
Section Faculty Page
Table of Contents 1
Analysis of Algorithms [Unknown] 2
Analysis of Algorithms solutions 4
Artificial Intelligence [Unknown] 6
Artificial Intelligence solutions 11
Automata and Formal Languages [Unknown] 15
Automata and Formal Languages solutions 17
Compilers [Unknown] 19
Compilers solutions 22
Computer Architecture solutions 25
Databases solutions 34
Logic solutions 35
Numerical Analysis [Unknown] 36
Numerical Analysis solutions 38
Software Systems [Unknown] 40
Software Systems solutions 42

1

Computer Science Department
Stanford University

Comprehensive Examination in Analysis of Algorithms
Autumn 1994

October 17, 1994

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in
BLUE BOOKS. There are 5 problems in the exam. Be sure to write you MAGIC
NUMBER on the cover of every blue book that you use.

2. The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. The total number of points is. 60, and the exam takes 60 minutes. This
"coincidence" can help you plan your time.

3. This exam is CLOSED BOOK.

4. Show your work, since PARTIAL CREDIT d be given for incomplde answers.

Comprehensive Exam: Analysis of Algorithms (60 points) Autumn 1994 0
1. (Spts) Determine the order of growth of the function T(n), defined by the following recurrence: I

T(1) = 1.

For n 1 2, T(n) = 3T(n/6) + n.

2. (Spts) How many different irreftexive symmetric binary relations can be dehed on a set of
n elements ?

3. (15pts) Consider a weighted undirected graph with n nodes and rn edges. Assume that you
are given a minimum-weight spanning tree of this graph. How fast can you recompute the
minimum spanning tree after the weight of one of the edges decreases by some given amount?
Give a concise proof that your algorithm indeed produces a minimum-weight spa,nning tree.

4. (15pts) You are presented with a sequence of functions fly f2,. . ., where each function is
dehed on the interval from 1 to n. h c t i o n fi is equal to 1 on the interval from 1 to some
si and equal to 0 on the interval from si + 1 to n. The sequence is presented one junction at
a time. At any moment you might be given x E (1.. . n) and asked to evaluate at z the sum
of all of the functions that were already revealed to you.
Describe a data structure that stores the known functions and supports two operations: "eval-
uate EL, fi(x)", where k is the number of known functions in the sequence, a d "add a
new function." One (inacient) possibility is to maintain an array of size n. .Jnitially, every
element in the array is set to 0. Each time a new function (say, fk) is revealed, we add 1
to all elements numbered 1 to s i . In this case, adding a new function takes O(n) operations (?

J

and evaluating the sum takes O(1) operations. Your g d is to design a data structure that
is efficient both for computing the sum and for adding a new function to the set of known
functions.

Describe a data structure where each one of the above operations takes O(1og n) time. Assume
that you have O(n) storage available.

5. (2Opts) You have a computer that consistently trashes your disk each time you run more
than k processes at the same time. You would like to find the value of k, while trashing youi
disk at most 2 times. Assume that you know that k n.

(a) (Spts) Describe a strategy that minimhes the number of "eqmkmntsn needed to find
k, where an experiment consists of running some number of processes, running %ckn
ahwards to check whether the disk was trashed, and restoring the file system if it was.

(b) (Spts) Generalize your strategy to any (constant) number of allowed crashes. Given a
fixed number of crashes you are willing to sustain, what is the asymptotically maximum
number of experiments used by your strategy ?

(c) (10pts) Prove that, in the worst case, your strategy achieves asymptotically minimum
possible number of experiments in the case where you are allowed only 2 crashes.

Algorithms
Comprehensive Exam: Analysis of Algorithms (60 points)

PI - . Autumn 1994

L >-

Problem 1

First we compute a = log, 3 and compare na it with n. In our case, n = S2(na+<) for sficiently
small constant E . Moreover, the "regularity conditionn is d e d , i.e. 3n/6 < /3n for a constant fi
(for example, P = 314 works). Hence, we can conclude that T(n) = O(n).

Problem 2

Binary'relations on n elements have 1-to-1 correspondence with 0/1 n x n matrices. Entry Aij = 1
if and only if (i, j) pair belongs to the relation. Symmetric means that A,, = Aji, and irreflexive
means that the diagonal of A is 0. Hence, in order to determine a relation we need to set n(n - 1)/2
entries in the matrix. There are 2n(n-1)/2 possibilities.

Problem 3

If the edge with reduced weight is in the tree, then there is nothing to do. If it is outside the tree,
then adding it to the tree creates a cycle. To construct a new tree, we delete the largest weight edge
on this cycle. This can be implemented in O(n) time.

It remains to prove that the resulting tree is MST. We need a bit of notation. Let w denote
the original edge weights and w' denote the new edge weights. Denote the deleted edge by el and
the new edge by e2. Let T denote the original MST and let T' denote the computed MST, i.e.
T' = T - el + e2.

Assume there exists an MST T" where w' (TI') < w'(T1). Observe that Tt has to use e2, otherwise
0 T is not MST. Consider the cycle that includes el and e2 in T + el. One of the edges, say e3, on

this cycle is not in TI'. Add it to T" and remove e2. The weight of the resulting tree is at most

w' (T") + w' (es) - w1(e2) I w'(T1) + w(el) - wt(e2)
< wt(T) + w(el) - w1(e2)

= w (n

Thus, we got a tree that does not use el, but which is cheaper than T, which is a contradiction.

Problem 4

Our data structure will be a complete b i i tree with 2 f h a leaves. Each no& of the tree holds a
single number in addition to. the pointers to the parent and its children, and h c e the total storage
requirements are O(n).

Given a point x E [l . . . n], to compute the value of the sum of the already revealed functions at
z, we start at the leaf that corresponds to z and traverse the tree up, adding all the numbers that
we encounter up to the root. Clearly, this takes O(depth) of the tree, i.e. O(1ogn).

