
Compilers Solutions

0 There are a k b e r of essay questions on this exam. You should, of course, keep your answers
clear and concise.

1. (5 minutes) Answer true or false. In all questions, assume that the context-free grammar has
no useless symbols.

(a) There exists a context-free grammar with that is LL(1) but not LR(1).
false

(b) There exists an context-free language that is LR(1) but not LL(1).
true, e.g. {aibi I i > j }

(c) YACC can correctly parse all ambiguous context-free grammars by using precedence and
associativity hints.
false, e.g. {a'bick I i = j or j = k }

(d) There exists an unambiguous grammar that is not LR(1).
true, e.g. S 4 AaalBab; A -+ E; B 4 E

(e) LALR(1) parser generation (not parsing) is linear in the size of the input grammar.
false - it's ezponential in the worst case. Parsing is linear in the input size, though.

2. (10 minutes) Consider the following grammar:

(a) Compute the FIRST and FOLLOW sets for the nontenninals of the grammar.

First and Follow sets

(b) Based on the FIRST and FOLLOW sets, is it LL(l)? Explain your answer.

The gmmmar is not LL(1)) becawe the right-hand-sides of productions B -t b
and B 4 SC both have b in their FIRST sets. Also, the a is in FIRST of
A 4 aA and FOLLOW of A (=levant becawe of A 4 E production).

(c) What is the language of this grammar? From inspecting the language, is it obvious
whether there exists an LL(1) answer (if you say it's obvious, explain [obviously]).

The language of the gmmmar is regular (a'bc*), so the= is an LL(1) gmmmar.

3. (10 minutes) These questions are about the handling of variables by a compiler for a simple
language like C. In your answers, address only the compiler behavior that is necessary for
code genemtion. Do not address type checking or other aspects of semantic analysis are not
strictly necessary to emit code for correct programs.

(a) Describe the compiler's processing of a global variable g of type int, both at the point
of declamtion and at the point of use.

There is a large amount of latitude in the answers, depending on what assump-
tions one makes about the language and compiler. Here is an example:
At the point of declamtion, the compiler needs to enter info about g into the
symbol table, including its type, etc. but especially, its location. The offset is
established when the variable is allocated within the global data section. The
offset is a compile-time constant. The actual address of the global data section
of memory is often not established until link time, but it is a constant when the
program is actually executed.
At the point of we, the compiler needs to compute the address of the variable. If
no a m y indexing is required (as when it is of type i n t , the address is a known
constant, so no code needs to be genemted. However, code is needed to fetch the
value of the variable from the memory location.

(b) How is the handling of a local variable declaration of type int different?

Obviously, the variable is tagged as a local, not glohl variable when it goes in the
symbol table. The offset is relative to a stack fkme pointer of some kind, which
is usually stoned in a machine register. Usually, all the locals for the procedure
are allocated in a single stack fmme for the pmedure. The stack frcrme pointer
is set up when a function is called, and restored when the function returns.
When the variable is accessed, code is needed to add the contents of the frame
pointer to the ofset for the local variable. This is almost exactly the same code
that would be required for an ezpression with + in it. Once the location of the
variable has been computed, code must be genemted to fetch the value.

(c) What information does the compiler have to maintain in the symbol table to generate
code for ACi] .f Cj]?

It needs to keep tmck of whether the variable A is lacal or global, and what its
ofset is (as above). It also needs remember the sizes of the army elements (to
do army intiezing) and the offsets of fields within structures. The genemted code
computes (frame pointer) + (ofset of A) + i * (size of A elements) + (ofset
o f f) + j * (size of A[i].f elements)

4. (5 minutes) Imagine a language in which the types of expressions can be determined in a
single bottom-up traversal of the syntax tree of a program. The language also has implicit
type conversions (also called coemions), such as int to f loa t .

How could a compiler

recognize when coercions need to occur, and

generate code to perform them

in a single bottom-up traversal of an expression?

A coercion is necessary when there is a type mismatch between opemnds and oper-
ator, which can be detected during a bottom-up pass when the types of the opemnds
have &en determined and the opemtor is examined. For example, in the expression
i + x, if i is an integer and x is a float, there is a type mismatch, because + requires
two integers or two floats.
Machines that support floating point have conversion instructions. The compiler
acts as though it had inserted a conversion operation into the syntax tree at the
point of the type mismatch, which it then compiles just like any other opemtor. For
example, i + x would become flt(i) + x (which provides two float opemnds to +),
and the appropriate machine instructions would be generated to compute the result
of flt(i), which is then added to x.

