’ Section \ Faculty \ Page ‘
’ Table of Contents \ \ 1 ‘
Analysis of Algorithms [Unknown] 2
Analysis of Algorithms solutions 4
Artificial Intelligence [Unknown] 6
Artificial Intelligence solutions 11
Automata and Formal Languages [Unknown] 15
Automata and Formal Languages solutions 17
Compilers [Unknown] 19
Compilers solutions 22
Computer Architecture solutions 25
Databases solutions 34
Logic solutions 35
Numerical Analysis [Unknown] 36
Numerical Analysis solutions 38
Software Systems [Unknown] 40
Software Systems solutions 42

Computer Science Department
Stanford University
Comprehensive Examination in Analysis of Algorithms
Autumn 1994

October 17, 1994

READ THIS FIRST!

1.

4.

You should write your answers for this part of the Comprehensive Examination in
BLUE BOOKs. There are 5 problems in the exam. Be sure to write your MAGIC
NUMBER on the cover of every blue book that you use.

The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. The total number of points is- 60, and the exam takes 60 minutes. This
“coincidence” can help you plan your time.

This exam is CLOSED BOOK.

Show your work, since PARTIAL CREDIT will be given for incomplete answers.

Comprehensive Exam: Analysis of Algorithms (60 points) Autumn 1994 C
1. (5pts) Determine the order of growth of the function T'(n), defined by the following recurrence:

o T(1)=1.
e For n > 2, T(n) = 3T(n/6) + n.

2. (5pts) How many different irreflexive symmetric binary relations can be defined on a set of
n elements ?

3. (15pts) Consider a weighted undirected graph with n nodes and m edges. Assume that you
are given a minimum-weight spanning tree of this graph. How fast can you recompute the
minimum spanning tree after the weight of one of the edges decreases by some given amount?

“Give a concise proof that your algorithm indeed produces a minimum-weight spanning tree.

4. (15pts) You are presented with a sequence of functions f1, fay. .., where each function is
defined on the interval from 1 to n. Function f; is equal to 1 on the interval from 1 to some
s; and equal to 0 on the interval from s; + 1 to n. The sequence is presented one function at
a time. At any moment you might be given z € {1...n} and asked to evaluate at z the sum
of all of the functions that were already revealed to you.

Describe a data structure that stores the known functions and supports two operations: “eval-

uate Zf=1 fi(z)”, where k is the number of known functions in the sequence, and “add a

new function.” One (inefficient) possibility is to maintain an array of size n. Initially, every

element in the array is set to 0. Each time a new function (say, fi) is revealed, we add 1

to all elements numbered 1 to s;. In this case, adding a new function takes O(n) operations Q
and evaluating the sum takes O(1) operations. Your goal is to design a data structure that

is efficient both for computing the sum and for adding a new function to the set of known
functions.

Describe a data structure where each one of the above operations takes O(logn) time. Assume

that you have O(n) storage available.

5. (20pts) You have a computer that consistently trashes your disk each time you run more
than k processes at the same time. You would like to find the value of k, while trashing your
disk at most 2 times. Assume that you know that k < n.

(a) (5pts) Describe a strategy that minimizes the number of “experiments” needed to find
k, where an experiment consists of running some number of processes, running “fsck”
afterwards to check whether the disk was trashed, and restoring the file system if it was.

(b) (5pts) Generalize your strategy to any (constant) number of allowed crashes. Given a
fixed number of crashes you are willing to sustain, what is the asymptotically maximum
number of experiments used by your strategy ?

(c) (10pts) Prove that, in the worst case, your strategy achieves asymptotically minimum
possible number of experiments in the case where you are allowed only 2 crashes.

SOLUTIONS:
Algorithms

Comprehensive Exam: Analysis of Algorithms (60 points) Autumn 1994

Problem 1

First we compute a = log; 3 and compare n® it with n. In our case, n = Q(n°*¢) for sufficiently
small constant e. Moreover, the “regularity condition” is satisfied, i.e. 3n/6 < Bn for a constant 3
(for example, 8 = 3/4 works). Hence, we can conclude that T'(n) = O(n).

Problem 2

Binary relations on n elements have 1-to-1 correspondence with 0/1 n x n matrices. Entry 4;; = 1
if and only if (4,j) pair belongs to the relation. Symmetric means that A;; = A;;, and irreflexive
means that the diagonal of A is 0. Hence, in order to determine a relation we need to set n(n—1)/2
entries in the matrix. There are 2™"-1)/2 possibilities.

Problem 3

If the edge with reduced weight is in the tree, then there is nothing to do. If it is outside the tree,
then adding it to the tree creates a cycle. To construct a new tree, we delete the largest weight edge
on this cycle. This can be implemented in O(n) time.

It remains to prove that the resulting tree is MST. We need a bit of notation. Let w denote
the original edge weights and w' denote the new edge weights. Denote the deleted edge by e, and
the new edge by e;. Let T denote the original MST and let 7' denote the computed MST, i.e.
T'=T-e +e,. -

Assume there exists an MST T where w'(T"') < w'(T"). Observe that T has to use e;, otherwise
T is not MST. Consider the cycle that includes e, and e; in T + e;. One of the edges, say e;, on
this cycle is not in T". Add it to T” and remove e;. The weight of the resulting tree is at most

w'(T") +w'(es) —w'(e;) < w'(T") +w(e) —w'(es)
< v(T') +w(e) - w'(es)
= w(T)

Thus, we got a tree that does not use e;, but which is cheaper than T', which is a contradiction.

Problem 4

Our data structure will be a complete binary tree with 2/'98:»! leaves. Each node of the tree holds a
single number in addition to the pointers to the parent and its children, and hence the total storage
requirements are O(n).

Given a point z € [1...n), to compute the value of the sum of the already revealed functions at
z, we start at the leaf that corresponds to z and traverse the tree up, adding all the numbers that
we encounter up to the root. Clearly, this takes O(depth) of the tree, i.e. O(logn).

Assume we are given a new function that is 1 from 1 to s and 0 from s + 1 to n. Represent s as
a binary number with [log, n] digits. Traverse the tree starting at the root, going left if the digit is
0 and going right if a digit is 1. Each time we go right, we add 1 to the number stored at the left
child of the current node. This takes O(depth) of the tree, i.e. O(logn).

Problem 5 - .

Observe that the question corresponds to probing an array of n elements where all elements up to
k are 0 and the rest are 1. A crash corresponds to probe returning “1”.

9a Probe at i\/n for i = 1,2,..., until the first time a probe returns 1. This identifies a range

5b

5c

vn < k < (i+1)+/n for some i*. Explore this range by linearly probing i*\/n,i*\/n+1,....
Both stages of this strategy use at most O(+/n) probes.