Assumewearegivenanew function that is1 fromltosardOfroms+l ton. Representsas
a binary number with pog3 nl digits. 'Ikaverse the tree starting at the root, going l& if the digit is
0 and going right if a digit is 1. Each fime we go right, we add 1 to the number stored at the left
child of the current node. This takes O(depth) of the tree, i.e. O(1ogn).

Problem 5 - -

Observe that the question corresponds to probing an array of n elements where all elements up to
k are 0 and the rest are 1. A crash corresponds to probe returning "1".

5a Probe at i f i for i = 1,2,. . ., until the first time a probe returns 1. T&s identifies a range
i'fi 5 k < (i* + 1)fi for some is. Explore this range by linearly probii i '6, ii'fi+l,. . ..
Both stages of this strategy use at most O (m probes.

5b Assume we are allowed q crashes. Probe the array at O(nl/q) equally spaced places, starting
from 1, until the k t time a probe returns 1. This idenMes a range of size O(nl-l/q) where k
might be. Again, probe at most O(nl/q) equally spaced places, starting at the smallest index
of the identified range, until the first 1 is found. This identi6es a range of size O(n1-2/q).
Continue until the size of the range is O(nl/q). Search this range linearly.

At each one of the q stages of this strategy we used O(nL/q) probes, and thus we used O(qnl/q)
probes total.

5c We will use the "admsay" argument. In other words, the adversary will let the algorithm
probe, and decide on the value of k as it gues along. The only constraint is that this value
should be consistent with all the answers to the probes.

Initially, k is in the range of 1 to n. The algorithm has to issue probes that force the adversary
to pick a spec& k. The algorithm can not temhab as long as the ad- has any freedom
in picking k, since in this case the value of k returned by the algorithm wil l not be correct.

We say that a probe is of "type 1" if it is closer than fi to the -st index probed up until
now. Probes Wow the maximum-probed index do not bring any new information and hence
can be discarded. We classify the rest of the probes as %ype 2".

As long as the algorithm uses "type 1" probes, the adversary returns 0. Note that each one
of these probes can decrease the range of possible values for k by at most 6, and hence the
algorithm needs at least at least O(& type 1 probes to decrease the range of possible values
for k to below 6.
Thus, if the number of probes is below Q(\/Ti), the algorithm malren at least one type 2 probe.
As a response to the first such probe, the adversary returns 1. At this moment, the only
restriction on k that the adversary has is that k is larger than the largest probed index that
returned 0 and smaller than the index probed by the type 2 probe. From now on the only
valid algorithm is to linearly probe this range. This is true because if the algorithm misses
an index, say a, then the adversary sets k to i and returns 1 at the next probe. Hence, in this
case, the total number of probes is O (a .

. - Computer Science Department
Stanford University

Comprehensive Examination in Automata and Formal Languages
Autumn 1994

October 17, 1994

READ T m FIRST!

1. You should write your answers for this part of the Comprehensive Examination in
BLUE BOOKS. There are three problems in the exam. Be sure to write your MAGIC
NUMBER on the cover of every blue book that you use.

2. The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. The exam takes 30 minutes.

3. This exam is OPEN BOOK. You may use notes, articles, or books-but no help from
other sentient agents such as other humans or robots.

4. Show your work, shce PARTIAL CREDIT d be given for incomplete answers.

Comprehensive Exam:
. .

Autumn 1994 C:
Automata and Formal ~ a n ~ u a ~ & (30 points)

Instructions: You are expected to sketch the main ideas in your solutions. but be very brief and
avoid unnecessary detail. You are permitted to invoke any result proved in the Hopcroft-Ullman
book provided you include the appropriate citation.

1. (8 points) Consider the following context-free grammar G.

Let LA and LB be the languages consisting of the teminal strings that can be derived
from the variables A and B, respectively.

(a) [4 points] Show that LA and LB are regdm by providing regular expressions for
these two languages.

(b) [4 points] Show that L(G) is regular by providing a regular expression for it.
F"9

2. (10 points) A monotone 2-SAT formula is a 2-CNF boolean formula F (XI, . . . ,zn)
- -

which does not contain negated variables. For example:

It is clear that there always exists a truth assignment for the variables XI, . . . , x,
satisfying the f o d a F - simply set each mriable to TRUE.

Consider the following problem called MONOTONE 2-SAT: given a monotone %SAT
formula F and s pasitive integer k, determine whether there exists a tmth assignmkt
satisfying F such that the number of variables set to TRUE is at most k.

Show that the MONOTONE 2-SAT problem is NP-hard. (Hint: Think about the
vertex cover problem.)

3. (12 points) Consider the following decision problem:

Given a deterministic finite state automaton (DFA) M over the dphabet
C = {0,1}, does L(M) contain at least 2 strings?

Is this problem decidable? Justify your answer. (Hint: Think about the decision
problems of deciding emptiness and finiteness of regular lasguages.)

SOLUTIONS:
Automata
Comprehensive Exam: Autumn 1994

Automata and Formal Languages (Solutions)

Instrudionn: You are expected to sketch the main ideas in your solutions, but be very brief and
avoid unnecessary detail. You are permitted to invoke any result proved in the Hopcroft-Ullman
book provided you include the appropriate citation.

1. (8 points) Consider the following context-free grammar G.

Let LA and Lg be the languages consisting of the terminal strings that can be derived
from the variables A and B, respectively.

(a) [4 points] Show that LA and LB are regular by providing regular expressions for
these two languages.

(b) [4 points] Show that L(G) is regular by providing a regular expression for it.

Solution: By inspection, Lg has the regular expression (boy, and LA has the regular
expression a(&)*.

