O

Comprehensive Exam: Autumn 1995

SOLUTIONS: AUTOMATA AND FORMAL LANGUAGES

Instructions: You are expected to sketch the main ideas in your solutions, but be very brief and
avoid unnecessary detail. You are permitted to invoke any result proved in the Hopcroft-Ullman
book provided you include the appropriate citation.

1. (9 points) Consider the following context-free grammar G over the alphabet T = {a, b}.

S — aB|Ab|ad
A — aS
B — Sb

(a) [3 points] Give a succinct description of L(G).

(b) [4 points] Show that G is an ambiguous grammar.

(c) [2 points] What productions should you delete from G to render it unambiguous
without changing its language?

Solution:

(a) L(G) = {a"t* | n 2 1}.

(b) The following are two distinct leftmost derivations for the string aabb, implying
that the grammar must be ambiguous.

S'éaB'éaSb'éaabb
S4B Ab <D aSh =B aabb

(c) Deleting the variable A or the variable B, as well as all related productions, gives
an unambiguous grammar with the same language.

2. (12 points) Let <M > denote any natural encoding of a Turing machine M. Consider
the following decision problem:

Lo = {<M>| 3 odd numbers p, g such that L(M) has strings of length both p and ¢}

Prove that Lo is undecidable by using a reduction from the halting problem (which is
known to be undecidable). Recall that the halting problem corresponds to the language
Ly = {< M, w>| Turing machine M halts on input w}.

Solution: We use the following reduction from Lg to Lo to obtain the proof of
undecidability. Given a Turing machine M and input w, construct a Turing machine
M which behaves as follows on being given input @.

(a) M simulates the behavior of M on input w, and
(b) M accepts its input @ if M halts op 1.

To show that the above reduction works, we need to prove that:

(a) There is an algorithm that computes M given M y W
(b) <M,w>€ Ly if and only if <M >¢€ L.

The proof proceeds as follows.

(a) Given w and a description of M, it is easy to construct a Turing machine M that
simulates the computation of M on input w, using the same ideas used in the
construction of the universal Turing machine (see Theorem 8.4 in the textbook).

(b) Let @ be any input string. Then,

M accepts @

< the simulation of M on w halts

® <M,w>€ Lg. _
Consequently, if <M, w>€ Ly then M accepts all strings and so must belong to
Lo. Conversely, if < M, w >¢ Ly then M does not accept any string at all and
so cannot belong to Lo.

3. (9 points) Prove that the following decision version of the following 3-PATH problem
is NP-complete.
INSTANCE: An undirected graph G(V, E).
QUESTION: Is there a collection of 3 vertex-disjoint paths in G that cover all the
vertices?
Informally, the answer is YEs if there exist 3 paths in the graph such that each vertex
is contained in ezactly one of these paths.

(Hint: You may assume that the Hamiltonian Path problem is NP-complete. This
is the problem of deciding whether a given graph has a path containing each vertex
exactly once.)

Solution: We first verify that the 3-PATH problem is in NP, A polynomial time
algorithm can easily "guess” three disjoint sequences of vertex labels, and then check
that the following two conditions are satisfied: each vertex appears in exactly one of
these three sequences; and, each sequence corresponds to a path in the graph G.

To establish the NP-hardness of 3-PATH, we provide a polynomial time reduction from
the HAMILTONIAN PATH problem, which is known to be NP-complete. An instance

If H is hamiltonian, then the three hamiltonian paths in the three copies of H in G
will constitute a 3-path cover for G. Conversely, suppose that G has a 3-path cover.
Since G consists of 3 disconnected copies of H, the 3 paths must lie in distinct copies.
Clearly, each path must be a 1-path cover, or a hamiltonian path, for the copy of H
in which it lies. Thus, H must be hamiltonian.