Assume we are allowed g crashes. Probe the array at O(n'/?) equally spaced places, starting
from 1, until the first time a probe returns 1. This identifies a range of size O(n!~/%) where k
might be. Again, probe at most O(n*/?) equally spaced places, starting at the smallest index
of the identified range, until the first 1 is found. This identifies a range of size O(nt=2/1),
Continue until the size of the range is O(n'/?). Search this range linearly.

At each one of the g stages of this strategy we used O(n'/?) probes, and thus we used O(gnt/9)
probes total.

We will use the “adversary” argument. In other words, the adversary will let the algorithm
probe, and decide on the value of k as it goes along. The only constraint is that this value
should be consistent with all the answers to the probes.

Initially, & is in the range of 1 to n. Thealgorithmhastoissueprobesthatforcetheadversary
to pick a specific k. The algorithm can not terminate as long as the adversary has any freedom
in picking k, since in this case the value of k returned by the algorithm will not be correct.

We say that a probe is of “type 1” ifitiscloserthan\/ﬁtothelargestindexprobedupuntﬂ
now. Probes below the maximum-probed index do not bring any new information and hence
can be discarded. We classify the rest of the probes as “type 27.

As long as the algorithm uses “type 1” probes, the adversary returns 0. Note that each one
of these probes can decrease the range of possible values for & by at most v/, and hence the
algorithm needs at least at least O(v/n) type 1 probes to decrease the range of possible values
for k to below /n.

Thus, if the number of probes is below ©(v/n), the algorithm makes at least one type 2 probe.
As a response to the first such probe, the adversary returns 1. At this moment, the only

Computer Science Department
Stanford University
Comprehensive Examination in Artificial Intelligence
Autumn 1994

October 18, 1994

READ THIS FIRST!

1'

You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

Be sure you have all the pages of this exam. There are 4 pages.

This exam is OPEN BOOK. You may use notes, articles, or books—but no help from
other sentient agents such as other humans or robots.

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn’t work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when we think it is actually false. But no partial
credit can be given if you write nothing.

C

1. LOGIC and AUTOMATED REASONING 120 Points]

(a) i. Transform the following sentence into clausal form
S :Vz.Vy.(P(z,y) A Q(y, z)) = Vz.3y.(R(z, y)V Vz2.5(y, 2)) [3 Points]

ii. In general, does the procedure that you use in part i above result in clauses that
preserve the validity of a sentence?
Does it preserve the satisfiability of a sentence? [2 Points]

(b) Find a most general unifier for each of the following sets, if one exists;
otherwise, explain why such a unifier does not exist. [6 Points]
(Assume that u, w, z,y, z are variables, A, B are constants, and f, g are function symbols.)

i. {P(z,y,2), P(w,u,y), P(u, A,u)}
ii. {P(z,f(z,y)), P(f(A,B),z)}
iii. {P(f(z,y,2)), P(f(g(y), f(2, A, B),g(A)))}

(c) Everyone is a skier or a mountain climber. All mountain climbers hate rain, and all
skiers like snow. Mike likes everything that Tom does not like, and Tom likes everything
that Mike does not like. Tom likes rain and snow. Therefore there is a mountain climber
that is not a skier.

The clausal form for. this set of sentences is the following:
(Assume that z is a variable, and Tom, Mike, Rain, and Snow are constants.)

Cy. {Skier(z), Climber(z)}

Cz. {~Likes(z, Rain),~Climber(z)}
Cs. {-Skier(z), Likes(z, Snow)}

Cs. {—Likes(Mike,z),~Likes(Tom,z)}
Cs. {Likes(Mike,z), Likes(Tom, z)}
Cs. {Likes(Tom, Rain)}

Cr. {Likes(Tom, Snow)}

Cs. {~Climber(z), Skier(z)}

Use resolution with set of support to derive the empty clause, where {Cs} is the set of
support. [9 Points]

O

O 2. LEARNING 15 Points

(a) Consider the problem of concept formation in books in a book store. The specific relations
for the books are
- type (which can be an element of { fiction, non-fiction }),
- binding (which can be an element of { Paperback. Hardcover }). and
- subject (which can be an element of { AL. Geology, Air-Travel }).

Our language restricts the space of possible concepts to be conjunctions of positive lit-

erals.
The following instances are in the target set (i.e. are positive instances)
SPrERE CooéL - Escwee - Bacy Lratx
TYPE: Fiction NON - FieTioN NoN-TiLTION
PAPERGACK,
.2
BINDPING: PAPER BAlR PAPGR @Al
AL AL
SUERIRT ! AT

The following instances are not in the target set (i.e. are negative instances)

O Touminal Man Al&?b‘—'r
TNeE ! ReTION von-FicToN
& IND Wk iy e R, PAPEARBALC
S u RyexT! AT AMR-TeAvG L
i. What is the version graph for the target set? (5 Points]
ii. What are the most general and the most specific concepts consistent with this set?
(4 Points]

- (b) Find the smallest decision tree to represent the concept
(Pi(z) A Py(z)) V (P3(z) A Py(z) A Ps(z)) [6 Points]

i~

3. SEARCH- 5 PointC

(2) Consider the following search space:

O

List the order in which nodes are visited in the tree above for each of the following search
strategies. The values next to the node labels represent the (heuristic) cost to get to the
goal node, arc traversal is a unit cost operation, and L is the goal node.

i. A* Search. [6 Points]
ii. IDA* Search (assuming an initial depth cutoff of 1). (5 Points]

(b) Briefly explain the differences between hill climbing and best-first search. [4 Points]

O

4. PROBABILISTIC REASONING

(10 Points’
Consider the three sentences, H: John's car battery is low, E;: John has difficulty starting
his car, E;3: John's car has dimmed headlights. Suppose p(E\|H) = 0.8. p(E,|-H) = 0.2.
p(Es|H) = 0.75. p(E3|~H) = 0.6, and p(H) = 0.1.