Consider now the productions from S. We observe that the productions from A and B
do not generate any sententid form containing S. Aleo the production S -+ bABaa is
not recursive in S which implies that it can be used at most once in the any derivation
from S. h m these facts, we can conclude that the strings derived from S are of the
form (bABaa + a)ao. Thus, L(G) has the regular expression (&(&)*(&)* + a)am, which
simplifies to (ba(&)' + a)ao.

2. (10 points) A monotone 2SAT formula ia a 2-CNF boolean formula F(z1,. . . , t n)
which does not contain negated variables. For example:

It is clear that th&e always exists a truth assignment for the variables 21,. . . , zn
satisfying the formula F - simply set each variable to TRUE.

Consider the following problem called MONOTONE 2-SAT: given a monotone M A T
formula F and a positive integer k, determine whether there exists a truth assignment
sati*ing F such that the number of variables set to TRUE is at most k.

Show that the MONOTONE 2-SAT problem is NP-hard. (Hint: Think about the
vertex wver problem.)

Solution: In a graph G(V, E) with V = (1, . . . , n), a vertex cover is a set of vertices
C c V such that for each edge (i , j) E E, (i, j) t7 C # 0. The VC problem is the
following: given a graph G(V, E) and a positive integer k, does G contain a vertex
cover of size at most k. We know that VC is NP-hard, and establish the NP-hardness
of MONOTONE 2-SAT by reduction from VC.
The reduction starts with a VC instance c 0, k > and creat- aa instance < F, k > of
MONOTONE ZSAT, where the monotone 2-CNF formula F is defined as follows: for

. . each vertex i E V, create a boolean wiable xi; for each edge (i , j) E E, create a clause
xi V xj. The reduction runs in linear time, but it remains to verify its correctness.
Suppose G(V, E) has a vertex cover C of size at most k. Consider the truth assignment
for the wiables in F in which Xi = TRUE if and only if i E C; clearly, the number of
TRUE variables is at most k. We claim that this is a satisfying truth assignment for F.
To establish the claim, we show that esch clause xi V +j in F is satided. Since (i , j)
must be an edge, and C must contain at least one of i and j, if follows that at least
one of xi and X j is assigned TRUE and the-clause is satisfied.
Suppose now that there is a satisfying truth assignment for F with no more than k
wiables set to TRUE. Consider the set of vcrtiag C = (i I 2; = TRUE); dearly,
ICI I k. We cla.im that C is a vertex cover for G. To see! this, focus on any one edge
(i , j) E E. Since F must have a clause xi V zj , and that clause is satisfied. at least one . - .

of Xi and +j is assigned TRUE and so at one end-point of the edgg (i,,) belongs
to C.

3. (12 points) Consider the following decision problem:

Given a detemninistic fmite state automaton (DFA) M over the alphabet
C = (0, I), does L(M) contain at least 2 strings?

Is this problem decidable? Justify your aaswer. (Hint: Think about the decision
problems of deciding emptiness and hiteness of regdat languages.)
Solution: The problem is indeed decidable. The proof is similar to that for the
decidability of emptiness or infiaiteness of regular languages, as described in Theorem
3.7 (Hopcroft-man, p. 63). We abo make use of the fact that given any string x, it
is possible to decide membership of x in L(M).
Let n be the number of states in the DFA M. The decision procedure enumerates all
strings x E B* of 1-h less than n, and checks for their membership in L(M); let ml
be the number of such strings in L(M). Then, the decision procedure enumerates all
strings x E C* such that n 5 Jzl c 2n and check. their membership in L(M); let m2
be the number of such strings in L(M).
By Theorem 3.7, if m, > 0 then L(M) is infinite, and the procedure outputs YES.
Assume now that rn* = 0. By Theorem 3.7, or by a direct application of the Pumping
Lemma, we have that if L(M) contains a string of length at least 2n then it must
contain a string of length between n and 2n - 1, i.e., m2 > 0. Since m2 = 0, d strings
in L(M) axe of length less than n implying that I L(M)(= ml. Thus, the decision
procedure now has to merely verify that ml 2 2.

Computer Science Department
Stanford University

Comprehensive Examination in Compilers
Autumn 1994

October 20, 1994

READ TBTS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. Be sure you have all the pages of this exam. There are 2 pages.

3. This exam is OPEN BOOK. You may use notes, articles, or books-but no help &om
other sentient agents such as other humans or robots.

4. Show your work, since PABTIAL CREDIT d be given for incomplete answers. For
example, you can get credit for making a .reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realizing that certain approaches

0
are incorrect. On a true/false question, you might get partial credit for explaiuing
why you thinlc something is true when it is actually false. But no partial credit can
be given if you write nothing.

..

. . CS Comprehensive Exam: Compilers (30 points)

1. (7 points) . , . . - .
Comments in the C programming language are introduced by the characters /* and ter-
minated by the characters */. They do not nest and they do not occur within string or
character literals. For each of the following regalar expressions, indicate whether or not the
expression describes precisely the set of all valid C comments. For those that do not, provide
a counterexample. Assume for conve~:mce that the character set is {* , / , a).

(a) /*(/la/*)'*/
(b) /*(al/)'*(*la(al/)'*)'/

(c) /*(aI/)**(*la(a//)**)**/

2. (8 points)

The following grammar generates all re& expressions over the alphabet {a, 6):

where '+' denotes 'or'. Unary * has highest precedence, fobwed by concatenation; disjunction
has the lowest precedence. All operators are left associative.

(a) Show that the grammar is ambiguous.

(b) Construct an equivalent unambiguous grammar that enforces the correct operator prece-
dence and associativity.

0
(c) Eliminate any left-recursive productions and productions with common prefixes fiom

your grammar in (b).

3. (4 points) What is meant by structud equivalence and name quivalence of types? Is one
more restrictive than the other? Is one easier for a compiler to check than the other?

4. (11 points) I
Suppose you are asked to extend the C programming language to allow overloading of aser-
defined functions, based on the number of formal parameters and their types.

