <a>€ Lo. 

I I The proof proceeds as follows. I 
(a) Given w and a description of M, it is easy to construct a Turing machine that 

simulates the computation of M on input w, using the same ideas used in the 
construction of the universal Turing machine (see Theorem 8.4 in the textbook). 

(b) Let 3 be any input string. Then, 
G accepts G 
e the simulation of M on w hats  
e <M,w>E LEI. 

Consequently, if < M, w >E Lg then accepts dl strings and so must belong to 
Lo. Conversely, if < M, w >e Lg then M^ does not accept any string at dl and 
so cannot belong to Lo. 

3. (9 points) Prove that the following decision version of the foLlowing 3-PATH problem 
is NP-complete. 
INSTANCE: An undirected graph G(V, E). A -,, 

QUESTION: Is there a collection of 3 vertex-disjoint paths in C that cover all the 
vertices? 

Informally, the answer is YES if there exist 3 paths in the graph such that each vertex 
is contained in ezcrctly one of these paths. 
(Hint: You may assume that the Hadtoniau Path problem is NP-complete. This 
is the probiem of deciding whether a given graph hss a path containing each vertex 
exactly once.) 

Solution= We first verify that the $PATH problem is in NP. A polynomial time 
algorithm can d y  "guess" three disjoint sequenm of vertex labeis, and then check 
that the following 6 conditions are satided: each vartax appeam in exactly one of 
these three sequences; and, each sequence corresponds to a path in the graph G. 
To establish the NP-hardness of %PATH, we provide a polynomial time reduction from 
the HAMILTONIAN PATH problem, which is known to be NP-complete. An instance 
of the HAMILTONIAN PATH problem is some graph H and the goal is to check 
whether it has a path containing all the vertices. We transform this to the $PATH 
problem by producing a graph G which consists of 3 disjoint and disconnected copies 
of the graph H. We now need to show that G has a &path cover if and only if H is 
hamiltonian. n 



If H is ha~@tomirn, then the three hamiltonian paths in the three copies of H in G 
wil l  con@itute a tpa th  cover for G. Conversely, suppose that G has a %path cover. 
Since G consists of 3 disconnected copies of H, the 3 paths must lie in distinct copies. 
Clearly, each path must be a 1-path cover, or a hamiltonian path, for the copy of H 
in which it lies. Thus, H must be hamiltonian. 