Assume the Odds of an event A given B to be

. O(A|B) = p(A|B)/p(~A|B)

(a) What are the odds that John’s car battery is low given that he has difficulty starting his
car? : [5 Points|
(b) What are the odds that John's car battery is low given that he has difficulty starting his

car and has dimmed headlights? (for this part assume that given H (or —H). E, and E,
are independent.) (5 Points]

SOLUTIONS:
- Artificial Intelligence

O . (a) i. The clausal form for this sentence is the following:

{-'P(Sly 52): -'Q(521 Sl)v R(I, f(-‘B)), S(f(-t), Z)}
where 53, S; are skolem constants and f is a skolem function.

ii. In general, does the procedure that you use in part i above result in clauses that
preserve the validity of a sentence?
No. The clausal form conversion procedure described in Manna and Waldinger's The
Deductive foundations of Computer Programming is a validity preserving transfor-""
mation; it is based on the notion of the ezistential closure of a sentence.
Does it preserve the satisfiability of a sentence? [2 Points] -
Yes. To prove the unsatisfiability of a set of sentences, we prove the unsatisfiability
of the sentences in clausal form.
Note that if you chose the procedure described in Manna and Waldinger's book. the
answer to the first part of the question would be yes, and that to the second part would
be no. Our answers here assume that you use the procedure described in LFAL

(b) i. Since u has to be made equal to A, all the variables have to be made equal to A.
An mgu then is: {u « A,w & A,z A,y « A,z « A}.
ii. This set is not unifiable, since z would have to be made equal to F(z,y). and the
occurs check fails.

iii. An mgu for this set is:
{z « G(A),y « F(G(A), A, B),z « G(F(G(A), A, B))}

O (¢) Ci. {Skier(z),Climber(z)}
C,. {-Likes(z, Rain), ~Climber(z)}
Cs. {—~Skier(z), Likes(z, Snow)}
Cys. {—~Likes(Mike,z),~Likes(Tom,z)}
Cs. {Likes(Mike,z), Likes(Tom, z)}
Ces. {Likes(Tom, Rain)}
Cs. {Likes(Tom, Snow)}
Cs. {-Climber(z), Skier(z)}
A resolution with set of support refutation for this set of clauses, where {Cs} is the set
of support, is the following.

Cy: {Skier(z)} Cs, C), Factoring.
Cro: {Likes(z,Snow)} Cs. Ca.
Cu: {~Likes(Tom, Srow)} Cro. Cs.
Cul {} Cu. Cr.

2. LEARNING 15 Poin@
) (1) We st Wik dhe veasin guaph Wi SPhoe anike Cle dve sbavce,
Thie Wk\- i {“'x'x} \ Nh*, with GER as avothey tve

1YY *‘“‘Q we FV“M Ihe Y&\A"'I'Qn$
o] lrl (F','xﬁ s ’
(it) Y¢shicled Fo F, ‘TLLML now

Faacy {arary {FRa3| S ELTE _
{F.rac} ‘ famary (P}
with LFAT dherss npcl..%y)b-}t“-s 3’“"’"“ \{”.ﬁ -~
Nend, with TeAminal an aia -ve imsdane | oy ema e Thost nedes iman&sient MM
So we asr \cﬁ..;.h.. {nf23 ;;M\\a' wih Diapert, we thNC‘
‘ "‘O& 'mth:QCW\ \Af“-“‘ g"b_jca A‘VTY“

$#ea1l

& {-‘u\ agion quagh 38 e, 7ATY

i.\‘) 9~ dhis Gage dhe Candidade HiminaRion al e Cbnvu—a

d the west specifc (@)
Y e wotd gemsrad e -
B R s 3 e fAGAT], e a1 AT preaba

es o A

(‘or\cq,)‘s Comrs derd

W Secision Avee & ! .
b‘) Ore Sac By Avee Aooled on 2:then

P2 P, or P ust SMCHB be_
‘ ’ & thas, 3 Ye e becauss
e cub¥ees o tes _g,or PGl
mwot be & child ot each ¢f

Pz, P d Pe vodes,

Q 3. SEARCH 15 Points

(a) i. A,D,B,H,F,L.
ii. - For cutoff = 1, 2, only expand A.
- For cutoff = 3, expand A and D.
- For cutoff = 4, expand A, D, B, H, F, L.

(b) In hill climbing search we examine only the nodes that are directly reachable, i.e. one
step away, from the last examined node. This gives hill climbing a depth first flavor. In
best-first search, the unexplored nodes that were encountered earlier in the search are
considered as well. This gives best-first search a breadth-first flavor.

4. PROBABILISTIC REASONING [10 Pointsg
(a)

_ AHIE) _ pEIHRHE) _(8)1) 4
OB = B HTE ™ RETBroi = (3)(9) = 5

(b)
O(H|E\AE;) = P(HIE\AE;) _ _ p(Ey A B3| H)p(H) _ _P(Ea|H)p(Eq | H)p(H)
VY T P(-HIE, N Ey) ~ p(Ey A Bs~H)p(=H) p(Er|~H)p(E;|-H)p(-H)
= P(Ea|H) _:75 4.5
= - OB =7 x5 =3

Computer Science Department
Stanford University
Comprehensive Examination in Automata and Formal Languages
Autumn 1994

October 17, 1994

READ THIS FIRST!

1.

3.

4.

You should write your answers for this part of the Comprehensive Examination in
BLUE BOOKS. There are three problems in the exam. Be sure to write your MAGIC
NUMBER on the cover of every blue book that you use.

The number of POINTS for each problem indicates how elaborate an answer is ex-
pected. The exam takes 30 minutes.

This exam is OPEN BOOK. You may use notes, articles, or books—but no help from
other sentient agents such as other humans or robots.

Show your work, since PARTIAL CREDIT will be given for incomplete answers.

Comprehensive Exam: Autumn 1994 C

Automata and Formal Languages (30 points)

Instructions: You are expected to sketch the main ideas in your solutions, but be very brief and
avoid unnecessary detail. You are permitted to invoke any result proved in the Hopcroft-Uliman
book provided you include the appropriate citation.

1. (8 points) Consider the following context-free grammar G.

S = bABaa| Sa|a
A > aB
B — baB|e¢

Let L4 and Ly be the languages consisting of the terminal strings that can be derived
from the variables 4 and B, respectively.

(a) [4 points] Show that L4 and Lp are regular by providing regular expressions for
these two languages.

(b) [4 points] Show that L(G) is regular by providing a regular expression for it.

O

2. (10 points) A monotone 2-SAT formula is a 2-CNF boolean formula F(zy,...,z,)
which does not contain negated variables. For example:

F(zy,z,, 23, z4) =(z; V z3) A (22 V Z) A (zy V T4) A (22 V z3).

It is clear that there always exists a truth assignment for the variables Tiyeeuy Ty
satisfying the formula F - simply set each variable to TRUE,

Consider the following problem called MONOTONE 2-SAT: given a monotone 2-SAT
formula F and a Positive integer k, determine whether there exists a truth assignment
satisfying F such that the number of variables set to TRUE is at most k.

Show that the MONOTONE 2-SAT problem is NP-hard. (Hint: Think about the
vertex cover problem.)

3. (12 points) Consider the following decision problem:

Given a deterministic finite state automaton (DFA) M over the alphabet
£ = {0,1}, does L(M) contain at least 2 strings?

Is this problem decidable? Justify your answer. (Hint: Think about the decision
problems of deciding emptiness and finiteness of regular languages.)

O

SOLUTIONS:
Automata

Comprehensive Exam: Autumn 1994

Automata and Formal Languages (Solutions)

Instructions: You are expected to sketch the main ideas in your solutions, but be very brief and
avoid unnecessary detail. You are permitted to invoke any resuit proved in the Hopcroft-Ullman
book provided you include the appropriate citation.