Answer the following questions as bridy, yet clearly, as you can. We are more interested in
abstract operations (e.g., "store 2 in a table, along with its sizen) than in implementation
details (e.g., "for performance, implement the table with a doubly-linked list of AVL treesn).

(a) How can a compiler keep track of the parameters and their types? Desaibe what should
be recorded when a function declaration is processed.

(b) How tan a compiler determine which function to invoke in a procedure call? Describe
what and how idonnation can be retrieved when resolving a procedure call.

(c) Describe. .me errors that can occur as a result of. this language extension, and how a
compiler can detect them.

Compilers

CI -. CS Comprehensive Exam: Compilers (30 points)

1. (7 points)

Comments in the C programming language are introduced by the characters /* and termi-
nated by the characters */. They do not nest and they do not occur within string or character
literals. Indicate whether or not each of the following regular expressions describes precisely
the set of all valid C comments. For those that do not, provide a counterexample. Assume
for convenience that the character set is {* , / , a).

(a) /*(/la!*)'*/
Am: no, this expression matches /**/*/.

(b) /*(al/)'*(*la(al/)'*)*/
Am: yes, perhaps most easily seen by constructing a DFA.

(c) /*(aI/)L*(*(a(al/)**)'*/
Am: no, this expression fails to match /**/.

2. (8 points)
The following grammar generates all regrrlar e Y K p d 0 ~ over the alphabet (a, b):

where '+' denotes 'or'. Unary * has highest precedence, followed by concatenation; disjunction
has the lowest precedence. All operators are lefk associative.

(a) Show that the grammar is ambiguous.
Two leftmost derivations of crbo are:

(b) Construct an equivalent unambiioua grammar that edorcea the CO- operator prece
dence and associativity.

R -., R+T
R -., T
T TF
T + F
F - F
F -* (El
F - , a
F - , b

(c) Eliminate any left-recursive productions and productions with common prefixes from
your grammar in (b).

3. (4 points) What is meant by structuml equivalence and name equivalence of types? Is one
more restrictive than the other? Is one easier for a compiler to check than the other?

Two type expressions are structurally equivalent if they are the same basic type (e.g., in-
teger or character), or if they are formed by applying the same constructor to structurally
equideat types (e.g., pointez(Tl), pointer(Ta), where TI and Ta are structurally equivalent
types). When type expressions can be named, two type expressions are name equivalent pre
cisely when they are identical. Name equivalence is more restrictive, and implies structurd
equivalence. Two types may be stmcturally equivalent but not name equivalent.

Checking expressions for name equivalence is particularly simple. Structural equivalence is
defined recursively, so a compiler may check the types recursively. Alternatively, a compound
type may be encoded explicitly as a type attribute to facilitate equivalence checking. In
general, checking structural equivalence r e q h more work.

4. (11 points)

Suppose you are asked to extend the C programming language to allow overloading of user-
deiined functions, based on the number of formal parameters and their types.

Answer the following questions as bridy, yet cleariy, as you cas. We are more interested in
abstract operations (e.g., %tore 2 in a table, dong with its sizen) than in implementation
details (e.g., Yor performance, implement the table with a doubly-linked list of AVL trees").

(a) How can a compiler keep track of the parameters and their types? Describe what should
be recorded when a function declaration is processed.

We'll assume that types are represented in the compiler as pointers to structures, called
decls, where each decl represents a type. Well also assume that names are associated

with'types, variables, etc., using a scoped symbol table. A symbol table entry for a
user-defined function will bind a function name to a list of its function decls.
When the compiler begins processing a function declaration, it creates a decl to rep-
resent the function type that contains the function name, return type, the names and
types of its formal parameters, and other relevant information. The compiler creates a
new scope and dedares the formals in it, then processes the function body in yet another
new enclosed scope. After processing the function body, the 'formals' scope can be saved
in the decl, say as a list of (name, type) pairs. The function decl is then added to the
decl list in the symbol table entry for the function's name.

(b) How can a compiler determine which function to invoke in a procedure call? Describe
what and how information can be retrieved when resolving a procedure call.

The compiler must determine the number and types of the actuals, and compare them
with the formals lists stored in the symbl table in the list of function decls. A simple-
minded way to do this is to construct a list of actuals types and then look for a match
with one of the formals lists stored in the function's type decls in the symbol table.
If a match is found, the compiler should check that the matched function declaration
has a valid return type for the 4. Otherwise the compiler should issue a type error
message.

(c) Describe type errors that can occur as a result of this language extension, and how a
compiler can detect them.

A couple of type errors that can arise are unresolvable function declarations (e.g., C
uses structural equivalence for all types except structures, unions, and enumerations,
so structurally equivalent formals are not Merentiable), and a fnnction call that does
not match any function declaration, either because the number of arguments does not
match, or the types do not match.
Before adding a function type decl to the decl list in a symbol table entry for the
function name, the compiler should verify that the declaration is resolvable by the formals
list. This can be accomplished by comparing the saved formals list in the function decl
with the formals lists of all previously declared functions with the same name. If two
formals lists cannot be resolved, the compiler should issue a type error message.

. . Computer Science Department
Stanford University

Comprehensive Examination in Computer Architecture
Autumn 1994

October 19, 1994.

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. This exam is CLOSED BOOK. You may not use notes, articles, or books.

3. Show your work, since PARTIAL CREDIT wi l l be given for incomplete answers. For
exsmple, you can get credit for making a reasonable start on a problem even if the
idea doesn't work out; you can also get credit for re*g that certain approaches

. . are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

3;0LUTIONS:
Comp. Architecture Oc+

. .
Question 1.0 Short Answer (10 points)

0
la (3 p o h)
If you were comparing the paftmmnce of two computers, how would you summaria the perfa-
mance each computer on a set of floating point benchmarlcr if the perfcmmaace is nponed in
MFLOPS? Justify your answer.

You should use harmonic mean because MFLOPS i s a ra te . A harmonic
mean of r a t e s w i l l show the same rela t ive performance of the two com-
puters a s t o t a l execution time.

1.b (3 points)
What advantage does a branch target buffa (BTB) have over a branch history table (BHT)? What
disadvantage does it have?

Advantage: The BTB has a zero branch delay when t h e prediction i s
correct . The BHT has a t l e a s t a one cycle branch delay.
Disadvantage: The BTB requires f a r more si l icon area for the same
number of branch instruction s l o t s because it must s tore the target
address along with the prediction b i t s . Furthermore, the area re-
quired by a BHT could be dras t ica l ly decreased i f the tag area were

0 eliminated. This is not possible for a BTB since two branches might
map t o the same s l o t , yet they may not share the target instruction
address.

1.c (4 points)
Some designers have advocated using a small fully w v e on-chip "victim cache" to hold the
lines that an replaced fiom a direct-mapped onchip primary cache. The victim cache is checked
at the same time as the primary cache. If there is a miss in the primary cache and the line is found
in the victim cache, the primary cache line and victim cache line an swappcd If the line is not
found in the victim cache, it must be fetched fam the next levd of the memory h imhy . Using
what you h o w about cache access times and the 3 C's (compulsory misses, capacity misses, con-
flict misses) modc1, explain why the victim cache is a good idea.

For a given cache s i ze a d i rec t mapped cache has the lowest access
time but the highest number of confl ic t misses. In certain patholog-
i c a l s i tua t ions were consecutive accesses are t o the same set, con-
f l i c t misses w i l l r e su l t in very high miss rates . The victim cache
makes it possible t o sa t i s fy these confl ic t misses without going off
chip. A victim cache has the e f fec t of adding associativity t o a di-
rec t mapped cache with out increasing the access t i m e .

Question 2.0 Pipelining (30 points)
A dual issue superscalar processor implementation of the DLX ISA can execute up to two instruc-
tions per cycle as long as there m no dependencies between the instructions. Here is the pipeline
for a dual issue processor.

Pipeline

stage

IF

ID

ADDR

EX/MEM

WB

I

Function

instsuction fetch

decode, regism fetch, PC-target, dependency
check

memory ddxms generate, branch condition

ALU opcratiori, memory access

writeback

You will use the following information to evaluate this processor. The frequencies in these tables

Branch statistics

Branch Frequency Frequency
of of correct

,mnce pdctioll
r

Taken 10% 9%

Not taken 7% 5%

Some DLX instruction pair frequencies

SF Instruction sequence Frequency

1 ALuopRx, -, - 10%
ALU op -, -, Rx or -, Rx, -

2 ALuop Rx, -, - 5%
Store Rx, -(Rb)

3 ALU op Rx, -, - 5%
Load/Store -, - (Rx)

4 ALU op Rx, -, - 1%
JumpRegister Rx

5 ALU opRx, -, - 2%
Branch Rx

6 Load Rx, -(-) 15%
ALUop -, -, R x o r -, Rx, -

7 ~ o a d Rx, -(Rb) 3%
Load/Store -, - (Rx)

8 Load Rx, -(Rb) 2%
Branch Rx, -

9 Load Rx, -, - 1%
JumpRegister Rx

2a (5 points) n How many adders, register file ports, and data memory ports does this processor need to minimize ._,
structural hazards?

6 A d d e r s
IF 1 sequen t i a l i n s t r u c t i o n address
I D 1 branch t a r g e t address
ADDR 2 memory addresses
EX 2 ALUs

6 R e g i s t e r F i l e P o r t s
4 read p o r t s
2 w r i t e p o r t s

2 D a t a m e m o r y Ports
2 loads o r two s t o r e s i n t h e same i n s t r u c t i o n p a i r

2.b (8 points)
What is the minimum number of register specifier comparators required to implement dependency
checks and forwarding in this processor? Show your reasoning.

. .
A l l i n s t r u c t i o n s t h a t compute r e s u l t s have a t most one des t ina t ion
r e g i s t e r . I n s t r u c t i o n s can have up t o t w o source r e g i s t e r s . n

-1

D e p e n d e n c y C h e c k
Need t o make su re t h a t second i n s t r u c t i o n does not depend on t h e
f i r s t . W e must compare two source r e g i s t e r s of t h e second i n s t r u c t i o n
agains t t h e d e s t i n a t i o n of t h e first i n s t r u c t i o n . This requi res 2
comparators.

F o r w a r d i n g
Source -> d e s t i n a t i o n

EX/MEM -> EX/MEM
Need 2 comparators f o r each r e g i s t e r d e s t i n a t i o n of t h e source in-
s t r u c t i o n . W e have two p ipes s o w e need 4 comparators p e r source in-
s t r u c t i o n . W e have two sources s o w e need a t o t a l of 8 comparators.

EX/MEM -> ADDR
Each d e s t i n a t i o n i n s t r u c t i o n uses one source r e g i s t e r so w e need 4
comparators

EX/MEM -> I D
Jump r e g i s t e r only uses one source r e g i s t e r s o w e need 4 comparators

Total # of comparators = 2 + 8 + 4 + 4 = 18

2.c (1 point). .
What is the ideal CPI of this processor with an ideal memory system?

I f we can execute two i n s t r u c t i o n s every cycle, t h e i d e a l CPI of t h i s
processor is 0.5

2.d (6 points)
Assume the processor uses squashing branches with static branch prediction which is encoded in
the opcode of the branch. What is the CPI due a control hazards? Make all reasonable assumptions
to m h h h CPI. Assume that the branch is the second instruction in the pair.