1. (8 points) Consider the following context-free grammar G.

S — bABaa|Sala
A — aB
B — baB|e

Let L, and Lp be the languages consisting of the terminal strings that can be derived
from the variables 4 and B, respectively.

(a) [4 points] Show that L, and Lp are regular by providing regular expressions for
these two languages.

(b) [4 points] Show that L(G) is regular by providing a regular expression for it.

Solution: By inspection, Lp has the regular expression (ba)*, and L4 has the regular
expression a(ba)*.

Consider now the productions from S. We observe that the productions from A and B
do not generate any sentential form containing S. Also the production S — bABaa is
not recursive in S which implies that it can be used at most once in the any derivation
from S. From these facts, we can conclude that the strings derived from S are of the
form (bABaa+a)a*. Thus, L(G) bas the regular expression (ba(ba)*(ba)" +a)a", which
simplifies to (ba(ba)* + a)a".

. (10 points) A monotone 2-SAT formula is a 9-CNF boolean formula F(z1,...,Za)

which does not contain negated variables. For example:
F(z;, 232,23, 34) = (31 \"4 23) A (33 \" 24) A (31 \" 24) A (23 \") 23).

It is clear that there always exists a truth assignment for the variables z,,...,2x
satisfying the formula F - simply set each variable to TRUE.

Consider the following problem called MONOTONE 2-SAT: given a monotone 2-SAT
formula F and a positive integer k, determine whether there exists a truth assignment
satisfying F such that the number of variables set to TRUE is at most k.

Show that the MONOTONE 2-SAT problem is NP-hard. (Hint: Think about the
vertex cover problem.)

Solution: In a graph G(V, E) with V = {1,...,n}, a vertex cover is a set of vertices
C C V stch that for each edge (i,5) € E, {1,5}NC # 0. The VC problem is the
following: given a graph G(V,E) and a positive integer k, does G contain a vertex
cover of size at most k. We know that VCis N P-hard, and establish the NP-hardness
of MONOTONE 2-SAT by reduction from VC.

The reduction starts with a VC instance <G,k > and creates an instance < F,k> of
MONOTONE 2-SAT, where the monotone 2-CNF formula F is defined as follows: for

.. each vertex i € V, create a boolean variable z;; for each edge (i,j) € E, create a clause

Z; V z;. The reduction runs in linear time, but it remains to verify its correctness.

Suppose G(V, E) has a vertex cover C of size at most k. Consider the truth assignment
for the variables in F in which z; = TRUE if and only if ¢ € C; clearly, the number of
TRUE variables is at most k. We claim that this is a satisfying truth assignment for F.
To establish the claim, we show that each clause z; V z; in F is satisfied. Since (i, 5)
must be an edge, and C must contain at least one of i and Js if follows that at least
one of z; and z; is assigned TRUE and the clause is satisfied.

Suppose now that there is a satisfying truth assignment for F with no more than %
variables set to TRUE. Consider the set of vertices C = {i | z; = TRUE}; clearly,
IC| < k. We claim that C is a vertex cover for G. To see this, focus on any one edge
(1,7) € E. Since F must have a clause z; V z;, and that clause is satisfied, at least one
of z; and z; is assigned TRUE and so at least one end-point of the edge (i, j) belongs
to C.

- (12 points) Consider the following decision problem:

Given a deterministic finite state automaton (DFA) M over the alphabet
Z = {0,1}, does L(M) contain at least 2 strings?

Is this problem decidable? Justify your answer. (Hint: Think about the decision
problems of deciding emptiness and finiteness of regular languages.)

Solution: The problem is indeed decidable. The proof is similar to that for the
decidability of emptiness or infiniteness of regular languages, as described in Theorem
3.7 (Hopcroft-Ullman, p. 63). We also make use of the fact that given any string z, it
is possible to decide membership of z in L(M).

Let n be the number of states in the DFA M. The decision procedure enumerates all
strings z € Z* of length less than n, and checks for their membership in L(M); let m,
be the number of such strings in L(M). Then, the decision procedure enumerates all
strings z € I* such that n < |z] < 2n and checks their membership in L(M); let m,
be the number of such strings in L(M).

By Theorem 3.7, if my > 0 then L(M) is infinite, and the procedure outputs YES.
Assume now that m, = 0. By Theorem 3.7, or by a direct application of the Pumping
Lemma, we have that if L(M) contains a string of length at least 2n then it must
contain a string of length between n and 2n — 1,i.e.,ma > 0. Since m2 = 0, all strings
in L(M) are of length less than n implying that [L(M)| = m,. Thus, the decision
procedure now has to merely verify that m; > 2.

2

Computer Science Department
Stanford University
Comprehensive Examination in Compilers
Autumn 1994

October 20, 1994

READ THIS FIRST!

1.

3.

4.

You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

Be sure you have all the pages of this exam. There are 2 pages.

This exam is OPEN BOOK. You may use notes, articles, or books—but no help from
other sentient agents such as other humans or robots.

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn’t work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

CS Comprehensive Exam: Compilers (30 points)

. (7 points)

Comments in the C programming language are introduced by the characters /* and ter-
minated by the characters */. They do not nest and they do not occur within string or
character literals. For each of the following regular expressions, indicate whether or not the
expression describes precisely the set of all valid C comments. For those that do not, provide
a counterexample. Assume for conver. snce that the character set is {*./.a}.

(a) /%(/|a]*)*»/
(b) /%(al/)*x(*|a(a]/)**)*/
(c) /7#(a)/)y*(x|a(a)/)**)**/

. (8 points)
The following grammar generates all regular expressions over the alphabet {a,b}:

R—R+R|RR|R"|(R)|alb

where *+’ denotes ’or’. Unary * has highest precedence, followed by concatenation; disjunction
has the lowest precedence. All operators are left associative.

(2) Show that the grammar is ambiguous.

(b) Construct an equivalent unambiguous grammar that enforces the correct operator prece-
dence and associativity.

(c) Eliminate any left-recursive productions and productions with common prefixes from
your grammar in (b).

. (4 points) What is meant by structural equivalence and name equivalence of types? Is one
more restrictive than the other? Is one easier for a compiler to check than the other?

. (11 points)

Suppose you are asked to extend the C programming language to allow overloading of user-
defined functions, based on the number of formal parameters and their types.

Answer the following questions as briefly, yet clearly, as you can. We are more interested in
abstract operations (e.g., “store z in a table, along with its size”) than in implementation
details (e.g., “for performance, implement the table with a doubly-linked list of AVL trees”).

(2) How can a compiler keep track of the parameters and their types? Describe what should
be recorded when a function declaration is processed.