Here a r e t h e cases t o consider:

CPI due t o con t ro l hazards = 0.09" + 0.01*2 + 0.02*2 = 0.15

2.e (4 points)
Using the instruction sequence table, what is the 81 due to instructions that cannot be issued in
pairs because of register dependencies? Assume the worst case.

frequency
9%

1%

2 %

5%

In t h e worst case none of t h e i n s t r u c t i o n p a i r s i n t h e t a b l e can
execute together . Thus a l l p a i r s w i l l have a CPI of 1. This is 0.5
more than t h e ideal CPI , t hus
E x t r a C P I - O.S(O.10 + 0.05 + 0.05 + 0.01 + 0.02 + 0.15 + 0.03 +0.02
+ 0.01) = 0.22

penalty
(cyc les)

- 1

2

2

0

Branch
Predict ion

taken

taken

not taken

not taken

2.f (5 points)
Using the instruction sequence table, what is the CPI due to imtmction sequences that cause stalls
onthisprocessar?

Branch
outcome

taken

not taken

taken

not taken

S t a l l s a r e caused when t h e ADDR o r I D s tages use a r e s u l t generated
i n t h e EX/MEM s tage . Here a r e t h e cases
Types 3, 5, 7, and 8 cause a 1 s t a l l cyc le
Types 4 and 9 cause a 2 s t a l l cycles

S t a l l C P I = 0.05*1 + 0.02*1 + 0.03*1 + 0.02*1 + 0.01*2 + 0.01*2 = 0.16

2.g (1 point)
What is the real CPI of this processor with an ideal memory system?

Add up C P I from p a r t s C, d, e, and f .
r e a l C P I = 0.5 + 0.15 + 0.22 + 0.16 = 1.03

Question 3.0 Memory System Design (20 points)
You are considering external cache option for a new high-perfbmance workstation that will use a
200 MHz CPU with an on-chip cache (1 cycle access, direct-mapped). The system is shown
below:

latencypage ha = 10 cycles
latency = 4 cycles latencypage = U) cycles
BW = 8 Blcycle BW = 2B/cycle

mu.
200 MHz Page-mode

512 KB
external cache 4

DRAM

Ahet running a set of real programs, you have come up with the following global miss ratios:

wsize 16 KB 512 KB 512 KB

(bytes)
direct- &xx- 2-way set

mapped mapped associative

8 0.17 0.025 0.021

16 0.13 0.018 0.015

32 0.11 0.015 0.012

64 0.08 0.01 0.008

Other necessary infbrmation:
1. The probability of a page hit in the page-mode DRAM is 0.3.
2. Making the 5 12 KB extemal'cache 2-way set associative adds one cycle to its latency

but does not affect its bandwidth.

0 3.a (14 points)
Find the line size and set-associativity that m h h k s AMAT measured in B U cycles for the 5 12
KB cache. To guarantee multilevel inclusion, the line sizes of the 16 KB cache and 512KB cache
must be equal.

Here is the AMAT expressio for the direct-mapped case

l ine
AMAT AMAT

s i z e
256 KB 256 KB
1-way 2-way

8 2.38 2.46

16 2.23 2.29

32 2.37 -
64 - -

A direct mapped cache with a l i n e s i z e of 16 bytes has the lowest
AMAT increasing the l i n e s i z e or making external cache set-associa-
t i v e w i l l not improve performance. The - means no need t o calculate.

3.b (7 points). -
Assume that excluding the m e m e system the 8 1 of the processor is 1.4 and that there are 0.4
data references per instructio~~ How long wi l l it take to execute one million instructions on this

c
pmcessor?

First calculate CPI

= 1.4+(Instruction rets + Data refs (AMAT - #of insmctions

Now calculate CPU time

CPU time = Instruction count x B I x l/clock freq.
= 1M x 3.12 x 1/200MHz

= 0.0156 seconds

SOLUTIONS:
Databases

1994 Comprehensive Exam in Databases
Sample Solution

1- (a) f l - . , . d d n s s ((~ ~ ~ ~ ' ~ s n (8 t ~ d ~ t ma -0lled)))

(b) SELECT name, address
FROH student, enrolled
WHERE student.1D = enrol1ed.D

Am dept = "CS"

(c) Parts (a) and (b) will not return exactly the same result. SQL returns duplicate values
in results while relational algebra does not. If a student is taking more than one CS
course, then the student's name and address will appear multiple times in the answez
to (b) but only once in the answer to (a). Note that if the query for (b) uses SELECT
DISTINCT then the results will be the same.

(d) SELECT sam(UIlit6)
FRon e o u e d , c0-e
WBEBe enrolled.dept = course.dept

U D enrolled.code = course.code

(e) No. Relational algebra does not include -te operators such as sum.

2. B is the only key. Since B does not appear on the right of any functional dependency, it must
be in any key. Howeva, we can use B 4 E 4 A to show B + A, and then use AB 4 C to
show B -, C. Thus B by itself is a key and hence is the only key.

3. (a) Lock Campatibilie Matrix:

Lock Held By Another Transaction:
I read m i t e update

---I-----------------------
Lock read / Y I Y

Bequested: write I U U 'IS
update I Y I I

(b) Example:

Transaction T l reQrrests update lock for item A -> request grsnted
Transaction I 2 reqrrests update lock for item A -> T2 must w a i t
Transaction T1 requests write lock for A -> r e p s t granted
Transaction T i completes and releaues all of its l o c h
Transaction T2 gets update lock on A and continues processing
Transaction I2 request8 m i t e lock for A -> request granted
Transaction T2 completes and releases all of its locks

LOGIC COMP SOLUTIONS

Solution 1: (A) If P is a necessary condition for Q,
then -P + 1%. This is equivalent to Q + P, which
means that Q is a sufficient condition for P.

Solution 2: (A) By the definition of ao'only if"

Solution 3: (C) By a simple induction argument

Solution 4: (D) Straight-forward from the d&-
tions.

Solution 15: (C) The validity problem for p r o p
sitional logic is decidable. That is, for any sentence
we can dekrmine if it is valid or not. For predicate
logic, the validity problem is only semidecidabk.

Solution 16: (B) I1 is true because Gael's In-
completeness Theorem holds for the theory of natu-
ral numbers with addition and multiplication. 111 is
true because Giidel's Incompleteness Theorem docs
NOT hold for theory of natural numbers with only
addition.

Solution 17: (C)

Solution 5: (B)

Solution 6: (D) We can't conclude anything about
the validity of 7 from the given assumption that 3

+

is satisfiable.

Solution 'l: (B)

Solution (D)

Solution 9: (D)

n Solution 10: (D)
u

Solution 11: (B)

Solution 1% (A)

Solution 13: (A) follows from the compactness
theorem.

Solution 14: (B) In general, validity need not be
r d v e , but since we have a aound and complete ax-
iom system, we urn enumerak all p d . The proof
of any d i d sentence wi l l be eventually appear, and
so we have an &ective m u m d o n for the valid sea-
tenccs.

Computer Science Department
Stanford University

Comprehensive Examination in Numerical Analysis
Autumn 1994

October 21, 1994

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

2. This exam is CLOSED BOOK. You may not use notes, articles, or books.

3. Show your work, since PARTIAL CREDIT be given fix incomplete answers. For
cample, you can get credit for making a reasonable start on a problem even if the
idea doesn't work out; you can also get credit for realising that certain approaches
are incorrect. On a true/talse question, you might get partid credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

Comprehensive Examination: Numerical Analysis (30 points). Fall 1994 (3
(Problem I)
(15 points). Linear Systems and Matrices
(a) Define the condition number X: of a matrix A. If

Mte the upper and lower bounds relating the relative error to the relative peturbation B.
Briefly discuss the implications of these inequalities for the numerical solution of linear systems.

(b) Let A be an m x m symmetric matrix with eigenvaiues & and corresponding eigenvectors 4.
What are the important properties of the and 4i which follow from A being symmetric.
(c) Let 11 11 denote the Euclidean vector norm and also use the same notation for the induced
matrix norm. By noting that any vector can be expressed as a linear combiiation of the 4i, prove
that

(d) Calculate K(A) in the Euclidean norm for a symmetric positive definite matrix.

(Problem 11)
(10 points). Quadrature
(a) Define the composite trapezoidal rule for the approximate integration of

over n intervals of equal length h = (b - a)/n. State the magnitude of the error in terms of h, under
an assumption on the smoothness of f which you should state.

(b) Show the weights (~ i) ? . ~ and nodes in the Gaussian quadrature formula

satisfy

and

Numerical Analysis

0
Solutions to Comprehensive: Numerical Analyat (30 points). Fall 1904

(Problem I)
(15 points). Linear Systems and Matrices
(a) Define the condition number A= of a matrix A. If

state the upper and lower bounds relating the relative error to the relative peturbation H.
Briefly discuss the implications of these inequalities for the numerical solution of linear systems.
SOLUTION: Definition is

A=(A) = 1 1 ~ 1 1 1 1 ~ - 1 1 1 *
The basic relationship is

-- llrll llrll 11' - 911 5 x(A)-.
W) llbll l l t l l llbll

This is important in numerical analysis, because backward error analysis shows that, instead of
solving A2 = b the computed solution exactly solves Ay = b + r for some small vector r. The basic
relationship above then shows the confidence with which we may interpret the numerical solution:
if K(A) is large, the numerid errors may be larg6.

. . (b) Let A be an m x m symmetric matrix with eigenvaluea Xi and corresponding eigenvectors 4.
What are the important properties of the Xi and & which follow from A being symmetric.
SOLUTION: The eigenvaluea are real. The eigenwectors are orthogonal so that

e! #r4j = &j

where Jii = O for i# j and ifii = l f o r i= j.
(c) Let 1) 1) denote the Eudidean vector norm and abo use the same notation for the induced
matrix norm. By noting that any vector can be e x p d as a linear combination of the 4i, prove
that

IlAll = m.= Ixil. 1 P S m

SOLUTION: Let

Then

Also

jol

so that

0
Thus

Thus
1 1 ~ 1 1 ~ := sup llAvll R ~ .

Ilvll=l

Hence IlAll 5 R. To prove that IlAll = R note that A h = XI& and choosing that value of I for
which lXll is maximized we see that llAll= R.
(d) Calculate K(A) in the Euclidean norm for a symmetric positive definite matrix.
SOLUTION: We have that A-I has eigenvalues ~f '. Thus . .

Hence
K(A) = Rlr.

(Problem 11)
(10 points). Quadrature

(a) Define the composite trapezoidal rule for the approximate integration of

over n intervals of equal length h = (b - a)/n. State the magnitude of the error in terms of h, under
an assumption on the smoothnees of f which you should state.
SOLUTION: The rule is

1
I P ~ v o + w + v ~ + ~ ~ + * - * + ~ ~ I * C,

Here f j = f (z j) and z j = a + jh. The enor is O(h2) provided f E C2 ([a, b] , R).
(b) Show the weights (wi)Ll and nodes {zi)L1 in the Gaussian quadrature formula

satisfy

and

SOLUTION: Gaussian integration is chosen t o accuirate on all polynomials of degree j : 0 5 j I
2n - 1. This is equivalent to asking that the rule exactly integrate zj for j = 0,. . . ,2n - 1. Thus

n

jrl

Evaluating the integral gives the result. I

Computer Science Department
Stanford University

Comprehensive Examination in Software Systems
Autumn 1994

October 20, 1994 -.

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue
book that you use.

2) The number of POINTS for each problem indicates how elaborate an answer is
expected. For example, an essay-type question worth 6 points or less doesn't deserve an
extremely detailed answer, even though a person can expound at length on just about
any topic in computer science. . .

3) The total number of points is 60, and the exam takes 60 minutes. This "coincidence"
can help you plan your time.

4) This exam is CLOSED BOOK. You may NOT use notes, articles, books, computer, etc.