O (b) How can a compiler determine which function to invoke in a procedure call? Describe
what and how information can be retrieved when resolving a procedure call.
(c) Describe.type errors that can occur as a result of this language extension, and how a
compiler can detect them.

O

SOLUTIONS:
Compilers

CS Comprehensive Exam: Compilers (30 points)

. (7 points)

Comments in the C programming language are introduced by the characters /* and termi-
nated by the characters #/. They do not nest and they do not occur within string or character
literals. Indicate whether or not each of the following regular expressions describes precisely
the set of all valid C comments. For those that do not, provide a counterexample. Assume
for convenience that the character set is {*,/,a}.

(a) /#(/lajs)™s/
Ans: no, this expression matches /«*/#/.

(b) /*(al/)"*(+la(al/)"*)"/
Ans: yes, perhaps most easily seen by constructing a DFA.

(c) /7#(al/)+(*la(al/)s)"/
Ans: no, this expression fails to match /»#/.

. (8 points)

The following grammar generates all regular expressions over the alphabet {_a, b}:
R—R+R|RR|R|(R)|al|bd

where '+’ denotes ’or’. Unary = has highest precedence, followed by concatenation; disjunction
has the lowest precedence. All operators are left associative.

(a) Show that the grammar is ambiguous.
Two leftmost derivations of aba are:

R = RR == RRR =>aRR => abR => aba
R => RR =>aR=%>aRR =>abR=>aba

(b) Construct an equivalent unambiguous grammar that enforces the correct operator prece-
dence and associativity.

R - R+T

TF

Ll
k)

(¢) Eliminate any left-recursive productions and productions with common prefixes from (/
your grammar in (b).

TA
+T4
€
FB
FB
€
CD
(E)
a

b
*D

LR T O A A A A A |

™

SOUQAQA0OM W NR AN

3. (4 points) What is meant by structural eguivalence and name equivalence of types? Is one
more restrictive than the other? Is one easier for a compiler to check than the other?

Two type expressions are structurally equivalent if they are the same basic type (e.g., in-
teger or character), or if they are formed by applying the same constructor to structurally
equivalent types (e.g., pointer(Ty), pointer(T;), where T: and T; are structurally equivalent
types). When type expressions can be named, two type expressions are name equivalent pre-
cisely when they are identical. Name equivalence is more restrictive, and implies structural O
equivalence. Two types may be structurally equivalent but not name equivalent.

Checking expressions for name equivalence is particularly simple. Structural equivalence is
defined recursively, so a compiler may check the types recursively. Alternatively, a compound
type may be encoded explicitly as a type attribute to facilitate equivalence checking. In
general, checking structural equivalence requires more work.

4. (11 points)

Suppose you are asked to extend the C programming language to allow overloading of user-
defined functions, based on the number of formal parameters and their types.

Answer the following questions as briefly, yet clearly, as you can. We are more interested in
abstract operations (e-g., “store z in a table, along with its size”) than in implementation
details (e.g., “for performance, implement the table with a doubly-linked list of AVL trees”).

(2) How can a compiler keep track of the parameters and their types? Describe what should
be recorded when a function declaration is processed.

We'll assume that types are represented in the compiler as pointers to structures, called
decls, where each decl represents a type. We'll also assume that names are associated

O

(b)

(c)

with types, variables, etc., using a scoped symbol table. A symbol table entry for a
user-defined function will bind a function name to a list of its function decls.

When the compiler begins processing a function declaration, it creates a decl to rep-
resent the function type that contains the function name, return type, the names and
types of its formal parameters, and other relevant information. The compiler creates a
new scope and declares the formals in it, then processes the function body in yet another
new enclosed scope. After processing the function body, the ‘formals’ scope can be saved
in the decl, say as a list of (name, type) pairs. The function decl is then added to the
decl list in the symbol table entry for the function’s name.

How can a compiler determine which function to invoke in a procedure call? Describe
what and how information can be retrieved when resolving a procedure call.

The compiler must determine the number and types of the actuals, and compare them
with the formals lists stored in the symbol table in the list of function decls. A simple-
minded way to do this is to construct a list of actuals types and then look for a match
with one of the formals lists stored in the function’s type decls in the symbol table.

If a match is found, the compiler should check that the matched function declaration
has a valid return type for the call. Otherwise the compiler should issue a type error
message.

Describe type errors that can occur as a result of this langnage extension, and how a
compiler can detect them.

A couple of type errors that can arise are unresolvable function declarations (e.g., C
uses structural equivalence for all types except structures, unions, and enumerations,
so structurally equivalent formals are not differentiable), and a function call that does
not match any function declaration, either because the number of arguments does not
match, or the types do not match. .

Before adding a function type decl to the decl list in a symbol table entry for the
function name, the compiler should verify that the declaration is resolvable by the formals
list. This can be accomplished by comparing the saved formals list in the function decl
with the formals lists of all previously declared functions with the same name. If two
formals lists cannot be resolved, the compiler should issue a type error message.

Computer Science Department
Stanford University
Comprehensive Examination in Computer Architecture
Autumn 1994

October 19, 1994

READ THIS FIRST!

1.

3.

You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book
that you use.

This exam is CLOSED BOOK. You may not use notes, articles, or books.

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn’t work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

SOLUTIONS: [
Comp. Architecture ~ O Y 94

Question 1.0 Short Answer (10 points) ,\ o

l.a (3 points)
If you were comparing the performance of two computers, how would you summarize the perfor-
mance each computer on a set of floating point benchmarks if the performance is reported in
MFLOPS? Justify your answer.

You should use harmonic mean because MFLOPS is a rate. A harmonic
mean of rates will show the same relative performance of the two com-
puters as total execution time.

Lb (3 points)
What advantage does a branch target buffer (BTB) have over a branch history table (BHT)? What
disadvantage does it have?

Advantage: The BTB has a zero branch delay when the prediction is
correct. The BHT has at least a one cycle branch delay.

Disadvantage: The BTB requires far more silicon area for the same
number of branch instruction slots because it must store the target
address along with the prediction bits. Furthermore, the area re-
quired by a BHT could be drastically decreased if the tag area were
eliminated. This is not possible for a BTB since two branches might
map to the same slot, yet they may not share the target instruction

address.

L.c (4 points)

Some designers have advocated using a small fully associative on-chip “victim cache” to hold the
lines that are replaced from a direct-mapped on-chip primary cache. The victim cache is checked
at the same time as the primary cache. If there is a miss in the primary cache and the line is found
in the victim cache, the primary cache line and victim cache line are swapped. If the line is not
found in the victim cache, it must be fetched form the next level of the memory hierarchy. Using
what you know about cache access times and the 3 C’s (compulsory misses, capacity misses, con-
flict misses) model, explain why the victim cache is a good idea.

For a given cache size a direct mapped cache has the lowest access
time but the highest number of conflict misses. In certain patholog-
ical situations were consecutive accesses are to the same set, con-
flict misses will result in very high miss rates. The victim cache
makes it possible to satisfy these conflict misses without going off
chip. A victim cache has the effect of adding associativity to a di-
rect mapped cache with out increasing the access time.

Question- 2.0 Pipelining (30 points) @)

A dual issue superscalar processor implementation of the DLX ISA can execute up to two instruc-
tions per cycle as long as there are no dependencies between the instructions. Here is the pipeline
for a dual issue processor.

Pipeline
Stage Function
IF instruction fetch
ID decode, register fetch, PC-target, dependency
check
ADDR memory address generate, branch condition
EX/MEM ALU operation, memory access
WB writeback

O You w111 use the followmg mformauon to evaluate th1s processor. The frequencies in these tables

Branch statistics
Frequency Frequency
Btr;nch of of correct
pe occurrence prediction
Taken 10% 9%
Not taken 7% 5%

Some DLX instruction pair frequencies

Type Instruction sequence Frequency
ALU Op “r = Rx or “r Rx’ -
Store Rx, - (Rb)
3 ALU op Rx, -, - 5%
Load/Store -, -(Rx)
<:> 4 ALU op Rx, -, - : 1%
JumpRegister Rx
Branch Rx
6 Load Rx, -(-) 15%
ALU Op “r = Rx or -, Rx’ -
7 Load Rx, -(Rb) 3%
Load/Store -, -(Rx)
8 Load Rx, -(Rb) 2%
Branch Rx, -

JumpRegister Rx

2.a (5 points)
How many adders, register file ports, and data memory ports does this processor need to minimize O
structural hazards?

6 Adders

IF 1 sequential instruction address
iDp 1 branch target address

ADDR 2 memory addresses

EX 2 ALUs

6 Register File Ports
4 read ports
2 write ports

2 Data memory Ports
2 loads or two stores in the same instruction pair

2.b (8 points)
What is the minimum number of register specifier comparators required to implement dependency
checks and forwarding in this processor? Show your reasoning,

All instructions that compute results have at most one destination
register. Instructions can have up to two source registers. <:)

Dependency Check
Need to make sure that second instruction does not depend on the

first. We must compare two source registers of the second instruction
against the destination of the first instruction. This requires 2

comparators.

Forwarding
Source -> destination

EX/MEM -> EX/MEM
Need 2 comparators for each register destination of the source in-

struction. We have two pipes so we need 4 comparators per source in-
struction. We have two sources so we need a total of 8 comparators.

EX/MEM -> ADDR
Each destination instruction uses one source register so we need 4

comparators

EX/MEM -> ID _
Jump register only uses one source register so we need 4 comparators

fotal # of comparators = 2 + 8 + 4 + 4 = 18 (:)

2.c (1 point). .
What is the ideal CPI of this processor with an ideal memory system?

If we can execute two instructions every cycle, the ideal CPI of this
processor is 0.5

2.d (6 points)

Assume the processor uses squashing branches with static branch prediction which is encoded in
the opcode of the branch. What is the CPI due to control hazards? Make all reasonable assumptions
to minimize CPI. Assume that the branch is the second instruction in the pair.

Here are the cases to consider:

Branch Branch penalty
Prediction outcome (cycles) £requency
taken taken -1 9%
taken not taken 2 1%
not taken taken 2 2%
not taken not taken 0 5%

CPI due to control hazards = 0.09%1 + 0.01*2 + 0.02*2 = 0.15

2.e (4 points)
Using the instruction sequence table, what is the CPI due to instructions that cannot be issued in
pairs because of register dependencies? Assume the worst case.

In the worst case none of the instruction pairs in the table can
execute together. Thus all pairs will have a CPI of 1. This is 0.5

more than the ideal CPI, thus
Extra CPI = 0.5(0.10 + 0.05 + 0.05 + 0.01 + 0.02 + 0.15 + 0.03 + 0.02

+ 0.01) = 0.22

2.f (5 points)
Using the instruction sequence table, what is the CPI due to instruction sequences that cause stalls

on this processor?

Stalls are caused when the ADDR or ID stages use a result generated
in the EX/MEM stage. Here are the cases

Types 3, 5, 7, and 8 cause a 1 stall cycle

Types 4 and 9 cause a 2 stall cycles

Stall CPI = 0.05*1 + 0.02*1 + 0.03*1 + 0.02*1 + 0.01*2 + 0.01*2 = 0.16

2.g (1 point)
What is the real CPI of this processor with an ideal memory system?

Add up CPI from parts c, d, e, and f.
real CPI = 0.5 + 0.15 + 0.22 + 0.16 = 1.03

5

Question 3.0 Memory System Design (20 points)

You are considering external cache option for a new high-performance workstation that will use a
200 MHz CPU with an on-chip cache (1 cycle access, direct-mapped). The system is shown

below:

latency = 4 cycles
BW = 8 B/cycle

CPU

200 MHz

512KB
16 KB > external cache
On-chip cache

After running a set of real programs, you have come up with the following global miss ratios:

latenCypage it = 10 cycles
latencypage miss = 20 cycles

BW = 2B/cycle

M

Page-mode
DRAM

mesze | Gy | e | ey
mapped mapped associative
8 0.17 0.025 0.021
16 0.13 0.018 0.015
32 0.11 0.015 0.012
64 0.08 0.01 0.008
Other necessary information:

1. The probability of a page hit in the page-mode DRAM is 0.3.

2. Making the 512 KB external cache 2-way set associative adds one cycle to its latency

but does not affect its bandwidth.

@

=

N

3.a (14 points)
Find the line size and set-associativity that minimizes AMAT measured in CPU cycles for the 512

KB cache. To guarantee multilevel inclusion, the line sizes of the 16 KB cache and 512KB cache
must be equal.

Here is the AMAT expressio for the direct-mapped case

AMAT = 1+MR g X (4 + 5) + MRy o X (10(0.3) +20(0.7) + %‘)

8
line AMAT AMAT
. 256 KB 256 KB
size
l-way 2-way
8 2.38 2.46
16 2.23 2.29
32 2.37 -
64 - -

A direct mapped cache with a line size of 16 bytes has the lowest
AMAT increasing the line size or making external cache set-associa-
tive will not improve performance. The - means no need to calculate.

3.b (7 points)
Assume that excluding the memory system the CPI of the processor is 1.4 and that there are 0.4
data references per instruction. How long will it take to execute one million instructions on this

processor?