5) Show your work, since PARTIAL CREDIT will be given for incompiete answers. For
example, you can get credit for making a reasonable start on a problem even if the idea
doesn't work out; your can also get credit far realizing that certain approaches are
incorrect

6) If you are convinced you need to make an assumption to answer a question, state your
assumption(s) as well as the answer.

7) Be sure to provide justification for your answers.

- . Comprehensive Exam: Software Systems (60 points)

1) (16 points) This question asks you to implement a barrier synchronization function
using only semaphores and a small number of shared variables. A barrier synchroniza-
tion function waits until the specified number of processes arrive at the "barrier" before
allowing any of the processes to continue. For example assume N processes execute the
following code fragment:

Fund(;
barrier (N) ;
Func2 (;
barrier (N) ;
Func3 (;

The barrier should ensure that no process starts executing Func2 () before all N of the
processes have executed Funcl(. Similarly, by the time that the fitst process calls
Func3 () all processes should have returned from Func2 () . You function should
take a single argument, NT the number of processes participating in the banier. It should
also work correctly on the above code fragment and contain no busy waiting.

2) (8 points) Some computer systems have been designed recently with a larger physical
memory address space than they have virtual address space. In othcr words they have
more fewer bits of virtual address space than physical memory address space. Explain
why this is not a totally unreasonable design for a computer system. Be sure to indicate
what limits the design imposes.

3) (10 points) As the price of DRAM memory has improved relative to that of magnetic
disk space, the ratio of the amount of physical memory to the amount of backing store
has been has been getting larger. Some system have as much or more physical memory
than backing store (swap space). In response to this, some virtual memory systems have
been modified to allocate backing store in a'different way. Rather than allocating the
backing store when a virtual page is first created, the backing store is allocated only
when the page is first paged out

a) Describe the benefits of this change.

b) Describe the problems introduced by it.

4) (8 points) In m e computer systems the maximum size of a transfer to or from an VO
device is limited to a relatively small size (e.g. 32 kilobytes) due to historical artifacts.
On these systems, would there be any advantages of using a file system with a block
size larger than the maximum UO transfer size?

5) (8 points) What is the difference between starvation and deadlock?

6) (10 points) Frequently when sending data over a network it is beneficial to both encrypt
the data for security and compress the data to decrease the transfer time. Which order
would you suggest these operations be performed? Be sure to justify your answer.

SOLUTIONS:
Software Systems

Comprehensive Exam: Software Systems Solutions (60 points)

Oct 20, 1994
1) (16 poiou) This question asks you to irnplcmcot a buriaspdmhtioa ma ruing oaly a d a d number of

s h d variables. A buricr sydromzatia b d o n waits until the specified n~mbet of m r c s urive u thc 'tamer" before
allowing my of the processes to continue. For example assume N pnvurcr a m dw following code fngmeac:

Tbt b.rrier sbodd casurc but ao pn#tu runr executing Func2 (I beforr d N of tbt pm~esses haw excaned Funcl I 1 . Simi-
ldy.bythethnethytbefimp&s&hmc3 I) 9proeerrarbaPldbnnmnmedfrom~cZ I).Youfuauionrhouldt~~e
r sioglc ug~mcnc. N. tbe number of pn#ucr participating in tbt hcer . It shauld rlro w o k concdy oa the above code f w e n t
a d conuin no bosy waiting.

int numwaiters = 0;
Semaphore mutex = 1;
Semaphore waiters = 0;
Semaphore release = 0;

barrier (int N) {
P (mute%) ;
numwatiers += 1;
if (nunwaiters == N) {

for (int i = 1; i < N; i++) //Last one wakes all
V(wait1;

for (i = 1; i < N; i++) / / Wait for all to exit '

P(release1;
numwaiters = 0;
V (mutex) ;

) else {
V(mutex1 ;
P(wait) ;
V(re1ease) ;

2) (~ p o i a m) ~ c o m p m a y a e m t ~ b e e n d a i ~ ~ a r i t h a l y l u p h y r i d ~ ~ ~ p . a t h a I h y b . w w r m r l
.ddrrurpccInahsrarorbcbcyhvs~fearorbaafviraPl~rparhra~mcmayddrru~.ExpLiawtry
this u n a a t a r l l y ~ d a i g n f a a c a m p o t # ~ ~ & ~ ~) i n d i ~ ~ e l Y h l S ~ ~ ~ t h c ~ i m p w a .

Having more memory than virtual address space means that a single process can not easily
take advantage of the all the physical memory in the system. Multiple processes such as in
a multiprogramming workload can take advantage of the extra memory. So can OS data
structures such as the file cache.

a) Daaibe cht M u of this h g c

Besides avoiding the extra work required to do the allocation and deallocation of the swap
space, it also allows the amount of virtual memory in-use to be as big as the sum of the

swap space and the physical memory. On some machines this can be much larger than the
amount of swap space.

b) 1)eraibe the problems introdneed by if

It possible to enter a deadlock condition because there is no. space to page out of a page.
4) (8poinu)In~comp~terlys~tbcmuim~&ofa~~ttoafrozn.nUOdtviaislimittdtoa~~drizc

(e.g. 32 k i l w) due to hiswid cucifuu On these systems. w d d there be my rdvalagc~ of oshg a blc ryrtem wid! a block
s i z b l a r g e r ~ thcmuimnmiK)tnnsfersits?

Large file system block sizes also reduce the size of the metadata for the file. This reduces
the amount of disk space needed by the file system metadata and can result in faster access
to the file's contents.
5) (8 poinu) Wht is tbe diffcrwa bemeen nuntioa and Qrdlodr?

In both starvation and deadlock the system is not making forward progress. The difference
is that in deadlock there is no way it can go forward while in m a t i o n there is a way but
it's not happening.

By compressing the data first we remove redundant information that can make the job of
the person trying to break the encryption easier.