First calculate CPI

CPI = CPlepy + CPlyemary

Instruction refs + Data refs)
of instructions *x (AMAT-1)

CPI =14+14(223-1) = 3.12

= 1.4+(

Now calculate CPU time

CPU time = Instruction count x CPI x 1/clock freq.
= IMx3.12 x 1/200MHz
= 0.0156 seconds

@

SOLUTIONS:
Databases

1994 Comprehensive Exam in Databases
Sample Solution

1. (a) Hm.,m.,,((ad.pgucsn(stndent >q enrolled)))

(b) SELECT name, address
FROM student, enrolled
WHERE student.ID = enrolled.ID
AND dept = “"CS"

(c) Parts (a) and (b) will not return exactly the same result. SQL returns duplicate values
in results while relational algebra does not. If a student is taking more than one CS
course, then the student’s name and address will appear multiple times in the answer
to (b) but only once in the answer to (a). Note that if the query for (b) uses SELECT
DISTINCT then the results will be the same.

(d) SELECT sum(units)

FROM enrolled, course

WHERE enrolled.dept = course.dept
AND enrolled.code = course.code

(e) No. Relational algebra does not include aggregate operators such as sum.

2. B is the only key. Since B does not appear on the right of any functional dependency, it must
be in any key. However,wecanuseB—»E—oAtoshowB—»A,a.ndthenuseAB-»Cto
show B — C. Thus B by itself is a key and hence is the only key.

O

3. (a) Lock Compatibility Matrix:

Lock Held By Another Transactionm:
| read write update

Lock read | Y N Y
Requested: write | N N ‘N
update | Y N N

(b) Example:

Transaction T1
Transaction T2
Transaction T1
Transaction T1
Transaction T2
Transaction T2
Transaction T2

requests update lock for item A -> request granted
requests update lock for item A -> T2 oust wait
Tequests write lock for A -> request granted
completes and releases all of its locks

gets update lock on A and continues processing
requests write lock for A -> request granted
completes and releases all of its locks

O

LOGIC COMP SOLUTIONS

Solution 1: (A) If P is a necessary condition for Q,
then =P — ~Q. This is equivalent to @ — P, which
means that Q is a sufficient condition for P.
Solution 2: (A) By the definition of “only if”
Solution 3: (C) By a simple induction argument

Solution 4: (D) Straight-forward from the defini-

tions.

Solution 5: (B)

Solution 6: (D) We can’t conclude anything about
the validity of F from the given assumption that F
is satisfiable.

Solution 7: (B)

Solution 8: (D)

Solution 9: (D)

Solution 10: (D)

Solution 11: (B)

Solution 12: (A)

Solution 13:
theorem.

(A) follows from the compactness

Solution 14: (B) In general, validity need not be
recursive, but since we have a sound and complete ax-
iom system, we can enumerate all proofs. The proof
of any valid sentence will be eventually appear, and
50 we have an effective enumeration for the valid sen-
tences.

Solution 15: (C) The validity problem for propo-
sitional logic is decidable. That is, for any sentence
we can determine if it is valid or not. For predicate
logic, the validity problem is only semi-decidable.

Solution 16: (B) II is true because Godel'’s In-
completeness Theorem holds for the theory of natu-
ral numbers with addition and multiplication. III is
true because Godel’s Incompleteness Theorem does
NOT hold for theory of natural numbers with only
addition.

Solution 17: (C)

Computer Science Department
Stanford University
Comprehensive Examination in Numerical Analysis
Autumn 1994

October 21, 1994

READ THIS FIRST!

1.

3.

You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue book

that you use.

This exam is CLOSED BOOK. You may not use notes, articles, or books.

Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the
idea doesn’t work out; you can also get credit for realizing that certain approaches
are incorrect. On a true/false question, you might get partial credit for explaining
why you think something is true when it is actually false. But no partial credit can
be given if you write nothing.

Comprehensive Examination: N umerical Analysis (30 points). Fall 1994 C
(Problem I)

(15 points). Linear Systems and Matrices

(a) Define the condition number X of a matrix A. If

Az=b, Ay=b+r

(b) Let Abean m xm Symmetric matrix with eigenvalues \; and corresponding eigenvectors ¢.
What are the important properties of the A; and ¢; which follow from A being symmetric.

(d) Calculate K(A) in the Euclidean norm for a symmetric positive definite matrix.

(Problem IT)
(10 points). Quadrature
(a) Define the composite trapezoidal rule for the approximate integration of

I:= /. fa)dz O

over n intervals of equal length A = (b—a)/n. State the magnitude of the error in terms of h, under
an assumption on the smoothness of S which you should state.

(b) Show the weights {w;}7.; and nodes {z:}%, in the Gaussian quadrature formula

1 n
flf(z)dzzzwjf(zj)
- &
satisfy
n
ij(zj)i=0, i=1’3,".,2n_1
'=1
and
n . 2 .
Jg;wj(zj)'=-—i+1, i=0,2,...,2n—2.

SOLUTIONS:
Numerical Analysis

Solutions to Comprehensive: Numerical Analysis (30 points). Fall 1994
(Problem I)

(15 points). Linear Systems and Matrices

(a) Define the condition number X of a matrix A. If

Az =0, Ay=>b+r

state the upper and lower bounds relating the relative error J.lﬁgﬂdl to the relative peturbation -
Briefly discuss the implications of these inequalities for the numerical solution of linear systems.

SOLUTION: Definition is
K(4) = || AlA~Y).
The basic relationship is
L el Mzl < k(a)lrl 1Ll
K@ < Tl ell”

This is important in numerical analysis, because backward error analysis shows that, instead of
solving Az = b the computed solution exactly solves Ay = b+ r for some small vector r. The basic
relationship above then shows the confidence with which we may interpret the numerical solution:
if K£(A) is large, the numerical errors may be large.

(b) Let A be an m x m symmetric matrix with eigenvalues); and corresponding eigenvectors ¢.
What are the important properties of the); and ¢; which follow from A being symmetric.

SOLUTION: The eigenvalues are real. The eigenvvectors are orthogonal so that
¢l 6; = &;

where §;; =0 fori# j and &;; = 1fori=j.
(c) Let || - || denote the Euclidean vector norm and also use the same notation for the induced

matrix norm. By noting that any vector can be expressed as a linear combination of the ¢;, prove
that

4l = max |
SOLUTION: Let -
v= Z¢5¢,‘.
=1
Then
m
ol = la; 2.
j=1
Also
m
Av = Z Aja;id;
j=1
so that
lAv|j® = 2 Alajl?.
=1
Thus

llAvl? < R?|jv)l®.

1

Thus .- C

I4)? == sup |lAv]| < R2.
Ivli=1

Hence ||A|| < R. To prove that lAll = R note that A¢; = \;¢y and choosing that value of { for
which |Ay| is maximized we see that l|A]l = R.

(d) Calculate K(A) in the Euclidean norm for a symmetric positive definite matrix.

SOLUTION: We have that A~! has eigenvalues A;!. Thus

147 =1/r, = min A,
Hence
K(A) = R/r.

(Problem II)
(10 points). Quadrature
(a) Define the composite trapezoidal rule for the approximate integration of

I:= / fla)dz

over n intervals of equal length A = (b— a)/n. State the magnitude of the error in terms of %, under
an assumption on the smoothness of f which you should state.

SOLUTION: The rule is 1
Iz‘i[fo+fu]+[f2+f3+---+fn]~ O

Here f; = f(z;) and z; = a + jh. The error is O(h?) provided f € C?([a,), R).
(b) Show the weights {wi}2; and nodes {z;}2, in the Gaussian quadrature formula

1 n
/ f(z)dz =) w;f(z;)
satisfy
n
dwi(z)'=0, i=1,3,....2n~1
Jj=1
and
n) 2 .
D wi(z;) = T i=02...,20-2.

i=1

SOLUTION: Gaussian integration is chosen to accuirate on all polynpmia.ls of degree : 0 < j <
2n — 1. This is equivalent to asking that the rule exactly integrate z7 for = 0,...,2n — 1. Thus

1 n .
dz = izl.
[, 3w

Evaluating the integral gives the result.

Computer Science Department
Stanford University

Comprehensive Examination in Software Systems
Autumn 1994

October 20, 1994

READ THIS FIRST!

1. You should write your answers for this part of the Comprehensive Examination in a
BLUE BOOK. Be sure to write your MAGIC NUMBER on the cover of every blue
book that you use.

2) The number of POINTS for each problem indicates how elaborate an answer is
expected. For example, an essay-type question worth 6 points or less doesn’t deserve an
extremely detailed answer, even though a person can expound at length on just about
any topic in computer science.)

3) The total number of points is 60, and the exam takes 60 minutes. This “coincidence”
can help you plan your time.
4) This exam is CLOSED BOOK. You may NOT use notes, articles, books, computer, etc.

5) Show your work, since PARTIAL CREDIT will be given for incomplete answers. For
example, you can get credit for making a reasonable start on a problem even if the idea
doesn’t work out; your can also get credit for realizing that certain approaches are
incorrect.

6) If you are convinced you need to make an assumption to answer a question, state your
assumption(s) as well as the answer.

7) Be sure to provide justification for your answers.

Comprehensive Exam: Software Systems (60 points)

Funcl();

barrier(n);

Func2();

barrier(N) ;

Fune3();
The barrier should ensure that 110 process starts executing Func? () before all N of the
processes have executed Funci (). Similarly, by the time that the first process calls
Func3 () all processes should have returned from Func2 (). You function should
take a single argument, N, the number of processes participating in the barrier. It should
also work correctly on the above code fragment and contain no busy waiting.

2) (8 points) Some computer systems have been designed recently with a larger physical
memory address space than they have virtua] address space. In other words they have
more fewer bits of virtual address space than physical memory address space. Explain
why this is not a totally unreasonable design for a computer system. Be sure to indicate
what limits the design imposes.

a) Describe the benefits of this change.
b) Describe the problems introduced by it.

5) (8 points) What is the difference between starvation and deadlock?

6) (10 points) Frequently when sending data over a network it is beneficial to both encrypt
the data for security and compress the data to decrease the transfer time. Which order
would you suggest these operations be performed? Be sure to Justify your answer.

O

O

SOLUTIONDS:
Software Systems

Comprehensive Exam: Software Systems Solutions (60 points)

Oct 20, 1994

1) (16 points) This question asks you to implemeat a barrier synchronization function using only semaphores and a small number of
shared variables. A barrier synchronization function waits until the specified number of processes arrive at the “barrier” before
allowing any of the processes to continue. For exampie assume N processes execute the following code fragment:

Funel();
barrier(N);
Func2(}):;

barrier(N);
Fune3();

The barrier should ensure that no process stasts executing Func2 () before all N of the processes have executed Funcl (). Simi-
larly, by the time that the first process calls Func3 {) all processes should have remumed from Func? {). You function should take
a single argumeat, N, the number of processes participating in the basrier. It should also work correctly on the above code fragment
and contain no busy waiting.

int numwaiters = 0
Semaphore mutex =
Semaphore waiters
Semaphore release

[T I el

barrier(int N) {
P(mutex) ;
numwatiers += 1;
if (numwaiters == N) {
for (int i = 1; i < N; i++) //Last one wakes all
V(wait);
for (i = 1; 1 < N; i++) // Wait for all to exit
P(release):;
numwaiters = 0;
Vi{mutex) ;
} else {
V(mutex) ;
P(wait);
V(release) ;
}
}
2) 8 MB)Wmmmmmwwmm:demmwmmqhw virual
addmsspnee.hmmuthmfmbmdwwmupumwyﬁdmmw.kmﬁnwby
!hisisnouunﬂymﬂedﬁnfuamwmkemwﬁmmmmmmw

Having more memory than virtual address space means that a single process can not easily

take advantage of the all the physical memory in the system. Multiple processes such as in

a multiprogramming workload can take advantage of the extra memory. So can OS data

structures such as the file cache.

3) (10 points) As the price of DRAM memory has improved relative to that of magoetic disk space, the ratio of the amoun of physical
memoty to the amount of backing mmmmuagmgMuSmmm"mwmmeoqm

backingm(svupspm).lnmwtﬁs,mﬁmﬂwmhwbennoﬁﬁedwmmgmhadiﬁ
t'eteanny.Rnhenhnalloalingtheblckingmwbuavhmlmeisﬁmaaﬁ.&eh&ingmhwm!ymm

page is first paged out.
2) Describe the benefits of this change.

Besides avoiding the extra work required to do the allocation and deallocation of the swap
space, it also allows the amount of virtual memory in-use to be as big as the sum of the

Swap space and the physical memory. On some machines this can be much larger than the
amount of swap space,

b) Describe the problems introduced byit

It possible to enter a deadlock condition because there is no space to page out of a page.

4) (8 points)lnsomecomputersyswmslhemaximnmsizeofaumsfertoorfmmanmdevioeislimited!oardaﬁvelysmausize
(e.g. 32kilobytes)duetohistoxialarﬁfaas. Onthmsynems.wouldthembemyadmugesofusingtﬁlesynem with a block
size larger than the maximum I/O transfer size?

Large file system block sizes also reduce the size of the metadata for the file. This reduces
the amount of disk Space needed by the file system metadata and can result in faster access
to the file’s contents.

5) (8 points) What is the difference between starvation and deadlock?

In both starvation and deadlock the system is not making forward progress. The difference
is that in deadlock there is no way it can go forward while in starvation there is a way but
it’s not happening.

By compressing the data first we remove redundant information that can make the job of
the person trying to break the encryption easier.

